首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evoked potentials of the auditory cortex during the electrical stimulation of the cochlea were studied in acute experiments on cats. A series of electric pulses of short duration and different frequency delivered to the streptomycin-damaged cochlea were used as a stimulus. It has been shown that an amplitude and latency of electrical cortex responses depended on the number of pulses in series and on the interpulse intervals. Amplitudes of evoked responses increased with the growth of the number of stimuli. Latent periods changed in a narrower stimulation frequency band. Dependence of the induced potentials' amplitude growth on the increase in the number of electric pulses changed as a result of the two-fold enhancement of the stimulation amplitude.  相似文献   

2.
Direct cortical responses (DCRs) to paired stimuli were studied in chronic experiments in dogs during elaboration of classical and instrumental defensive conditioned reflexes. The DCRs were recorded with 20 to 250 ms intervals between stimuli. Paired and single electrical stimulations of the middle suprasylvian gyrus given with a frequency of one per second were used as conditioned stimuli and were reinforced in a similar way. During electrical cutaneous stimulation of the dog's paw and to an even greater extent during isolated action of the conditioned stimulus the initial negativity of the testing DCR became shorter and the degree of its depression diminished. In the case of a following period of facilitation, its degree became greater. It was higher at a distance of 4 to 5 mm from the point of stimulation than at a distance of 2 to 3 mm. During isolated action of the conditioned stimulus, the degree of facilitation was higher than at the period of the possible action of the unconditioned stimulus. The greatest shorterning of the DCR excitability cycle was observed immediately before and during the conditioned lifting of the dog's paw. Excitability cycles of DCR, and possibly of other evoked potentials as well, are a more sensitive indicator of the function state of the cerebral cortex than responses to single stimuli. For this reason it appears promising to use them in studying conditioned reflexes.  相似文献   

3.
Changes in responses to single stimulations of the cortical surface after tetanization (frequency 50/sec, duration 1–10 sec) were studied in sensorimotor cortical neurons of an unanesthetized rabbit on intracellular and "quasiintracellular" recordings. After tetanization insufficient to generate epileptiform after-discharges, an increase was observed in the amplitude and duration of exciting postsynaptic potentials (EPSP) induced by a single test stimulus. This increase is considered as post-tetanic potentiation (PTP). Its duration did not exceed 1 min. The amplitude of inhibitory postsynaptic potentials (IPSP) showed a considerably smaller increase or did not change or even decreased. The PTP increased with an increase in the strength and duration of the tetanization, reaching especially high values during tetanization sufficiently intensive to evoke epileptiform after-discharges. In this case the response to a single test stimulus was identical to an epileptiform intracellular discharge. The data obtained confirm the important role of PTP of the exciting synapses in the generation of epileptiform after-discharges. A simple model of a neuron network with exciting and inhibiting feedbacks which accounts for the generation of epileptiform activity is examined.Institute of the Brain, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 6, pp. 601–610, November–December, 1970.  相似文献   

4.
The order of appearance, the functional relations, and changes in the epileptiform effects of electrical stimulation of the limbic system (septum, amygdala, hippocampus) were studied. During repeated electrical stimulation regular changes took place in the seizure activity: the duration, frequency, and amplitude of the after-discharges were increased, their polarity was changed, seizures and unsynchronized high-amplitude activity appeared, and the after-discharges were reactivated. The most common variants of the seizure patterns are described. Close correlation was found between the greatest intensity of the after-discharges and the appearance of seizures. Besides a critical number of after-discharges, their parameters and their degree of irradiation also play an important role in the onset of the seizures. It is postulated that the limbic structures may play the role of an organized epileptogenic focus. Facts indicating that the seizure activity in response to direct electrical stimulation of the limbic structures may have a reflex mechanism are presented.  相似文献   

