首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The functions of N- and C-terminal domains of the Fur repressor ofEscherichia coli in promoter recognition and dimerization were studied. We investigated the ability of fusion proteins containing the N- or C-terminal domain of Fur to dimerize and to repress a Fur-regulatedlacZ fusion gene. The N-terminal domain, when fused to the C-terminal domain of the repressor C1857, repressed a Fur-regulatedlacZ fusion. However, the Fur-CI857 fusion was unable to complement the growth defect of anE. coli fur mutant on fumarate and succinate. The C-terminal domain of Fur, when fused to the N-terminus of CI857, repressed a λP, -regulatedlacZ fusion, indicating dimerization of the chimeric protein, which is a prerequisite for Cl activity. Both fusion proteins were fully active under both iron-rich and iron-poor growth conditions. We conclude that the N-terminal domain of Fur is involved in recognition of the Fur-responsive promoter and the C-terminus mediates oligomerization of the repressor.  相似文献   

6.
The functions of N- and C-terminal domains of the Fur repressor ofEscherichia coli in promoter recognition and dimerization were studied. We investigated the ability of fusion proteins containing the N- or C-terminal domain of Fur to dimerize and to repress a Fur-regulatedlacZ fusion gene. The N-terminal domain, when fused to the C-terminal domain of the repressor C1857, repressed a Fur-regulatedlacZ fusion. However, the Fur-CI857 fusion was unable to complement the growth defect of anE. coli fur mutant on fumarate and succinate. The C-terminal domain of Fur, when fused to the N-terminus of CI857, repressed a P, -regulatedlacZ fusion, indicating dimerization of the chimeric protein, which is a prerequisite for Cl activity. Both fusion proteins were fully active under both iron-rich and iron-poor growth conditions. We conclude that the N-terminal domain of Fur is involved in recognition of the Fur-responsive promoter and the C-terminus mediates oligomerization of the repressor.  相似文献   

7.
A lacZ-based reporter gene system was used to identify the promoter of the Campylobacter jejuni iron-responsive gene regulator Fur. In other Gram-negative bacteria, the fur promoter is usually located directly upstream of the fur gene and is often autoregulated in response to iron. In this study we demonstrate that expression of the C. jejuni fur gene is controlled from two promoters located in front of the first and second open reading frames upstream of fur. Neither of these promoters was iron-regulated, and the presence of both promoters in front of fur gives higher expression of the lacZ reporter than with either promoter alone. Expression from two distal promoters might be a mechanism for regulating the level of the C. jejuni Fur protein in response to unknown stimuli.  相似文献   

8.
9.
Bacillus subtilis contains three Fur homologs: Fur, PerR, and Zur. Despite significant sequence similarities, they respond to different stimuli and regulate different sets of genes. DNA target site comparisons indicate that all three paralogs recognize operators with a core 7-1-7 inverted repeat. The corresponding consensus sequences are identical at five or more of the seven defined positions. Using site-directed mutagenesis, the Per box at the mrgA promoter was altered to mimic the core 7-1-7 motif of the Fur and Zur boxes. In vitro, the mrgA promoter containing a Zur box was only recognized by Zur, as demonstrated by DNase I footprinting assays. In contrast, both Fur and PerR bound to the mrgA promoter region containing a consensus Fur box. Expression analysis of these promoters is consistent with the in vitro data demonstrating as few as 1 or 2 base changes per half-site are sufficient to alter regulation. Similarly, the Fur box at the feuA promoter can be converted into a Per or a Zur box by appropriate mutations. While both Fur and PerR could recognize some of the same synthetic operator sequences, no naturally occurring sites are known that are subject to dual regulation. However, the PerR-regulated zosA gene is controlled from a regulatory region that contains both Per and Fur boxes. Although purified Fur protein bound to the candidate Fur boxes, Fur has little effect on zosA expression-possibly due to the location of the Fur boxes relative to the zosA promoter. Together, our results identify two nucleotide positions that are important for the ability of PerR, Fur, and Zur to distinguish among the many closely related operator sites present in the B. subtilis genome.  相似文献   

