首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 643 毫秒
1.
Bacterial enrichment cultures developed with Baltimore Harbor (BH) sediments were found to reductively dechlorinate 2,3,5,6-tetrachlorobiphenyl (2,3,5,6-CB) when incubated in a minimal estuarine medium containing short-chain fatty acids under anaerobic conditions with and without the addition of sediment. Primary enrichment cultures formed both meta and ortho dechlorination products from 2,3,5,6-CB. The lag time preceding dechlorination decreased from 30 to less than 20 days as the cultures were sequentially transferred into estuarine medium containing dried, sterile BH sediment. In addition, only ortho dechlorination was observed following transfer of the cultures. Sequential transfer into medium without added sediment also resulted in the development of a strict ortho-dechlorinating culture following a lag of more than 100 days. Upon further transfer into the minimal medium without sediment, the lag time decreased to less than 50 days. At this stage all cultures, regardless of the presence of sediment, would produce 2,3,5-CB and 3,5-CB from 2,3,5,6-CB. The strict ortho-dechlorinating activity in the sediment-free cultures has remained stable for more than 1 year through several transfers. These results reveal that the classical microbial enrichment technique using a minimal medium with a single polychlorinated biphenyl (PCB) congener selected for ortho dechlorination of 2,3,5,6-CB. Furthermore, this is the first report of sustained anaerobic PCB dechlorination in the complete absence of soil or sediment.Anaerobic dechlorination of polychlorinated biphenyls (PCBs) has been demonstrated in situ and with laboratory microcosms containing sediment (reviewed in reference 1a). However, sustained PCB dechlorination has never been shown to occur in the absence of soil or sediments. Morris et al. (6) demonstrated a sediment requirement for the stimulation of PCB dechlorination within freshwater sediment slurries. Wu and Wiegel have recently described PCB-dechlorinating enrichments which required soil for the successful transfer of PCB-dechlorinating activity (9). In addition, no anaerobic microorganisms that dechlorinate PCBs have been isolated or characterized, and this may be due in part to the soil or sediment requirement. The inability to isolate dechlorinating organisms or maintain dechlorination without sediment has limited biogeochemical and physiological investigations into the mechanisms of PCB dechlorination.Dechlorination (ortho, meta, and para) of single PCB congeners has been observed following anaerobic incubation of Baltimore Harbor (BH) sediment under estuarine or marine conditions (2). While sediments from several sites within BH are contaminated with PCBs (1, 5), background contamination of sediment is not necessarily a prerequisite for the development of PCB dechlorination in laboratory microcosms. Wu et al. (8) recently demonstrated meta and ortho dechlorination of Aroclor 1260 when it was added to the same BH sediments. These results showed that more than one dechlorinating activity could be developed with these sediments. It has been proposed that discrete microbial populations are responsible for specific PCB dechlorinations (1a). Consistent with this idea, the ortho dechlorination observed with BH sediments may be catalyzed by discrete microbial populations. In addition, these organisms may be able to couple PCB dechlorination with growth. Therefore we have attempted to select for ortho PCB-dechlorinating organisms by enrichment under minimal conditions with high levels of 2,3,5,6-tetrachlorobiphenyl. We also speculated that given the proper conditions, a PCB-dechlorinating population could be maintained in an actively dechlorinating state in the absence of sediment. Here we report that a distinct PCB-dechlorinating activity, namely, ortho dechlorination, was selected for through sequential transfer initiated with sediments from BH and sustained in the absence of soil or sediment. This is the first report of sustained anaerobic PCB-dechlorinating activity in the total absence of sediment.  相似文献   

2.
Anaerobic cultures capable of reductively dechlorinating 2,3,4,5-tetrachlorobiphenyl (CB) were enriched from three different sediments, one estuarine, one marine and one riverine. Two different electron donors were used in enrichments with the estuarine sediment (elemental iron or a mixture of fatty acids). The removal of doubly flanked meta and para chlorines to form 2,3,5-CB and 2,4,5-CB was observed in all cultures. Bacterial community analysis of PCR-amplified 16S rRNA gene fragments revealed different communities in these cultures, with the exception of one common population that showed a high phylogentic relatedness to Dehalococcoides species. No Dehalococcoides-like populations were ever detected in control cultures to which no PCBs were added. In addition, the dynamics of this Dehalococcoides-like population were strongly correlated with dechlorination. Subcultures of the estuarine sediment culture demonstrated that the Dehalococcoides-like population disappeared when dechlorination was inhibited with 2-bromoethanesulfonate or when 2,3,4,5-CB had been consumed. These results provide evidence that Dehalococcoides-like populations were involved in the removal of doubly flanked chlorines from 2,3,4,5-CB. Furthermore, the successful enrichment of these populations from geographically distant and geochemically distinct environments indicates the widespread presence of these PCB-dechlorinating, Dehalococcoides-like organisms.  相似文献   

