首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
It is well established that certain subpopulations of human adult stem cells can generate hepatocyte-like cells when transplanted into adult immunosuppressed mice. In the present study, we wanted to explore whether xeno-transplantation of human cord blood CD34+ (hCBCD34+) cells during pre-immune stages of development in immunocompetent mice might also lead to human-mouse liver chimerism. Freshly isolated hCBCD34+ cells were xeno-transplanted into non-immunosuppressed mice by both intra-blastocyst and intra-fetal injections. One and four weeks after birth, immunostaining for different human-specific hepatocyte markers: human hepatocyte-specific antigen, human serum albumin, and human α-1-antitrypsin indicated the presence of human hepatocyte-like cells in the livers of transplanted animals. Detection of human albumin mRNA further corroborated the development of pre-immune human-mouse chimeras. The current report, besides providing new evidence of the potential of hCBCD34+ cells to generate human hepatocyte-like cells, suggests novel strategies for generating immunocompetent mice harboring humanized liver.  相似文献   

2.
Human umbilical cord blood (HUCB) contains stem/progenitor cells, which can differentiate into a variety of cell types. In this study, we investigated whether HUCB cells differentiate into hepatocytes in vitro and in vivo. We also examined whether CD34 could be the selection marker of stem cells for hepatocytes. HUCB cells were obtained from normal full-term deliveries, and CD34(+/-) cells were further separated. For in vitro study, HUCB cells were cultured for 4 wk, and expressions of liver-specific genes were examined. For the in vivo study, nonobese diabetic/severe combined immunodeficient mice were subjected to liver injury by a Fas ligand-carried adenoviral vector or only radiated. Mice were treated simultaneously with or without cell transplantation of HUCB, CD34(+), or CD34(-) cells. After 4 wk, human-specific gene/protein expression was examined. In the in vitro study, human liver-specific genes were positive after 7 days of culture. The immunofluorescent study showed positive staining of alpha-fetoprotein, cytokeratin 19, and albumin in round-shaped cells. In the in vivo study, immunohistochemical analysis showed human albumin-positive, hepatocyte-specific antigen-positive cells in mouse livers of the Fas ligand/transplantation group. Fluorescence in situ hybridization analysis using the human Y chromosome also showed positive signals. However, no difference between transplanted cell types was detected. In contrast, immunopositive cells were not detected in the irradiated/transplantation group. The RT-PCR result also showed human hepatocyte-specific gene expressions only in the Fas ligand/transplantation group. HUCB cells differentiated into hepatocyte-like cells in the mouse liver, and liver injury was essential during this process. The differences between CD34(+) and CD34(-) cells were not observed in human hepatocyte-specific expression.  相似文献   

3.
Hepatocyte transplantation is considered a promising therapy for patients with liver diseases. Induced pluripotent stem cells (iPSCs) are an unlimited source for the generation of functional hepatocytes. While several protocols that direct the differentiation of iPSCs into hepatocyte-like cells have already been reported, the liver engraftment potential of iPSC progeny obtained at each step of hepatic differentiation has not yet been thoroughly investigated. In this study, we present an efficient strategy to differentiate mouse iPSCs into hepatocyte-like cells and evaluate their liver engraftment potential at different time points of the protocol (5, 10, 15, and 20 days of differentiation). iPSCs were differentiated in the presence of cytokines, growth factors, and small molecules to finally generate hepatocyte-like cells. These iPSC-derived hepatocyte-like cells exhibited hepatocyte-associated functions, such as albumin secretion and urea synthesis. When we transplanted iPSC progeny into the spleen, we found that 15- and 20-day iPSC progeny engrafted into the livers and further acquired hepatocyte morphology. In contrast, 5- and 10-day iPSC progeny were also able to engraft but did not generate hepatocyte-like cells in vivo. Our data may aid in improving current protocols geared towards the use of iPSCs as a new source of liver-targeted cell therapies.  相似文献   