10.
Fur (ferric uptake regulator) is a key bacterial protein that regulates iron acquisition and its storage, and modulates the expression of genes involved in the response to different environmental stresses. Although the protein is involved in several regulation mechanisms, and members of the Fur family have been identified in pathogen organisms, the stability and thermodynamic characterization of a Fur protein have not been described. In this work, the stability, thermodynamics and structure of the functional dimeric Fur A from Anabaena sp. PCC 7119 were studied by using computational methods and different biophysical techniques, namely, circular dichroism, fluorescence, Fourier-transform infrared, and nuclear magnetic resonance spectroscopies. The structure, as monitored by circular dichroism and Fourier-transform infrared, was composed of a 40% of alpha-helix. Chemical-denaturation experiments indicated that Fur A folded via a two-state mechanism, but its conformational stability was small with a value of DeltaG = 5.3 +/- 0.3 kcal mol(-1) at 298 K. Conversely, Fur A was thermally a highly stable protein. The high melting temperature (Tm = 352 +/- 5 K), despite its moderate conformational stability, can be ascribed to its low heat capacity change upon unfolding, DeltaCp, which had a value of 0.8 +/- 0.1 kcal mol(-1) K(-1). This small value is probably due to burial of polar residues in the Fur A structure. This feature can be used for the design of mutants of Fur A with impaired DNA-binding properties.  相似文献   

11.
A chromosomally integrated Bradyrhizobium japonicum hoxA mutant is unable to oxidize hydrogen in free-living conditions. Derepressing conditions that induce hydrogenase activity in free-living, wild-type B. japonicum cells cannot induce expression of the hydrogenase structural genes in the hoxA mutant. The DNA-binding capacity of HoxA at the hup promoter region was studied by means of gel retardation. Both heterotrophically growing cells and cells induced to express hydrogenase activity contain a protein that specifically binds to the hup promoter region. Crude protein extracts isolated from a B. japonicum hoxA mutant do not contain this binding compound. The HoxA protein was overexpressed in E. coli and isolated in the form of a maltose-binding protein (MBP)–HoxA fusion. The MBP–HoxA hybrid protein specifically bound to a 50 bp region of the hupSL promoter known to be important for regulation of hupSL expression.  相似文献   

12.
13.
14.
The functional properties of the recombinant C-terminal dimerization domain of the Pseudomonas aeruginosa Fur (ferric uptake regulator) protein expressed in and purified from Escherichia coli have been evaluated. Sedimentation velocity measurements demonstrate that this domain is dimeric, and the UV CD spectrum is consistent with a secondary structure similar to that observed for the corresponding region of the crystallographically characterized wild-type protein. The thermal stability of the domain as determined by CD spectroscopy decreases significantly as pH is increased and increases significantly as metal ions are added. Potentiometric titrations (pH 6.5) establish that the domain possesses a high-affinity and a low-affinity binding site for metal ions. The high-affinity (sensory) binding site demonstrates association constants (K(A)) of 10(+/-7)x10(6), 5.7(+/-3)x10(6), 2.0(+/-2)x10(6) and 2.0(+/-3)x10(4) M(-1) for Ni2+, Zn2+, Co2+ and Mn2+ respectively, while the low-affinity (structural) site exhibits association constants of 1.3(+/-2)x10(6), 3.2(+/-2)x10(4), 1.76(+/-1)x10(5) and 1.5(+/-2)x10(3) M(-1) respectively for the same metal ions (pH 6.5, 300 mM NaCl, 25 degrees C). The stability of metal ion binding to the sensory site follows the Irving-Williams order, while metal ion binding to the partial sensory site present in the domain does not. Fluorescence experiments indicate that the quenching resulting from binding of Co2+ is reversed by subsequent titration with Zn2+. We conclude that the domain is a reasonable model for many properties of the full-length protein and is amenable to some analyses that the limited solubility of the full-length protein prevents.  相似文献   