3.
D Ye  J F Quensen  rd  J M Tiedje    S A Boyd 《Applied microbiology》1992,58(4):1110-1114
A polychlorobiphenyl (PCB)-dechlorinating inoculum eluted from upper Hudson River sediments was treated with either heat or ethanol or both. The treated cultures retained the ability to dechlorinate PCBs (Aroclor 1242) under strictly anaerobic conditions. The dechlorination activity was maintained in serial cultures inoculated with transfers of 1% inoculum when the transferred inoculum was treated each time in the same manner. No methane production was detected in any treated culture, although dechlorination of PCBs in the untreated cultures was always accompanied by methane production. All treated cultures preferentially removed meta chlorines, yielding a dechlorination pattern characterized by accumulation of certain ortho- and para-subsituted congeners such as 2-4-chlorobiphenyl (2-4-CB), 2,4-2-CB, and 2,4-4-CB. In contrast, the untreated cultures showed more extensive dechlorination activities, which almost completely removed both meta and para chlorines from Aroclor 1242. These results suggest that microorganisms responsible for the dechlorination of PCBs in the upper Hudson River sediments can be grouped into two populations according to their responses to the heat and ethanol treatments. Microorganisms surviving the heat and ethanol treatments preferentially remove meta chlorines, while microorganisms lost from the enrichment mainly contribute to the para dechlorination activity. These results indicate that anaerobic sporeformers are at least one of the physiological groups responsible for the reductive dechlorination of PCBs. The selection of a dechlorinating population by such treatments may be an important step in isolation of PCB-dechlorinating microorganisms.  相似文献   

4.
A polychlorobiphenyl (PCB)-dechlorinating inoculum eluted from upper Hudson River sediments was treated with either heat or ethanol or both. The treated cultures retained the ability to dechlorinate PCBs (Aroclor 1242) under strictly anaerobic conditions. The dechlorination activity was maintained in serial cultures inoculated with transfers of 1% inoculum when the transferred inoculum was treated each time in the same manner. No methane production was detected in any treated culture, although dechlorination of PCBs in the untreated cultures was always accompanied by methane production. All treated cultures preferentially removed meta chlorines, yielding a dechlorination pattern characterized by accumulation of certain ortho- and para-subsituted congeners such as 2-4-chlorobiphenyl (2-4-CB), 2,4-2-CB, and 2,4-4-CB. In contrast, the untreated cultures showed more extensive dechlorination activities, which almost completely removed both meta and para chlorines from Aroclor 1242. These results suggest that microorganisms responsible for the dechlorination of PCBs in the upper Hudson River sediments can be grouped into two populations according to their responses to the heat and ethanol treatments. Microorganisms surviving the heat and ethanol treatments preferentially remove meta chlorines, while microorganisms lost from the enrichment mainly contribute to the para dechlorination activity. These results indicate that anaerobic sporeformers are at least one of the physiological groups responsible for the reductive dechlorination of PCBs. The selection of a dechlorinating population by such treatments may be an important step in isolation of PCB-dechlorinating microorganisms.  相似文献   