4.
Umbilical cord blood (UCB) is increasingly being used for human hematopoietic stem cell (HSC) transplantation in children but often requires pooling multiple cords to obtain sufficient numbers for transplantation in adults. To overcome this limitation, we have used an ex vivo two-week culture system to expand the number of hematopoietic CD34(+) cells in cord blood. To assess the in vivo function of these expanded CD34(+) cells, cultured human UCB containing 1 x 10(6) CD34(+) cells were transplanted into conditioned NOD-scid IL2rgamma(null) mice. The expanded CD34(+) cells displayed short- and long-term repopulating cell activity. The cultured human cells differentiated into myeloid, B-lymphoid, and erythroid lineages, but not T lymphocytes. Administration of human recombinant TNFalpha to recipient mice immediately prior to transplantation promoted human thymocyte and T-cell development. These T cells proliferated vigorously in response to TCR cross-linking by anti-CD3 antibody. Engrafted TNFalpha-treated mice generated antibodies in response to T-dependent and T-independent immunization, which was enhanced when mice were co-treated with the B cell cytokine BLyS. Ex vivo expanded CD34(+) human UCB cells have the capacity to generate multiple hematopoietic lineages and a functional human immune system upon transplantation into TNFalpha-treated NOD-scid IL2rgamma(null) mice.  相似文献   

5.
6.
We took advantage of the proliferative and permissive environment of the developing pre-immune fetus to develop a noninjury human-rat xenograft small animal model, in which the in utero transplantation of low-density mononuclear cells (MNCs) from human umbilical cord blood (hUCB) into fetal rats at 9-11 days of gestation led to the formation of human hepatocyte-like cells (hHLCs) with different cellular phenotypes, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), cytokeratin 19 (CK19), cytokeratin 8 (CK8), cytokeratin 18 (CK18), and albumin (Alb), and with some animals exhibiting levels as high as 10.7% of donor-derived human cells in the recipient liver. More interestingly, donor-derived human cells stained positively for CD34 and CD45 in the liver of 2-month-old rat. Human hepatic differentiation appeared to partially follow the process of hepatic ontogeny, as evidenced by the expression of AFP gene at an early stage and albumin gene at a later stage. Human hepatocytes generated in this model retained functional properties of normal hepatocytes. In this xenogeneic system, the engrafted donor-derived human cells persisted in the recipient liver for at least 6 months after birth. Taken together, these findings suggest that the donor-derived human cells with different cellular phenotypes are found in the recipient liver and hHLCs hold biological activity. This humanized small animal model, which offers an in vivo environment more closely resembling the situations in human, provides an invaluable approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future.  相似文献   

7.
Although human amniotic fluid is an attractive source of multipotent stem cells, the potential of amniotic fluid stem cells (AFSCs) to differentiate into hepatic cells has not been extensively evaluated. In this study, we examined whether human AFSCs can differentiate into a hepatic cell lineage in vitro and in vivo. After being treated with cytokines (fibroblast growth factor 4, basic fibroblast growth factor, hepatocyte growth factor, and oncostatin), AFSCs developed a morphology similar to that of hepatocytes. RT-PCR and immunofluorescence analysis showed that the treated AFSCs expressed the hepatocyte-specific markers albumin, cytokeratin 18, and alpha-fetoprotein. The differentiated cells also developed hepatocyte-specific functions, i.e., they secreted albumin, absorbed indocyanine green, and stored glycogen. When transplanted into CCl(4)-injured immunodeficient mice, undifferentiated AFSCs were integrated into the liver tissue, and they expressed markers characteristic of mature human hepatocytes. Although integration of AFSCs into the liver was limited (0.1-0.3% of hepatocytes), histological analysis showed that the recipient mice recovered more rapidly from CCl(4) injury than CCl(4)-injured mice that did not receive AFSCs. AFSCs can differentiate into hepatocyte-like cells in vitro and in vivo and can represent an easily accessible source of progenitor cells for hepatocyte regeneration and liver cell transplantation.  相似文献   