15.
The ferric uptake regulator (Fur) is a metal-dependent DNA-binding protein that acts as both a repressor and an activator of numerous genes involved in maintaining iron homeostasis in bacteria. It has also been demonstrated in Vibrio cholerae that Fur plays an additional role in pathogenesis, opening up the potential of Fur as a drug target for cholera. Here we present the crystal structure of V. cholerae Fur that reveals a very different orientation of the DNA-binding domains compared with that observed in Pseudomonas aeruginosa Fur . Each monomer of the dimeric Fur protein contains two metal binding sites occupied by zinc in the crystal structure. In the P. aeruginosa study these were designated as the regulatory site (Zn1) and structural site (Zn2). This V. cholerae Fur study, together with studies on Fur homologues and paralogues, suggests that in fact the Zn2 site is the regulatory iron binding site and the Zn1 site plays an auxiliary role. There is no evidence of metal binding to the cysteines that are conserved in many Fur homologues, including Escherichia coli Fur. An analysis of the metal binding properties shows that V. cholerae Fur can be activated by a range of divalent metals.  相似文献   

16.
Homologs of the ferric uptake regulator Fur and the iron storage protein ferritin play a central role in maintaining iron homeostasis in bacteria. The gastric pathogen Helicobacter pylori contains an iron-induced prokaryotic ferritin (Pfr) which has been shown to be involved in protection against metal toxicity and a Fur homolog which has not been functionally characterized in H. pylori. Analysis of an isogenic fur-negative mutant revealed that H. pylori Fur is required for metal-dependent regulation of ferritin. Iron starvation, as well as medium supplementation with nickel, zinc, copper, and manganese at nontoxic concentrations, repressed synthesis of ferritin in the wild-type strain but not in the H. pylori fur mutant. Fur-mediated regulation of ferritin synthesis occurs at the mRNA level. With respect to the regulation of ferritin expression, Fur behaves like a global metal-dependent repressor which is activated under iron-restricted conditions but also responds to different metals. Downregulation of ferritin expression by Fur might secure the availability of free iron in the cytoplasm, especially if iron is scarce or titrated out by other metals.  相似文献   

17.
The HypB protein from Bradyrhizobium japonicum is a metal-binding GTPase required for hydrogenase expression. In-frame mutagenesis of hypB resulted in strains that were partially or completely deficient in hydrogenase expression, depending on the degree of disruption of the gene. Complete deletion of the gene yielded a strain (JHΔEg) which lacked hydrogenase activity under all conditions tested, including the situation as bacteroids from soybean nodules. Mutant strain JHΔ23H lacking only the N-terminal histidine-rich region (38 amino acids deleted, 23 of which are His residues) expressed partial hydrogenase activity. The activity of strain JHΔ23H was low in comparison to the wild type in 10–50 nM nickel levels, but could be cured to nearly wild-type levels by including 50 μM nickel during the derepression incubation. Studies on strains harbouring the hup promoter–lacZ fusion plasmid showed that the complete deletion of hypB nearly abolished hup promoter activity, whereas the histidine deletion mutant had 60% of the wild-type promoter activity in 50 μM NiCl2. Further evidence that HypB is required for hup promoter-binding activity was obtained from gel-shift assays. HypB could not be detected by immunoblotting when the cells were cultured heterotrophically, but when there was a switch to microaerobic conditions (1% partial pressure O2, 10% partial pressure H2) HypB was detected, and its expression preceded hydrogenase synthesis by 3–6 h. 63Ni accumulation by whole cells showed that both of the mutant strains accumulate less nickel than the wild-type strain at all time points tested during the derepression incubation. Wild-type cultures that received nickel during the HypB expression-specific period and were then washed and derepressed for hydrogenase without nickel had activities comparable to those cells that were derepressed for hydrogenase with nickel for the entire time period. In contrast to the wild type, strain JHΔ23H cultures supplied with nickel only during the HypB expression period achieved hydrogenase activities that were 30% of those cultures supplied with nickel for the entire hydrogenase derepression period. These results indicate that the loss of the metal-binding area of HypB causes a decrease in the ability of the cells to sequester and store nickel for later use in one or more hydrogenase expression steps.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号