5.
The dorsal hippocampus was electrically stimulated in unanaesthetized, unrestrained rats with a cobalt-gelatin rod in their cortex. The significance of the hippocampus in the elicitation of both physiological spontaneous rhythmic activity (episodic activity of 8--9/sec frequency bound, in rats, to a state of quiet wakefulness, and "sleep spindles") and pathological rhythmic activity of the self-sustained after-discharge (SSAD) type was determined from the aspect of the EEG and behavioural characteristics. 1. Single electrical pulses (0.1 msec, 1--10 V, 0.3/sec) elicited an evoked potential bilaterally in the somatosensory cortex. Elicitation of rhythmic after-activity (of the type of episodes or sleep spindles) was observed only in some cases in which an adequately strong stimulus was used. 2. Repeated series of rhythmic electrical stimuli following each other at short intervals (2--3 min) led to the formation of SSAD in about one third of the cases and at all stimulation frequencies (3-15/sec), although low frequencies (3--4/sec) were the least effective. The character of the SSAD and simultaneous behavioural phenomena differed fundamentally from those evoked by electrical stimulation of the thalamus (Chocholová et al. 1977). The development of paroxysmal after-activity was signalled by responses of a more or less distinct "recruiting" character during stimulation. On the basis of a comparison of electrographic and behavioural manifestations after electrical stimulation of the thalamus and hippocampus, the possibility of both thalamic and extrathalamic projection from the hippocampus to the cortical region is considered.  相似文献   

6.
The thalamus or hippocampus of unanaesthetized rats with impaired cortical and subcortical electrodes was stimulated with rhythmic series of electrical pulses of 3--15/sec frequency. In both cases, stimulation either did not affect vigilance, or led to a higher degree of wakefulness. The incidence of recruiting responses (RR) and of self-sustained afterdischarges (SSAD) evoked by stimulation of the thalamus was not correlated to the preceding state of vigilance. In stimulation of the hippocampus, a significantly higher incidence of SSAD was found in the quiet waking state. The correlation between the elicitation of RR and SSAD was also significantly the highest after stimulation of the hippocampus during wakefulness.  相似文献   

7.
Cortical spreading depression (CSD) has been employed in unanesthetized curarized rats, in order to analyse the role of the cerebral cortex in the generation of epileptic self-sustained parozysms produced by direct cortical electrical stimulation. CSD was preferred because it is reversible and may be repeated several times in the same animal. CSD evoked in the hemisphere contralateral to the stimulated cortex decreased the duration of the afterdischarge by 40% and modified its form and amplitude both at the cortical and reticular levels. The possible role of cortical and subcortical structures in the development of after-discharges is discussed.  相似文献   

8.
We present observations on the multicyclic scratch reflex in spinal terrapins as produced by electrical stimuli applied to the shell at the specific regions at which a mechanical stimulus produces the reflex. EMGs and hip and knee movements are recorded. The responses to the electrical stimuli are similar to the responses to mechanical stimuli. There is a three phase EMG pattern (Stein and Grossman, 1980), to which the movement pattern is related (Bakker and Crowe, 1982). A response may consist of a series of up to 25 movement cycles with a total time course of up to about 30 sec. The initial cycles of a response are relatively fast (less than 1 sec), but the cycles at the expiration of the response may have a duration of 2-3 sec. A single electrical stimulus pulse is often insufficient to trigger a series response. Instead, a weak EMG burst of a few tenths of a second duration, together with a slight movement, is often seen. However, a second pulse can set the cycle series in motion even after an interval of 40 sec between the pulses. A further booster stimulus pulse given while a reflex response is taking place can increase the speed of the movement. If the booster pulse is given just after cessation of reflex activity it can restart the activity, but this second cycle series is often shorter than the first one. The results indicate that the excitability of the central program generator is not constant. Long duration changes in the excitability are produced within the spinal cord.  相似文献   

9.
Response was investigated in 47 rabbit visual cortex neurons to direct intracortical electrical stimulation consisting of single biphasic pulses of increasing intensities within the 150–2,700 µA range. Minimum level for generating all components of response to electrical stimulation remained similar from one neuron to the next, ranging between 150 and 600 µA. Three different patterns of dependence between numbers of spikes at different stages of response and current amplitude were identified: stable, gradual and selective patterns. Percentages of stable dependences were lower for after-discharges in comparison with initial firing (at 11 and 26% respectively) and the proportion of selective dependences were somewhat higher (at 32 and 21%). The selective dependence observed could imply the existence of optimum current levels at which peak neuronal response occurs. At the same time, duration of inhibitory pauses lengthened uniformly in the response of all test neurons during increasing intensity of the electrical stimuli. Findings obtained during this study may have a practical application in matters connected with visual prosthetics in the blind.M. V. Lomonosov State University, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 239–247, March–April, 1989.  相似文献   