5.
Q. Wu  D. L. Bedard    J. Wiegel 《Applied microbiology》1997,63(7):2836-2843
We studied the influence of temperature (4 to 66(deg)C) on the microbial dechlorination of 2,3,4,6-tetrachlorobiphenyl (2,3,4,6-CB) incubated for 1 year in anaerobic sediments from Woods Pond in Lenox, Mass., and Sandy Creek Nature Center Pond (SCNC) in Athens, Ga. Seven discrete dechlorination reactions were observed, four of which occurred in both sediments. These were 2,3,4,6-CB (symbl) 2,4,6-CB, 2,3,4,6-CB (symbl) 2,3,6-CB, 2,4,6-CB (symbl) 2,6-CB, and 2,3,6-CB (symbl) 2,6-CB. Three additional reactions occurred only in Woods Pond sediment. These were 2,4,6-CB (symbl) 2,4-CB, 2,4-CB (symbl) 2-CB, and 2,4-CB (symbl) 4-CB. The dechlorination reactions exhibited at least four different temperature dependencies in SCNC sediment and at least six in Woods Pond sediment. We attribute the discrete dechlorination reactions to different polychlorinated biphenyl (PCB)-dechlorinating microorganisms with distinct specificities. Temperature influenced the timing and the relative predominance of parallel pathways of dechlorination, i.e., meta versus para dechlorination of 2,3,4,6-CB and ortho versus para dechlorination of 2,4,6-CB and 2,4-CB. meta dechlorination of 2,3,4,6-CB to 2,4,6-CB dominated at all tested temperatures except at 18 and 34(deg)C, where para dechlorination to 2,3,6-CB dominated in some replicates. The dechlorination of 2,4,6-CB was restricted to (symbl)15 to 30(deg)C in both sediments. Temperature affected the lag time preceding the dechlorination of 2,4,6-CB in both sediments and affected the preferred route of its dechlorination in Woods Pond sediment. para dechlorination dominated at 20(deg)C, and ortho dechlorination dominated at 15(deg)C, but at 18 and 22 to 30(deg)C the relative dominance of ortho versus para dechlorination of 2,4,6-CB varied. These data indicate that field temperatures play a significant role in controlling the nature and the extent of the PCB dechlorination that occurs at a given site.  相似文献   

6.
Reductive dechlorination of Aroclor 1260 was investigated in anaerobic slurries of estuarine sediments from Baltimore Harbor (Baltimore, Md.). The sediment slurries were amended with 800 ppm Aroclor 1260 with and without the addition of 350 μM 2,3,4,5-tetrachlorobiphenyl (2,3,4,5-CB) or 2,3,5,6-tetrachlorobiphenyl (2,3,5,6-CB) and incubated in triplicate at 30°C under methanogenic conditions in an artificial estuarine medium. After 6 months, extensive meta dechlorination and moderate ortho dechlorination of Aroclor 1260 occurred in all incubated cultures except for sterilized controls. Overall, total chlorines per biphenyl decreased by up to 34%. meta chlorines per biphenyl decreased by 65, 55, and 45% and ortho chlorines declined by 18, 12, and 9%, respectively, when 2,3,4,5-CB, 2,3,5,6-CB, or no additional congener was supplied. This is the first confirmed report of microbial ortho dechlorination of a commercial polychlorinated biphenyl mixture. In addition, compared with incubated cultures supplied with Aroclor 1260 alone, the dechlorination of Aroclor 1260 plus 2,3,4,5-CB or 2,3,5,6-CB occurred with shorter lag times (31 to 60 days versus 90 days) and was more extensive, indicating that the addition of a single congener stimulated the dechlorination of Aroclor 1260.  相似文献   

