首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The “Phot” protein family comprises blue-light photoreceptors that consist of two flavin mononucleotide (FMN)-binding LOV (light, oxygen, and voltage) domains and a serine/threonine kinase domain. We have investigated the LOV1 domain of Phot1 from Chlamydomonas reinhardtii by time-resolved absorption spectroscopy. Photoexcitation of the dark form, LOV1-447, causes transient bleaching and formation of two spectrally similar red-shifted intermediates that are both assigned to triplet states of the FMN. The triplet states decay with time constants of 800 ns and 4 μs with an efficiency of >90% into a blue-shifted intermediate, LOV1-390, that is attributed to a thiol adduct of cysteine 57 to FMN C(4a). LOV1-390 reverts to the dark form in hundreds of seconds, the time constant being dependent on pH and salt concentration. In the mutant C57S, where the thiol adduct cannot be formed, the triplet state displays an oxygen-dependent decay directly to the dark form. We present here a spectroscopic characterization of an algal sensory photoreceptor in general and of a LOV1 domain photocycle in particular. The results are discussed with respect to the behavior of the homologous LOV2 domain from oat.  相似文献   

2.
Phot photoreceptors make up an important protein family regulating biological processes in response to blue light. They contain two light, oxygen, and voltage sensitive (LOV) domains and a serine/threonine kinase domain. Both LOV domains noncovalently bind a flavin mononucleotide (FMN). Upon absorption of blue light, the LOV domains undergo a photocycle, transiently forming a covalent adduct of a cysteine residue and the FMN (LOV-390). The mechanism of formation of this flavin-thiol adduct is still unclear. We studied a mutant of the LOV1 domain from the green alga Chlamydomonas reinhardtii with a methionine replacing the reactive cysteine 57 (C57M). As in the wild type, irradiation leads to formation of a photoadduct, which, however, is irreversibly converted into a red absorbing species, C57M-675. On the basis of spectroscopic results and the 2.1 A resolution crystal structure, this highly unusual FMN species was assigned to a neutral flavin radical covalently attached to the apoprotein at the N(5) position. In contrast to other flavoprotein neutral radicals, C57M-675 is stable even under aerobic or denaturing conditions. Pathways for the photoinduced formation of the adduct are discussed for the C57M mutant as well as the wild-type LOV1 domain.  相似文献   

3.
The LOV1 domain of the blue light Phot1-receptor (phototropin homolog) from Chlamydomonas reinhardtii has been studied by vibrational spectroscopy. The FMN modes of the dark state of LOV1 were identified by preresonance Raman spectroscopy and assigned to molecular vibrations. By comparing the blue-light-induced FTIR difference spectrum with the preresonance Raman spectrum, most of the differences are due to FMN modes. Thus, we exclude large backbone changes of the protein that might occur during the phototransformation of the dark state LOV1-447 into the putative signaling state LOV1-390. Still, the presence of smaller amide difference bands cannot be excluded but may be masked by overlapping FMN modes. The band at 2567 cm(-1) is assigned to the S-H stretching vibration of C57, the residue that forms the transient thio-adduct with the chromophore FMN. The occurrence of this band is evidence that C57 is protonated in the dark state of LOV1. This result challenges conclusions from the homologous LOV2 domain from oat that the thiolate of the corresponding cysteine is the reactive species.  相似文献   

4.
The phototropins are a family of membrane-associated flavoproteins that function as the primary blue light receptors regulating phototropism, chloroplast movements, stomatal opening, and leaf expansion in plants. Phot1, a member of this family, contains two FMN-binding domains, LOV1 and LOV2, within the N-terminal region and a C-terminal serine-threonine protein kinase domain. Light irradiation of oat phot1 LOV2 produces a cysteinyl adduct (Cys-39) at the flavin C(4a) position, which decays thermally back to the dark state. We measured pH and isotope effects on the photocycle. Between pH 3.7 and 9.5, adduct formation showed minimal pH dependence, and adduct decay showed only slight pH dependence, indicating that the pK values of mechanistically relevant groups are outside this range. LOV2 showed a nearly 5-fold slowing of adduct formation in D(2)O relative to H(2)O, indicating that the rate-limiting step involves proton transfer(s). Light-induced changes in the far UV CD spectrum of LOV2 revealed putative protein structural perturbations. The light minus dark CD difference spectrum resembles an inverted alpha-helix spectrum, suggesting that alpha-helicity is reversibly lost upon light irradiation. Decay kinetics for CD spectral changes in the far UV region occur at the same rate as those in the visible region, indicating synchronous relaxation of protein and chromophore structures.  相似文献   