10.
Responses of 74 cerebellar cortical neurons to electrical stimulation of the vagus nerve and its gastric branches and also of the limb nerves were recorded extracellularly in experiments on rats anesthetized with chloralose and pentobarbital. Phasic and tonic unit responses were similar to all types of stimulation, but fewer neurons responded to stimulation of the vagus nerve than to stimulation of the limb nerves. Monosensory neurons responding only to visceral stimulation, were not found. Among cells giving a phasic response, some had a short and others a long latent period. The latent period of responses of all types was longer to vagal stimulation than to stimulation of the limb nerves. The maximal frequency of rhythmic responses to vagal stimulation was 8/sec, compared with 16/sec for stimulation of the limb nerves. Tonic responses of the neurons were excitatory, inhibitory, and mixed. The type of unit response could vary depending on the frequency and repetitiveness of the stimuli but was otherwise independent of the type of stimulation.N. I. Pirogov Vinnitsa Medical Institute. I. M. Sechenov Institute of Evolutionary Biochemistry and Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 4, No. 5, pp. 471–479, September–October, 1972.  相似文献   

11.
Meeting report     
Neuronal responses in somatosensory cortical areas 3b and 1- 2 (S1) were recorded during an attention task involving cue directed selection of one of three simultaneous stimuli: dual sinewave shaped vibrotactile stimuli applied to mirror sites on both hands or a similarly timed auditory tone. The cued stimulus occurred with one of two equally probable patterns: a constant amplitude vibration or the latter with a superimposed brief sinewave amplitude pulse midway during stimulation. Uncued stimuli always contained amplitude pulses. Two monkeys signaled the absence or presence of an amplitude pulse by appropriately moving a foot pedal up or down. Cues initiated trials by marking the location where the monkey had to discriminate the stimulus pattern. Cue location and stimulus pattern varied randomly per trial. Approximately 50% of cells (44/77 in 3b and 39/77 in 1- 2) had significantly different firing rates to stimulation cued to the contralateral hand relative to spatially cuing the ipsilateral hand or cross-modally the auditory stimulus. Relatively suppressed firing rates during times prior to the epoch containing amplitude pulses improved signal-to-noise ratios for responses to amplitude pulses. Instances of significant enhanced activity during and after intervals with amplitude pulses were rare and relative to suppressed activity when cues directed attention to the ipsilateral hand or auditory stimulus. The present findings suggest that attention influences even the earliest stage somatosensory cortical processing. Findings were more modest in S1 than those previously seen in S2 (Burton et al. , Somatosens Mot Res 14 : 237-267, 1997), which supports the concept of multistage attention processes for touch.  相似文献   

12.
Neuronal responses in somatosensory cortical areas 3b and 1-2 (S1) were recorded during an attention task involving cue directed selection of one of three simultaneous stimuli: dual sinewave shaped vibrotactile stimuli applied to mirror sites on both hands or a similarly timed auditory tone. The cued stimulus occurred with one of two equally probable patterns: a constant amplitude vibration or the latter with a superimposed brief sinewave amplitude pulse midway during stimulation. Uncued stimuli always contained amplitude pulses. Two monkeys signaled the absence or presence of an amplitude pulse by appropriately moving a foot pedal up or down. Cues initiated trials by marking the location where the monkey had to discriminate the stimulus pattern. Cue location and stimulus pattern varied randomly per trial. Approximately 50% of cells (44/77 in 3b and 39/77 in 1-2) had significantly different firing rates to stimulation cued to the contralateral hand relative to spatially cuing the ipsilateral hand or cross-modally the auditory stimulus. Relatively suppressed firing rates during times prior to the epoch containing amplitude pulses improved signal-to-noise ratios for responses to amplitude pulses. Instances of significant enhanced activity during and after intervals with amplitude pulses were rare and relative to suppressed activity when cues directed attention to the ipsilateral hand or auditory stimulus. The present findings suggest that attention influences even the earliest stage somatosensory cortical processing. Findings were more modest in S1 than those previously seen in S2 (Burton et al., Somatosens Mot Res 14: 237-267, 1997), which supports the concept of multistage attention processes for touch.  相似文献   