7.
Q. Wu  D. L. Bedard    J. Wiegel 《Applied microbiology》1996,62(11):4174-4179
We studied the impact of incubation temperatures on the dechlorination of 2,3,4,6-tetrachlorobiphenyl (2346-CB) in two sediments from different climates: polychlorinated biphenyl (PCB)-free sediment from Sandy Creek Nature Center Pond (SCNC) in Athens, Ga., and PCB-contaminated sediment from Woods Pond (WP) in Lenox, Mass. Sediment slurries were incubated anaerobically with 350 (mu)M 2346-CB for 1 year at temperatures ranging from 4 to 66(deg)C. Most of the 2346-CB was dechlorinated between 12 and 34(deg)C in both sediments and, unexpectedly, between 50 and 60(deg)C in WP sediment. This is the first report of PCB dechlorination at thermobiotic temperatures. The data reveal profound differences in dechlorination rate, extent, and products as a function of sediment and temperature. The highest observed rate of dechlorination of 2346-CB to trichlorobiphenyls occurred at 30(deg)C in both sediments, but the rate was higher for WP than for SCNC sediment (46 versus 16 (mu)mol liter(sup-1) day(sup-1)). For SCNC sediment the rate of dechlorination dropped sharply below 30(deg)C, but for WP sediments it was near optimal from 20 to 34(deg)C and then dropped sharply below 20(deg)C. In WP sediment most of the meta chlorines were removed between 8 and 34(deg)C and between 50 and 60(deg)C. para dechlorination was restricted from 18 to 34(deg)C and was optimal at 20(deg)C. ortho dechlorination occurred between 8 and 30(deg)C, with optima around 15 and 27(deg)C, but the extent was highly variable. In SCNC sediment complete meta dechlorination occurred from 12 to 34(deg)C and para dechlorination occurred from 18 to 30(deg)C; both were optimal at 30(deg)C. No ortho dechlorination was observed. Dechlorination products were 246-CB, 236-CB, and 26-CB (both sediments) and 24-CB, 2-CB, and 4-CB (WP sediment). The data suggest that in SCNC sediment similar factors controlled meta and para PCB dechlorination over a broad temperature range (18 to 30(deg)C) but that in WP sediment there were multiple temperature-dependent changes in the factors controlling ortho, meta, and para dechlorination. We attribute the differences observed in the two sediments to differences in their PCB-dechlorinating communities.  相似文献   

8.
Microbial reductive dehalogenation of polychlorinated biphenyls   总被引:11,自引:0,他引:11  
Under anaerobic conditions, microbial reductive dechlorination of polychlorinated biphenyls (PCBs) occurs in soils and aquatic sediments. In contrast to dechlorination of supplemented single congeners for which frequently ortho dechlorination has been observed, reductive dechlorination mainly attacks meta and/or para chlorines of PCB mixtures in contaminated sediments, although in a few instances ortho dechlorination of PCBs has been observed. Different microorganisms appear to be responsible for different dechlorination activities and the occurrence of various dehalogenation routes. No axenic cultures of an anaerobic microorganism have been obtained so far. Most probable number determinations indicate that the addition of PCB congeners, as potential electron acceptors, stimulates the growth of PCB-dechlorinating microorganisms. A few PCB-dechlorinating enrichment cultures have been obtained and partially characterized. Temperature, pH, availability of naturally occurring or of supplemented carbon sources, and the presence or absence of H(2) or other electron donors and competing electron acceptors influence the dechlorination rate, extent and route of PCB dechlorination. We conclude from the sum of the experimental data that these factors influence apparently the composition of the active microbial community and thus the routes, the rates and the extent of the dehalogenation. The observed effects are due to the specificity of the dehalogenating bacteria which become active as well as changing interactions between the dehalogenating and non-dehalogenating bacteria. Important interactions include the induced changes in the formation and utilization of H(2) by non-dechlorinating and dechlorinating bacteria, competition for substrates and other electron donors and acceptors, and changes in the formation of acidic fermentation products by heterotrophic and autotrophic acidogenic bacteria leading to changes in the pH of the sediments.  相似文献   

9.
Estuarine sediment from Charleston Harbor, South Carolina, was used as inoculum for the development of an anaerobic enrichment culture that specifically dechlorinates doubly flanked chlorines (i.e., chlorines bound to carbon that are flanked on both sides by other chlorine-carbon bonds) of polychlorinated biphenyls (PCBs). Dechlorination was restricted to the para chlorine in cultures enriched with 10 mM fumarate, 50 ppm (173 microM) 2,3,4, 5-tetrachlorobiphenyl, and no sediment. Initially the rate of dechlorination decreased upon the removal of sediment from the medium. However, the dechlorinating activity was sustainable, and following sequential transfer in a defined, sediment-free estuarine medium, the activity increased to levels near that observed with sediment. The culture was nonmethanogenic, and molybdate, ampicillin, chloramphenicol, neomycin, and streptomycin inhibited dechlorination activity; bromoethanesulfonate and vancomycin did not. Addition of 17 PCB congeners indicated that the culture specifically removes double flanked chlorines, preferably in the para position, and does not attack ortho chlorines. This is the first microbial consortium shown to para or meta dechlorinate a PCB congener in a defined sediment-free medium. It is the second PCB-dechlorinating enrichment culture to be sustained in the absence of sediment, but its dechlorinating capabilities are entirely different from those of the other sediment-free PCB-dechlorinating culture, an ortho-dechlorinating consortium, and do not match any previously published Aroclor-dechlorinating patterns.  相似文献   