8.
In vivo studies concerning the function of human hematopoietic stem cells (HSC) are limited by relatively low levels of engraftment and the failure of the engrafted HSC preparations to differentiate into functional immune cells after systemic application. In the present paper we describe the effect of intrahepatically transplanted CD34+ cells from cord blood into the liver of newborn or adult NOD/SCID mice on organ engraftment and differentiation.Analyzing the short and long term time dependency of human cell recruitment into mouse organs after cell transplantation in the liver of newborn and adult NOD/SCID mice by RT-PCR and FACS analysis, a significantly high engraftment was found after transplantation into liver of newborn NOD/SCID mice compared to adult mice, with the highest level of 35% human cells in bone marrow and 4.9% human cells in spleen at day 70. These human cells showed CD19 B-cell, CD34 and CD38 hematopoietic and CD33 myeloid cell differentiation, but lacked any T-cell differentiation. HSC transplantation into liver of adult NOD/SCID mice resulted in minor recruitment of human cells from mouse liver to other mouse organs. The results indicate the usefulness of the intrahepatic application route into the liver of newborn NOD/SCID mice for the investigation of hematopoietic differentiation potential of CD34+ cord blood stem cell preparations.  相似文献   

9.
Adult stem cells provide a promising alternative for the treatment of decompensated liver cirrhosis. Our previous study showed that peripheral blood monocytes (PBMCs) from decompensated liver cirrhosis could differentiate into hepatocyte-like cells in vitro. We here aimed to investigate the differential potential of the PBMCs under liver environment. PBMCs were isolated from one cirrhotic patient, who was mobilized by the recombinant human granulocyte colony stimulating factor for consecutive 3 days, and then PBMCs were transplanted into nude mice by tail vein after labeled with PKH26-GL. The location of the transplanted PBMCs was identified by PKH26-GL staining and PRINS for human SRY gene. The expressions of human hepatocyte-markers were detected by immunohistochemistry, RT-PCR, and Western blot analysis. Our results demonstrated that PBMCs from decompensated liver cirrhosis could migrate into the liver of nude mice with human hepatocyte-markers expression, indicating that autologous PBMCs transplantation might be one alternative therapy for the decompensated liver cirrhosis.  相似文献   

10.
Embryonic stem cells (ES cells), bone marrow-derived mesenchymal stem cells, umbilical cord blood-derived mesenchymal stem cells, and hepatic stem cells in liver have been known as a useful source that can induce to differentiate into hepatocytes. In this study, we examined whether human adipose tissue-derived stromal cells (hADSC) can differentiate into hepatic lineage in vitro. hADSC, that were induced to differentiate into hepatocyte-like cells by the treatment of HGF and OSM, had morphology similar to hepatocytes. Addition of DMSO enhanced differentiation into hepatocytes. RT-PCR and immunocytochemical analysis showed that hADSC express albumin and alpha-fetoprotein during differentiation. Differentiated hADSC showed LDL uptake and production of urea. Additionally, transplanted hADSC to CCl4-injured SCID mouse model were able to be differentiated into hepatocytes and they expressed albumin in vivo. Mesenchymal stem cells isolated from human adipose tissue are immunocompatible and are easily isolated. Therefore, hADSC may become an alternative source to hepatocyte regeneration or liver cell transplantation.  相似文献   

11.
12.
We have previously shown that targeting human CD34(+) hematopoietic stem cells (HSC) with a bispecific antibody (BiAb) directed against myosin light chain (MLC) increases delivery of cells to the injured hearts and improves cardiac performance in the nude rat. In this study, we have sought to validate our previous observations and to perform more detailed determination of ventricular function in immunocompetent mice with myocardial infarction (MI) that were treated with armed CD34(+) HSC. We examined whether armed CD34(+) HSC would target the injured heart following MI and restore ventricular function in vitro. MI was created by ligation of the left anterior descending artery. After 48 h, adult ICR mice received either 0.5 x 10(6) human CD34(+) HSC armed with anti-CD45 x anti-MLC BiAb or an equal volume of medium through a single tail vein injection. Two weeks after stem cell administration, ventricular function of hearts from mice receiving armed CD34(+) HSC was significantly greater compared with the same parameters from control mice. Immunohistochemistry confirmed the accumulation of CD34(+) HSC in MI hearts infused with stem cells. Angiogenesis was significantly enhanced in CD34(+) HSC-treated heart as determined by vascular density per area. Furthermore, histopathological examination revealed that the retained cardiac function observed in CD34(+) HSC-treated mice was associated with decreased ventricular fibrosis. These results suggest that peripheral administration of armed CD34(+) HSC results in localization of CD34(+) HSC to injured myocardium and restores myocardial function.  相似文献   