13.
Responses of rabbit visual cortical neurons to single and repetitive intracortical electrical stimulation were investigated. The stimulating electrode was located 0.7–1.2 mm away from the recording electrode. Response thresholds to single stimulation were as a rule 150–180 µA, whereas to series of stimuli they were 30–60 µA. The latent period to the first spike averaged 5–15 msec but the probability of the initial discharge was very low, namely 3–6%. With an increase in current intensity the duration of the initial inhibitory pause was increased in half of the neurons responding to it, whereas in the rest it was unchanged. After presentation of series of stimuli spontaneous activity was enhanced for a short time (4–6 sec). In about half of the cells the same kinds of discharge dynamics were observed in response to repetitive stimulation (frequency 0.25 Hz) as in responses to light, but more neurons with sensitization of discharge and fewer "habituating" neurons took part in responses to electrical stimulation. It is postulated that stimulation of a given point of the visual cortex evokes excitation of a local neuron hypercolumn and inhibition of neighboring cell columns.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 15, No. 4, pp. 412–419, July–August, 1983.  相似文献   

14.
Physiological studies were carried out in the frog (Rana pipiens pipiens) eighth nerve to determine: (i) whether the modulation rate or the silent gap was the salient feature that set the upper limit of time-locking to pulsed amplitude-modulated (PAM) stimuli, (ii) the gap detection capacity of individual eighth nerve fibers. Time-locked responses of 79 eighth nerve fibers to PAM stimuli (at the fiber's characteristic frequency) showed that the synchronization coefficient was a low-pass function of the modulation rate. In response to PAM stimuli having different pulse durations, a fiber gave rise to non-overlapping modulation transfer functions. The upper cut-off frequency of time locking was higher when tonepulses in PAM stimuli had shorter duration. The fact that the cut-off frequency was different for the different PAM series suggested that the AM rate was neither the sole, nor the main, determinant for the decay in time-locking at high AM rates. Gap detection capacity was determined for 69 eighth nerve fibers by assessing fiber's spiking activities to paired tone-pulses during an OFF-window and an ON-window. It was found that the minimum detectable gap of eighth nerve fibers ranged from 0.5 to 10 ms with an average of 1.23–2.16 ms depending on the duration of paired tone pulses. For each fiber, the minimum detectable gap was longer when the duration of tone pulses comprising the twin-pulse stimuli was more than four times longer. When the synchronization coefficient was plotted against the silent gap between tones pulses in the PAM stimuli, the gap response functions of a fiber as derived from multiple PAM series were equivalent to gap response functions deriving from twin-pulse series suggesting that it was the silent gap which primarily determined the upper limit of time-locking to PAM stimuli.Abbreviations MTF modulation transfer function - PAM pulse amplitude modulated - SAM sinusoidally amplitude modulated - SC synchronization coefficient - TW time window  相似文献   