10.
A microcosm system to physically model the fate of Aroclor 1242 in Hudson River sediment was developed. In the dark at 22 to 25 degrees C with no amendments (nutrients, organisms, or mixing) and with overlying water being the only source of oxygen, the microcosms developed visibly distinct aerobic and anaerobic compartments in 2 to 4 weeks. Extensive polychlorinated biphenyl (PCB) biodegradation was observed in 140 days. Autoclaved controls were unchanged throughout the experiments. In the surface sediments of these microcosms, the PCBs were biologically altered by both aerobic biodegrading and reductive dechlorinating microorganisms, decreasing the total concentration from 64.8 to 18.0 micromol/kg of sediment in 1140 days. This is the first laboratory demonstration of meta dechlorination plus aerobic biodegradation in stationary sediments. In contrast, the primary mechanism of microbiological attack on PCBs in aerobic subsurface sediments was reductive dechlorination. The concentration of PCBs remained constant at 64.8 micromol/kg of sediment, but the average number of chlorines per biphenyl decreased from 3.11 to 1.84 in 140 days. The selectivities of microorganisms in these sediments were characterized by meta and para dechlorination. Our results provide persuasive evidence that naturally occurring microorganisms in the Hudson River have the potential to attack the PCBs from Aroclor 1242 releases both aerobically and anaerobically at rapid rates. These unamended microcosms represent a unique method for determining the fate of released PCBs in river sediments.  相似文献   

11.
Q Wu  J Wiegel 《Applied microbiology》1997,63(12):4826-4832
Two anaerobic polychlorinated biphenyl (PCB)-dechlorinating enrichments with distinct substrate specificities were obtained: a 2,3,4,6-tetrachlorobiphenyl (2346-CB) para-dechlorinating enrichment derived from Aroclor 1260-contaminated Woods Pond (Lenox, Mass.) sediment and a 2,4,6-trichlorobiphenyl (246-CB) unflanked para-dechlorinating enrichment derived from PCB-free Sandy Creek Nature Center (Athens, Ga.) sediment. The enrichments have been successfully transferred to autoclaved soil slurries over 20 times by using 300 to 350 microM 2346-CB or 246-CB. Both enrichments required soil for successful transfer of dechlorination activity. The 2346-CB enrichment para dehalogenated, in the absence or presence of 2346-CB, only 4 of 25 tested para halogen-containing congeners: 234-CB, 2345-CB, 2346-CB, and 2,4,6-tribromobiphenyl (246-BrB). In the presence of 246-CB, the 246-CB enrichment para dehalogenated 23 of the 25 tested congeners. However, only three congeners (34-CB, 2346-CB, and 246-BrB) were dehalogenated in the absence of 246-CB, indicating that these specific congeners initiate dehalogenation in this enrichment culture. The addition of the 2346-CB (para)-dechlorinating enrichment did not further stimulate the 2346-CB-primed dechlorination of the Aroclor 1260 residue in Woods Pond sediment samples. Compared to the addition of the primer 246-CB or the 246-CB unflanked para-dechlorinating enrichment alone, the addition of both 246-CB (300 microM) and the 246-CB enrichment stimulated the unflanked para dechlorination of the Aroclor 1260 residue in Woods Pond sediments. These results indicate that the two enrichments contain different PCB-dechlorinating organisms, each with high substrate specificities. Furthermore, bioaugmentation with the enrichment alone did not stimulate the desired dechlorination in PCB-contaminated Woods Pond sediment.  相似文献   