13.
Embryonic stem cells (ESCs) and adult somatic cells, induced to pluripotency (iPSCs), can differentiate into multiple cell lineages. We previously reported that adult mammalian bone marrow contains a sub-population of CD34+ cells that express genes of ESCs and genes required to generate iPSCs. They also express lineage genes of the three embryonic germ layers. Are these CD34+ cells multipotent? Here, CD34+ bone marrow stem cells from adult male ROSA mice, which carry two markers: the β-galactosidase gene and the male Y chromosome, were transplanted into blastocysts of wildtype mice. Each female ROSA chimera generated had a distinct pattern of male-derived organs expressing β-galactosidase; e.g., ectodermal brain, dorsal root ganglia and skin; mesodermal heart, bone and bone marrow; and endodermal pancreas, intestine, and liver. Thus, adult mammals carry cells that appear to exhibit a developmental potential reminiscent of ESCs and iPSCs suggesting they could be used for cell replacement therapy.  相似文献   

14.
15.
An experimental model for human T lymphocyte development from hemopoietic stem cells is necessary to study the complex processes of T cell differentiation in vivo. In this study, we report a newly developed nonobese diabetic (NOD)/Shi-scid, IL-2Rgamma null (NOD/SCID/gamma(c)(null)) mouse model for human T lymphopoiesis. When these mice were transplanted with human cord blood CD34(+) cells, the mice reproductively developed human T cells in their thymus and migrated into peripheral lymphoid organs. Furthermore, these T cells bear polyclonal TCR-alphabeta, and respond not only to mitogenic stimuli, such as PHA and IL-2, but to allogenic human cells. These results indicate that functional human T lymphocytes can be reconstituted from CD34(+) cells in NOD/SCID/gamma(c)(null) mice. This newly developed mouse model is expected to become a useful tool for the analysis of human T lymphopoiesis and immune response, and an animal model for studying T lymphotropic viral infections, such as HIV.  相似文献   

16.
We determined whether extrahepatic biliary epithelial cells can differentiate into cells with phenotypic features of hepatocytes. Gallbladders were removed from transgenic mice expressing hepatocyte-specific beta-galactosidase (beta-Gal) and cultured under standard conditions and under experimental conditions designed to induce differentiation into a hepatocyte-like phenotype. Gallbladder epithelial cells (GBEC) cultured under standard conditions exhibited no beta-Gal activity. beta-Gal expression was prominent in 50% of cells cultured under experimental conditions. Similar morphological changes were observed in GBEC from green fluorescent protein transgenic mice cultured under experimental conditions. These cells showed higher levels of mRNA for genes expressed in hepatocytes, but not in GBEC, including aldolase B, albumin, hepatocyte nuclear factor-4alpha, aldehyde dehydrogenase 1, and glutamine synthetase, and they synthesized bile acids. Additional functional evidence of a hepatocyte-like phenotype included LDL uptake and enhanced benzodiazepine metabolism. Connexin-32 expression was evident in murine hepatocytes and in cells cultured under experimental conditions, but not in cells cultured under standard conditions. Notch 1, 2, and 3 and Notch ligand Jagged 1 mRNAs were downregulated in these cells compared with cells cultured under standard conditions. CD34, alpha-fetoprotein, and Sca-1 mRNA were not expressed in cells cultured under standard conditions, suggesting that the hepatocyte-like cells did not arise from hematopoietic stem cells or oval cells. These results point to future avenues for investigation into the potential use of GBEC in the treatment of liver disease.  相似文献   