5.
Phot proteins are blue light photoreceptors in plants and algae that mainly regulate photomovement responses. They contain two light-, oxygen-, and voltage-sensitive (LOV) domains and a serine/threonine kinase domain. Both LOV domains noncovalently bind a flavin mononucleotide (FMN) as chromophore. Upon blue light illumination, the LOV domains undergo a photocycle, transiently forming a covalent adduct of the FMN moiety with a nearby cysteine residue. The presence of two light-sensitive domains in the photoreceptor raises the question about the differences in properties and function between LOV1 and LOV2. As a model system, the photocycles of the LOV1 and LOV2 domains from phot of the green alga Chlamydomonas reinhardtii have been studied in detail, both separately and in a tandem construct. Here we give an overview about the results on the individual behavior of the domains and their interaction. Furthermore, the current status in the understanding of the role of LOV1 in phot in general is presented.  相似文献   

6.
Phototropins are autophosphorylating serine/threonine kinases responsible for blue-light perception in plants; their action gives rise to phototropism, chloroplast relocation, and opening of stomatal guard cells. The kinase domain constitutes the C-terminal part of Avena sativa phototropin 1. The N-terminal part contains two light, oxygen, or voltage (LOV) sensing domains, LOV1 and LOV2; each binds a flavin mononucleotide (FMN) chromophore (lambdamax = 447 nm, termed D447) and forms the light-sensitive domains, of which LOV2 is the principal component. Blue-light absorption produces a covalent adduct between a very conserved nearby cysteine residue and the C(4a) atom of the FMN moiety via the triplet state of the flavin. The covalent adduct thermally decays to regenerate the D447 dark state, with a rate that may vary by several orders of magnitude between different species. We report that the imidazole base can act as a very efficient enhancer of the dark recovery of A. sativa phot1 LOV2 (AsLOV2) and some other well-characterized LOV domains. Imidazole accelerates the thermal decay of AsLOV2 by 3 orders of magnitude in the submolar concentration range, via a base-catalyzed mechanism involving base abstraction of the FMN N(5)-H adduct state and subsequent reprotonation of the reactive cysteine. The LOV2 crystal structure suggests that the imidazole molecules may act from a cavity located in the vicinity of the FMN, explaining its high efficiency, populated through a channel connecting the cavity to the protein surface. Use of pH titration and chemical inactivation by diethyl pyrocarbonate (DEPC) suggests that histidines located at the surface of the LOV domain act as base catalysts via an as yet unidentified H-bond network, operating at a rate of (55 s)-1 at pH 8. In addition, molecular processes other than histidine-mediated base catalysis contibute significantly to the total thermal decay rate of the adduct and operate at a rate constant of (65 s)-1, leading to a net adduct decay time constant of 30 s at pH 8.  相似文献   

7.
Phototropin (phot) is a blue-light receptor protein that triggers phototropic responses, chloroplast relocation, and stomata opening to maximize the efficiency of photosynthesis in higher plants. Phot is composed of three functional domains. The N-terminal half folds into two light-oxygen-voltage-sensing domains called LOV1 and LOV2, each binding a flavin mononucleotide to absorb blue light. The C-terminal half is a serine/threonine kinase domain that causes light-dependent autophosphorylation leading to cellular signaling cascades. LOV2 domain is primarily responsible for activation of the kinase, and LOV1 domain is thought to act as a dimerization site and to regulate sensitivity to activation by blue light. Here we show the crystal structures of LOV1 domains of Arabidopsis phot1 and phot2 in the dark at resolutions of 2.1 Å and 2.0 Å, respectively. Either LOV1 domain forms a dimer through face-to-face association of β-scaffolds in the crystallographic asymmetric unit. Three types of interactions stabilizing the dimer structures found are as follows: contacts of side chains in their β-scaffolds, hydrophobic interactions of a short helix found in the N-terminus of a subunit with the β-scaffolds of both subunits, and hydrogen bonds mediated by hydration water molecules filling the dimer interface. The critical residues for dimerization are Cys261, forming a disulfide bridge between subunits in phot1-LOV1 domain, and Thr217 and Met232 in phot2-LOV1. The topology in homodimeric associations of the LOV1 domains is discussed when referring to those of homodimers or heterodimers of light-oxygen-voltage-sensing or Per-ARNT-Sim domains. The present results also provide clues to understanding structural basis in dimeric interactions of Per-ARNT-Sim protein modules in cellular signaling.  相似文献   