12.
Microbial reductive dechlorination of PCBs   总被引:1,自引:0,他引:1  
Reductive dechlorination is an advantageous process to microorganisms under anaerobic conditions because it is an electron sink, thereby allowing reoxidation of metabolic intermediates. In some organisms this has been demonstrated to support growth. Many chlorinated compounds have now been shown to be reductively dechlorinated under anaerobic conditions, including many of the congeners in commercial PCB mixtures. Anaerobic microbial communities in sediments dechlorinate Aroclor at rates of 3 µg Cl/g sediment × week. PCB dechlorination occurs at 12° C, a temperature relevant for remediation at temperate sites, and at concentrations of 100 to 1000 ppm. The positions dechlorinated are usually meta > para > ortho. The biphenyl rings, and the mono-ortho- and diorthochlorobiphenyls were not degraded after a one year incubation. Hence subsequent aerobic treatment may be necessary to meet regulatory standards. Reductive dechlorination of Arochlors does reduce their dioxin-like toxicity as measured by bioassay and by analysis of the co-planar congeners. The most important limitation to using PCB dechlorination as a remediation technology is the slower than desired dechlorination rates and no means yet discovered to substantially enhance these rates. Long term enrichments using PCBs as the only electron acceptor resulted in an initial enhancement in dechlorination rate. This rate was sustained but did not increase in serial transfers. Bioremediation of soil contaminated with Aroclor 1254 from a transformer spill was dechlorinated by greater than 50% following mixing of the soil with dechlorinating organisms and river sediment. It is now reasonable to field test reductive dechlorination of PCBs in cases where the PCB concentration is in the range where regulatory standards may be directly achieved by dechlorination, where a subsequent aerobic treatment is feasible, where any co-contaminants do not pose an inhibitory problem, and where anaerobic conditions can be established.This paper was presented at the Pacific Basin Conference on Hazardous Waste, April, 1992, Bangkok, Thailand. Published by permission of the Pacific Basin Consortium for Hazardous Waste Research, East-West Center, Honolulu, HI  相似文献   

13.
A polychlorinated biphenyl (PCB)-dechlorinating anaerobic microbial consortium, developed in a granular form, demonstrated extensive dechlorination of PCBs present in Raisin River sediments at room (20 degrees to 22 degrees C) and at a relatively low (12 degrees C) temperature. Highly chlorinated PCB congeners were dechlorinated and less chlorinated compounds were produced. The homolog comparison showed that tri-, tetra-, penta-, hexa-, and heptachlorobiphenyl compounds decreased significantly, and mono- and dichlorobiphenyl compounds increased. After 32 weeks of incubation at 12 degrees C, the predominant less chlorinated products included 2-, 4-, 2-2/26-, 24-, 2-4-, 24-2-, 26-2-, and 26-4-CB. Among these, 24- and 24-2-CB did not accumulate at room temperature, suggesting a further dechlorination of these congeners. Predominantly meta dechlorination (i.e., pattern M) was catalyzed by the microbial consortium in the granules. Dechlorination in the control studies without granules was not extensive. This study is the first demonstration of enhanced reductive dechlorination of sediment PCBs by an exogenous anaerobic microbial consortium. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 182-190, 1997.  相似文献   

14.
Anaerobic digester sludge fed 5,300 mg of acetate per liter, 3.4 microM pentachlorophenol, and nutrients for 10 days biotransformed pentachlorophenol by sequential ortho dechlorinations to produce 2,3,4,5-tetrachlorophenol and 3,4,5-trichlorophenol. Upon acclimation to 3.4 microM pentachlorophenol for 6 months, the methanogenic consortium removed chlorines from the ortho, meta, and para positions of pentachlorophenol and its reductive dechlorination products. Pentachlorophenol was degraded to produce 2,3,4,5-tetrachlorophenol, 2,3,4,6-tetrachlorophenol, and 2,3,5,6-tetrachlorophenol. Dechlorination of 2,3,4,5-tetrachlorophenol produced 3,4,5-trichlorophenol, which was subsequently degraded to produce 3,4-dichlorophenol and 3,5-dichlorophenol. 2,3,4,6-Tetrachlorophenol was dechlorinated at the ortho and meta positions to produce 2,4,6-trichlorophenol and 2,4,5-trichlorophenol. 2,3,5,6-Tetrachlorophenol yielded 2,3,5-trichlorophenol, followed by production of 3,5-dichlorophenol. 2,4,6-Trichlorophenol was degraded to form 2,4-dichlorophenol, and 2,4,5-trichlorophenol was dechlorinated at two positions to form 2,4-dichlorophenol and 3,4-dichlorophenol. Of the three dichlorophenols produced (2,4-dichlorophenol, 3,4-dichlorophenol, and 3,5-dichlorophenol), only 2,4-dichlorophenol was degraded significantly within 3 weeks, to produce 4-chlorophenol.  相似文献   