15.
Evidence from human psychophysical and animal electrophysiological studies suggests that sensitivity to interaural time delay (ITD) in the modulating envelope of a high-frequency carrier can be enhanced using half-wave rectified stimuli. Recent evidence has shown potential benefits of equivalent electrical stimuli to deaf individuals with bilateral cochlear implants (CIs). In the current study we assessed the effects of envelope shape on ITD sensitivity in the primary auditory cortex of normal-hearing ferrets, and profoundly-deaf animals with bilateral CIs. In normal-hearing animals, cortical sensitivity to ITDs (±1 ms in 0.1-ms steps) was assessed in response to dichotically-presented i) sinusoidal amplitude-modulated (SAM) and ii) half-wave rectified (HWR) tones (100-ms duration; 70 dB SPL) presented at the best-frequency of the unit over a range of modulation frequencies. In separate experiments, adult ferrets were deafened with neomycin administration and bilaterally-implanted with intra-cochlear electrode arrays. Electrically-evoked auditory brainstem responses (EABRs) were recorded in response to bipolar electrical stimulation of the apical pair of electrodes with singe biphasic current pulses (40 µs per phase) over a range of current levels to measure hearing thresholds. Subsequently, we recorded cortical sensitivity to ITDs (±800 µs in 80-µs steps) within the envelope of SAM and HWR biphasic-pulse trains (40 µs per phase; 6000 pulses per second, 100-ms duration) over a range of modulation frequencies. In normal-hearing animals, nearly a third of cortical neurons were sensitive to envelope-ITDs in response to SAM tones. In deaf animals with bilateral CI, the proportion of ITD-sensitive cortical neurons was approximately a fifth in response to SAM pulse trains. In normal-hearing and deaf animals with bilateral CI the proportion of ITD sensitive units and neural sensitivity to ITDs increased in response to HWR, compared with SAM stimuli. Consequently, novel stimulation strategies based on envelope enhancement may prove beneficial to individuals with bilateral cochlear implants.  相似文献   

16.
Habituation (extinction) of postsynaptic unit responses of the cat motor cortex to repetitive electrodermal, photic, acoustic, and combined bimodal stimulation was investigated by intracellular recording. Habituation was shown by a decrease in the number of spikes per grouped discharge and a decrease in the amplitude and duration of the EPSPs, and sometimes IPSPs, on repetition of the stimulus. The way in which the course of habituation depends on the modality and duration of stimulation (at a constant frequency of 1/sec) is examined. Habituation of postsynaptic responses to sensory stimuli is observed with neurons of different functional groups, namely identified neurons of pyramidal tract and unidentified neurons, some of which were evidently pyramidal neurons and interneurons. The hypothesis is put forward that the habituation of PSPs of the cortical neurons is based on processes taking place mainly at the subcortical level.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 4, No. 5, pp. 545–553, September–October, 1972.  相似文献   

17.
Lithium-pilocarpine status epilepticus (SE) resulted in delayed changes of single cortical interhemisperic (transcallosal) responses in immature rats. Low-frequency stimulation inducing depression and/or potentiation was studied to analyze possible dynamic changes in cortical responses. Status was elicited in 12-day-old (SE12) or 25-day-old (SE25) rats. Control siblings received saline instead of pilocarpine. Interhemispheric responses were elicited by stimulation of the sensorimotor region of the cerebral cortex 3, 6, 9, 13, or 26 days after status. A series of 5 biphasic pulses with intensity equal to twofold threshold were used for stimulation. The interval between pulses was 100, 125, 160, 200 or 300 ms, eight responses were always averaged. Peak amplitude of the first positive, first negative and second positive waves was measured and responses to the second, third, fourth and fifth pulse were compared with the first one. Animals after status epilepticus as well as lithium-paraldehyde controls exhibit a frequency depression at nearly all the intervals studied. An outlined increase of responses in SE rats in comparison with the controls three days after SE stayed just below the level of statistical significance. In addition, animals in the SE12 group exhibited potentiation of responses at this interval after SE. With longer intervals after SE, the relation between SE and control animals changed twice resulting in a tendency to lower amplitude of responses in SE than in control rats 26 days after SE. Rats in the SE25 group exhibited higher responses than controls 13 days after status, but this difference was not present at the longest interval after SE. Low-frequency stimulation did not reveal increased cortical excitability as a long-lasting consequence of status epilepticus induced in immature rats. In addition, the outlined differences between SE and control rats changed with the time after SE.  相似文献   