8.
9.
YtvA, a photosensory LOV (light‐oxygen‐voltage) protein from Bacillus subtilis, exists as a dimer that previously appeared to undergo surprisingly small structural changes after light illumination compared with other light‐sensing proteins. However, we now report that light induces significant structural perturbations in a series of YtvA‐LOV domain derivatives in which the Jα helix has been truncated or replaced. Results from native gel analysis showed significant mobility changes in these derivatives after light illumination; YtvA‐LOV without the Jα helix dimerized in the dark state but existed as a monomer in the light state. The absence of the Jα helix also affected the dark regeneration kinetics and the stability of the flavin mononucleotide (FMN) binding to its binding site. Our results demonstrate an alternative way of photo‐induced signal propagation that leads to a bigger functional response through dimer/monomer conversions of the YtvA‐LOV than the local disruption of Jα helix in the As‐LOV domain.  相似文献   

10.
Bittl R  Kay CW  Weber S  Hegemann P 《Biochemistry》2003,42(28):8506-8512
In the flavin mononucleotide-binding LOV1 domain of the Phot1-receptor from Chlamydomonas reinhardtii the photoreactive cysteine C57 has been replaced by methionine. Photoexcitation of this C57M mutant yields a metastable photoproduct (C57M-415) that thermally decomposes into a stable paramagnetic species (C57M-675) with extremely red-shifted absorption in the visible range. In this contribution, we describe the characterization of this radical by multi-frequency electron paramagnetic resonance and electron-nuclear double resonance. The main features of the spectra identify the paramagnetic species as a flavin neutral radical. However, detailed analysis shows that the isoalloxazine moiety of the flavin is alkyl substituted at N(5), rather than protonated as is usually the case. The implication of these observations on the likely mechanism of photoproduct generation in wild-type LOV domains is discussed.  相似文献   

11.
Chen E  Swartz TE  Bogomolni RA  Kliger DS 《Biochemistry》2007,46(15):4619-4624
Light-, oxygen-, or voltage-regulated (LOV1 and LOV2) domains bind flavin mononucleotide (FMN) and activate the phototropism photoreceptors phototropin 1 (phot1) and phototropin 2 (phot2) by using energy from absorbed blue light. Upon absorption of blue light, chromophore and protein conformational changes trigger the kinase domain for subsequent autophosphorylation and presumed downstream signal transduction. To date, the light-induced photocycle of the phot1 LOV2 protein is known to involve formation of a triplet flavin mononucleotide (FMN) chromophore followed by the appearance of a FMN adduct within 4 micros [Swartz, T. E., Corchnoy, S. B., Christie, J. M., Lewis, J. W., Szundi, I., Briggs, W. R., and Bogomolni, R. A. (2001) J. Biol. Chem. 276, 36493-36500] before thermal decay back to the dark state. To probe the mechanism by which the blue light information is relayed from the chromophore to the protein, nanosecond time-resolved optical rotatory dispersion (TRORD) spectroscopy, which is a direct probe of global secondary structure, was used to study the phot1 LOV2 protein in the far-UV region. These TRORD experiments reveal a previously unobserved intermediate species (tau approximately 90 micros) that is characterized by a FMN adduct chromophore and partially unfolded secondary structure (LOV390(S2)). This intermediate appears shortly after the formation of the FMN adduct. For LOV2, formation of a long-lived species that is ready to interact with a receptor domain for downstream signaling is much faster by comparison with formation of a similar species in other light-sensing proteins.  相似文献   

12.
Trimethylamine dehydrogenase (TMADH) is an iron-sulfur flavoprotein that catalyzes the oxidative demethylation of trimethylamine to form dimethylamine and formaldehyde. It contains a unique flavin, in the form of a 6-S-cysteinyl FMN, which is bent by approximately 25 degrees along the N5-N10 axis of the flavin isoalloxazine ring. This unusual conformation is thought to modulate the properties of the flavin to facilitate catalysis, and has been postulated to be the result of covalent linkage to Cys-30 at the flavin C6 atom. We report here the crystal structures of recombinant wild-type and the C30A mutant TMADH enzymes, both determined at 2.2 A resolution. Combined crystallographic and NMR studies reveal the presence of inorganic phosphate in the FMN binding site in the deflavo fraction of both recombinant wild-type and C30A proteins. The presence of tightly bound inorganic phosphate in the recombinant enzymes explains the inability to reconstitute the deflavo forms of the recombinant wild-type and C30A enzymes that are generated in vivo. The active site structure and flavin conformation in C30A TMADH are identical to those in recombinant and native TMADH, thus revealing that, contrary to expectation, the 6-S-cysteinyl FMN link is not responsible for the 25 degrees butterfly bending along the N5-N10 axis of the flavin in TMADH. Computational quantum chemistry studies strongly support the proposed role of the butterfly bend in modulating the redox properties of the flavin. Solution studies reveal major differences in the kinetic behavior of the wild-type and C30A proteins. Computational studies reveal a hitherto, unrecognized, contribution made by the S(gamma) atom of Cys-30 to substrate binding, and a role for Cys-30 in the optimal geometrical alignment of substrate with the 6-S-cysteinyl FMN in the enzyme active site.  相似文献   