15.
Q Wu  D L Bedard    J Wiegel 《Applied microbiology》1997,63(12):4818-4825
Reductive dechlorination of the Aroclor 1260 residue in Woods Pond (Lenox, Mass.) sediment samples was investigated for a year at incubation temperatures from 4 to 66 degrees C. Sediment slurries were incubated anaerobically with and without 2,3,4,6-tetrachlorobiphenyl (2346-CB; 350 microM) as a primer for dechlorination of the Aroclor 1260 residue. Dechlorination of the Aroclor residue occurred only in live samples primed with 2346-CB and only at 8 to 34 degrees C and 50 to 60 degrees C. The extent and pattern of polychlorinated biphenyl (PCB) dechlorination were temperature dependent. At 8 to 34 degrees C, the dechlorination resulted in 28 to 65% decreases of the hexathrough nonachlorobiphenyls and corresponding increases in the tri- and tetrachlorobiphenyls. At 12 to 30 degrees C, 30 to 40% of the hexa- through nonachlorobiphenyls were dechlorinated in just 3 months. The optimal temperature for overall chlorine removal was 20 to 27 degrees C. We observed four different microbial dechlorination processes with different but partially overlapping temperature ranges, i.e., Process N (flanked meta dechlorination) at 8 to 30 degrees C, Process P (flanked para dechlorination) at 12 to 34 degrees C, Process LP (unflanked para dechlorination) at 18 to 30 degrees C, and Process T (a very restricted meta dechlorination of specific hepta- and octachlorobiphenyls) at 50 to 60 degrees C. These temperature ranges should aid in the development of strategies for the enrichment and isolation of the microorganisms responsible for each dechlorination process. The incubation temperature determined the relative dominance of the four PCB dechlorination processes and the extent and products of dechlorination. Hence, understanding the effects of temperature on PCB dechlorination at contaminated sites should assist in predicting the environmental fate of PCBs or planning bioremediation strategies at those sites.  相似文献   

16.
Anaerobic digester sludge fed 5,300 mg of acetate per liter, 3.4 microM pentachlorophenol, and nutrients for 10 days biotransformed pentachlorophenol by sequential ortho dechlorinations to produce 2,3,4,5-tetrachlorophenol and 3,4,5-trichlorophenol. Upon acclimation to 3.4 microM pentachlorophenol for 6 months, the methanogenic consortium removed chlorines from the ortho, meta, and para positions of pentachlorophenol and its reductive dechlorination products. Pentachlorophenol was degraded to produce 2,3,4,5-tetrachlorophenol, 2,3,4,6-tetrachlorophenol, and 2,3,5,6-tetrachlorophenol. Dechlorination of 2,3,4,5-tetrachlorophenol produced 3,4,5-trichlorophenol, which was subsequently degraded to produce 3,4-dichlorophenol and 3,5-dichlorophenol. 2,3,4,6-Tetrachlorophenol was dechlorinated at the ortho and meta positions to produce 2,4,6-trichlorophenol and 2,4,5-trichlorophenol. 2,3,5,6-Tetrachlorophenol yielded 2,3,5-trichlorophenol, followed by production of 3,5-dichlorophenol. 2,4,6-Trichlorophenol was degraded to form 2,4-dichlorophenol, and 2,4,5-trichlorophenol was dechlorinated at two positions to form 2,4-dichlorophenol and 3,4-dichlorophenol. Of the three dichlorophenols produced (2,4-dichlorophenol, 3,4-dichlorophenol, and 3,5-dichlorophenol), only 2,4-dichlorophenol was degraded significantly within 3 weeks, to produce 4-chlorophenol.  相似文献   