18.
Experiments on unanesthetized rats immobilized with D-tubocurarine showed that electrical stimulation (100/sec) of the central gray matter and the mesencephalic and medullary reticular formation considerably depressed potentials in the somatic thalamic relay nucleus and somatosensory cortex evoked by stimulation of the forelimb or medial lemniscus. The mean threshold values of the current used for electrical stimulation of these structures did not differ significantly and were 70 (20–100), 100 (20–120), and 120 (50–200) µA, respectively. On comparison of the amplitude-temporal characteristics of inhibition of evoked potentials during electrical stimulation of the above-mentioned structures by a current of twice the threshold strength, no significant differences were found. Immediately after the end of electrical stimulation the amplitude of the cortical evolved potential and the post-synaptic components of the thalamic evoked potential was 50–60% (P<0.01) below the control values. The duration of this depression varied from 0.5 to 1 sec. An increase in the intensity of electrical stimulation of brain-stem structures to between three and five times the threshold led to depression of the presynaptic component of the thalamic evoked potential also. Depression of the evoked potential as described above was found with various ratios between the intensities of conditioning and testing stimuli.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 467–475, September–October, 1976.  相似文献   

19.
Modulation of Hydra attenuata rhythmic activity. Photic stimulation.   总被引:1,自引:0,他引:1  
We investigated in Hydra attenuata the possibility of altering more or less permanently and in different environmental conditions, the frequency of Contraction Pulse Trains (CPT's) associated with the rhythmic spontaneous contraction activity, by repetitive light stimuli of variable duration, frequency and amplitude. The CPT's activity of various pieces of Hydra has been also investigated in indisturbed conditions and under stimulation. The following observations have been performed. 1. A transient effect, consisting of an increase or a decrease of CPT's frequency, occurs respectively after an abrupt decrease or increase of the light level. 2. If Hydra is stimulated by repetitive light pulses of 0.5-10 sec duration, at a frequency different from the CPT's average one, the CPT's frequency modifies; if the stimulation frequency is included in a range not too much up or below that of CPT's the new CPT's frequency equals exactly that of stimulation; close to this range the CPT's frequency is a multiple or submultiple of that of stimulation. 3. No habituation to such repetitive stimulation was found. 4. The phase relation between CPT's at the new frequency and light stimuli is a function of the difference between CPT's and stimulation frequencies. 5. Stimulation with repetition of light and darkness periods of some minutes duration induces activity only or mainly during darkness. 6. Modification of CPT's frequency by means of repetitive light stimulation [of the type mentioned either in 2) or 5)] has been observed also with hypostomal preparations. 7. With cessation of the light stimulation, the new CPT's frequency of the whole animal lasts in darkness for a time (10-85 min) that is about 5-10 times longer than that necessary to obtain CPT's syncronization with stimulation. 8. The influence of the light intensity level on transient CPT's frequency variation (see 1), CPT's inhibition and stimulation, promptness of entrainment, range of entrainability, phase relation between entrained CPT's and stimuli, retention time of entrained rhythm has been examined, together with the influence of the reversal of polarity of light transitions on CPT's inhibition and entrainment.  相似文献   

20.
Inhibition of association cortical neurons (in the form of inhibition of spontaneous activity or of IPSPs) during direct and transcallosal stimulation was studied in cats immobilized with muscle relaxants. The duration of inhibition of stimulation and the number of stimuli. With an increase in the strength of stimulation inhibition deepened to a certain level for a particular neuron, after which it could be further lengthened with an increase in the number of stimuli. In the case of repeated stimulation by volleys of stimuli, very prolonged inhibition developed gradually in the neurons, during which spontaneous activity was inhibited for 2–5 sec. The duration of the IPSP depended on the intensity of stimulation and number of stimuli and its amplitude depended on the intensity and frequency of stimulation and on the number of stimuli. In some cases the amplitude of the IPSP continued to rise after a short volley of stimuli, even after the end of stimulation. An increase in the number of stimuli in the volley lengthened the IPSPs, but their amplitude remained constant throughout the period of stimulation. Prolonged inhibition (up to a few seconds) was connected with the development of a hyperpolarization postsynaptic potential in the neurons. It is suggested that neurons exerting a monosynaptic inhibitory influence on cells of the association cortex may be located in the opposite hemisphere.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 2, pp. 133–141, March–April, 1981.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号