17.
Stem cell-derived hepatocytes may be an alternative cell source to treat liver diseases or to be used for pharmacological purposes. We developed a protocol that mimics mammalian liver development, to differentiate cells with pluripotent characteristics to hepatocyte-like cells. The protocol supports the stepwise differentiation of human embryonic stem cells (ESC) to cells with characteristics of primitive streak (PS)/mesendoderm (ME)/definitive endoderm (DE), hepatoblasts, and finally cells with phenotypic and functional characteristics of hepatocytes. Remarkably, the same protocol can also differentiate rat multipotent adult progenitor cells (rMAPCs) to hepatocyte-like cells, even though rMAPC are isolated clonally from cultured rat bone marrow (BM) and have characteristics of primitive endoderm cells. A fraction of rMAPCs can be fated to cells expressing genes consistent with a PS/ME/DE phenotype, preceding the acquisition of phenotypic and functional characteristics of hepatocytes. Although the hepatocyte-like progeny derived from both cell types is mixed, between 10–20% of cells are developmentally consistent with late fetal hepatocytes that have attained synthetic, storage and detoxifying functions near those of adult hepatocytes. This differentiation protocol will be useful for generating hepatocyte-like cells from rodent and human stem cells, and to gain insight into the early stages of liver development.  相似文献   

18.
The technique of stem cells or hepatocytes transplantation has recently improved in order to bridge the time before whole-organ liver transplantation. In the present study, unfractionated bone marrow stem cells (BMSCs) were harvested from the tibial and femoral marrow compartments of male mice, which were cultured in Dulbecco''s modified Eagle''s medium (DMEM) with and without hepatocyte growth factor (HGF), and then transplanted into Schistosoma mansoni-infected female mice on their 8th week post-infection. Mice were sacrificed monthly until the third month of bone marrow transplantation, serum was collected, and albumin concentration, ALT, AST, and alkaline phosphatase (ALP) activities were assayed. On the other hand, immunohistopathological and immunohistochemical changes of granuloma size and number, collagen content, and cells expressing OV-6 were detected for identification of liver fibrosis. BMSCs were shown to differentiate into hepatocyte-like cells. Serum ALT, AST, and ALP were markedly reduced in the group of mice treated with BMSCs than in the untreated control group. Also, granuloma showed a marked decrease in size and number as compared to the BMSCs untreated group. Collagen content showed marked decrease after the third month of treatment with BMSCs. On the other hand, the expression of OV-6 increased detecting the presence of newly formed hepatocytes after BMSCs treatment. BMSCs with or without HGF infusion significantly enhanced hepatic regeneration in S. mansoni-induced fibrotic liver model and have pathologic and immunohistopathologic therapeutic effects. Also, this new therapeutic trend could generate new hepatocytes to improve the overall liver functions.  相似文献   

19.
Umbilical cord blood (UCB) is a source of hematopoietic stem cells and other stem cells, and human UCB cells have been reported to contain transplantable hepatic progenitor cells. However, the fractions of UCB cells in which hepatic progenitor cells are rich remain to be clarified. In the present study, first, the fractionated cells by CD34, CD38, and c-kit were transplanted via portal vein of NOD/SCID mice, and albumin mRNA expression was examined in livers at 1 and 3 months posttransplantation. At 1 and 3 months, albumin mRNA expression in CD34+UCB cells-transplanted livers was higher than that in CD34- cells-transplanted livers. Albumin mRNA expression in CD34+CD38+ cells-transplanted livers was higher than that in CD34+CD38- cells-transplanted [corrected] liver at 1 month. However, it was much higher [corrected] in CD34+CD38- cell-transplanted livers at 3 months. Similar expression of albumin mRNA was obtained between CD34+CD38+c-kit+ cells- and CD34+CD38-c-kit- cells-transplanted livers, and between CD34+CD38-c-kit+ cells- and CD34+CD38-c-kit- cells-transplanted livers, respectively. Second, fluorescence in situ hybridization and immunohistochemistry were performed to examine whether UCB cells really transdifferentiated into hepatocytes or they only fused with mouse hepatocytes. In mouse liver sections, of 1.2% cells which had human chromosomes, 0.9% cells were due to cell fusion, whereas 0.3% cells were transdifferentiated into human hepatocytes. These results suggest that CD34+UCB cells are rich fractions in hepatic progenitor cells, and that transdifferentiation from UCB cells into hepatocytes as well as cell fusion simultaneously occur in this situation.  相似文献   

20.
Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or α-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号