17.
The reductive dechlorination of pentachlorophenol (PCP) was investigated in anaerobic sediments that contained nonadapted or 2,4- or 3,4-dichlorophenol (DCP)-adapted microbial communities. Adaptation of sediment communities increased the rate of conversion of 2,4- or 3,4-DCP to monochlorophenols (CPs) and eliminated the lag phase before dechlorination was observed. Both 2,4- and 3,4-DCP-adapted sediment communities dechlorinated the six DCP isomers to CPs. The specificity of chlorine removal from the DCP isomers indicated a preference for ortho-chlorine removal by 2,4-DCP-adapted sediment communities and for para-chlorine removal by 3,4-DCP-adapted sediment communities. Sediment slurries containing nonadapted microbial communities either did not dechlorinate PCP or did so following a lag phase of at least 40 days. Sediment communities adapted to dechlorinate 2,4- or 3,4-DCP dechlorinated PCP without an initial lag phase. The 2,4-DCP-adapted communities initially removed the ortho-chlorine from PCP, whereas the 3,4-DCP-adapted communities initially removed the para-chlorine from PCP. A 1:1 mixture of the adapted sediment communities also dechlorinated PCP without a lag phase. Dechlorination by the mixture was regiospecific, following a para greater than ortho greater than meta order of chlorine removal. Intermediate products of degradation, 2,3,5,6-tetrachlorophenol, 2,3,5-trichlorophenol, 3,5-DCP, 3-CP, and phenol, were identified by a combination of cochromatography (high-pressure liquid chromatography) with standards and gas chromatography-mass spectrometry.  相似文献   

18.
Polychlorinated Biphenyl (PCB)-dechlorinating cultures with complimentary activities, previously derived from estuarine Baltimore Harbor (B), marine Palos Verdes (P), and riverine Hudson River (H) sediments, were mixed and then inoculated into sterile sediments from the same sources. In the treatments containing sterile B sediment, the different inocula had limited impact on the bacterial community development and on dechlorination patterns, all of which were similar. In treatments containing sterile P or H sediment, however, different inocula resulted in significantly different PCB dechlorination patterns and bacterial communities. The B sediment appeared to support not only the most extensive and rapid dechlorination of the three sediments, but also supported a more diverse bacterial community. This was thought to be a result of nutritional richness, as it was high in organic carbon and micronutrients such as zinc and cobalt. Although mixing three PCB-dechlorinating cultures was able to produce a culture capable of enhanced PCB-dechlorinating activity as compared to single cultures, some activities were lost upon culture transfer. This indicates that care must be taken to establish robust PCB-dechlorinating cultures capable of extensive dechlorination prior to pursuing bioaugmentation. In addition, our results indicate that the concentration and availability of macro-and micronutrients could have a significant impact on the microbial community structure, and thus a thorough characterization of the sediment at contaminated sites is essential for implementing bioaugmentation for PCB bioremediation.  相似文献   

19.
When microorganisms eluted from upper Hudson River sediment were cultured without any substrate except polychlorobiphenyl (PCB)-free Hudson River sediment, methane formation was the terminal step of the anaerobic food chain. In sediments containing Aroclor 1242, addition of eubacterium-inhibiting antibiotics, which should have directly inhibited fermentative bacteria and thereby should have indirectly inhibited methanogens, resulted in no dechlorination activity or methane production. However, when substrates for methanogenic bacteria were provided along with the antibiotics (to free the methanogens from dependence on eubacteria), concomitant methane production and dechlorination of PCBs were observed. The dechlorination of Aroclor 1242 was from the para positions, a pattern distinctly different from, and more limited than, the pattern observed with untreated or pasteurized inocula. Both methane production and dechlorination in cultures amended with antibiotics plus methanogenic substrates were inhibited by 2-bromoethanesulfonic acid. These results suggest that the methanogenic bacteria are among the physiological groups capable of anaerobic dechlorination of PCBs, but that the dechlorination observed with methanogenic bacteria is less extensive than the dechlorination observed with more complex anaerobic consortia.  相似文献   

20.
Vitamin B(12), reduced by titanium (III) citrate to vitamin B(12s), catalyzes the reductive dechlorination of chlorophenols. Reductive dechlorination of pentachlorophenol and of all tetrachlorophenol and trichlorophenol isomers was observed. Reaction of various chlorophenols with vitamin B(12) favored reductive dechlorination at positions adjacent to another chlorinated carbon, but chlorines ortho to the hydroxyl group of a phenol were particularly resistant to reductive dechlorination, even if they were also ortho to a chlorine. This resulted in a reductive dechlorination pattern favoring removal of para and meta chlorines, which differs substantially from the pattern exhibited by anaerobic microbial consortia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号