13.
Blue-light photoreceptors containing light–oxygen–voltage (LOV) domains regulate a myriad of different physiological responses in both eukaryotes and prokaryotes. Their light sensitivity is intricately linked to the photochemistry of the non-covalently bound flavin mononucleotide (FMN) chromophore that forms a covalent adduct with a conserved cysteine residue in the LOV domain upon illumination with blue light. All LOV domains undergo the same primary photochemistry leading to adduct formation; however, considerable variation is found in the lifetime of the adduct state that varies from seconds to several hours. The molecular mechanism underlying this variation among the structurally conserved LOV protein family is not well understood. Here, we describe the structural characterization of PpSB1-LOV, a very slow cycling full-length LOV protein from the Gram-negative bacterium Pseudomonas putida KT2440. Its crystal structure reveals a novel dimer interface that is mediated by N- and C-terminal auxiliary structural elements and a unique cluster of four arginine residues coordinating with the FMN-phosphate moiety. Site-directed mutagenesis of two arginines (R61 and R66) in PpSB1-LOV resulted in acceleration of the dark recovery reaction approximately by a factor of 280. The presented structural and biochemical data suggest a direct link between structural features and the slow dark recovery observed for PpSB1-LOV. The overall structural arrangement of PpSB1-LOV, together with a complementary phylogenetic analysis, highlights a common ancestry of bacterial LOV photoreceptors and Per-ARNT-Sim chemosensors.  相似文献   

14.
Dürr H  Salomon M  Rüdiger W 《Biochemistry》2005,44(8):3050-3055
Phototropins are a family of plant photoreceptors mediating blue light responses such as phototropism, leaf expansion, chloroplast relocation, and stomatal opening. Characteristic for phototropins are two LOV domains which, when expressed in heterologous systems, each carry a single flavin mononucleotide (FMN) chromophore. Here we describe removal of FMN from the LOV2 domain of Avena sativa using a hydrophobic matrix and successful incorporation of flavin adenine dinucleotide (FAD), riboflavin, and 5'-malonyl-riboflavin into the resulting apoprotein; 5-deaza-FMN was not incorporated under the applied conditions. The chromoproteins reconstituted with the various flavins showed absorption spectra and photocycle almost identical to those of the native LOV2 domain and that reconstituted with FMN except for the kinetics: LOV2-riboflavin and LOV2-5'-malonyl-riboflavin showed more rapid regeneration in the dark. LOV2-FAD can be hydrolyzed to LOV2-FMN with phosphodiesterase, indicating that the adenosine part extrudes from the protein. Together with the data from the X-ray structure (Crosson, S., and Moffat, K. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 2995-3000), the results allow us to decide which of the chromophore-protein interactions are essential for the reconstitution process.  相似文献   

15.
The LOV2 domain of Avena sativa phototropin and its C450A mutant were expressed as recombinant fusion proteins and were examined by optical spectroscopy, electron paramagnetic resonance, and electron-nuclear double resonance. Upon irradiation (420-480 nm), the LOV2 C450A mutant protein gave an optical absorption spectrum characteristic of a flavin radical even in the absence of exogenous electron donors, thus demonstrating that the flavin mononucleotide (FMN) cofactor in its photogenerated triplet state is a potent oxidant for redox-active amino acid residues within the LOV2 domain. The FMN radical in the LOV2 C450A mutant is N(5)-protonated, suggesting that the local pH close to the FMN is acidic enough so that the cysteine residue in the wild-type protein is likely to be also protonated. An electron paramagnetic resonance analysis of the photogenerated FMN radical gave information on the geometrical and electronic structure and the environment of the FMN cofactor. The experimentally determined hyperfine couplings of the FMN radical point to a highly restricted delocalization of the unpaired electron spin in the isoalloxazine moiety. In the light of these results a possible radical-pair mechanism for the formation of the FMN-C(4a)-cysteinyl adduct in LOV domains is discussed.  相似文献   

16.
The photosensor YtvA binds flavin mononucleotide and regulates the general stress reaction in Bacillus subtilis in response to blue light illumination. It belongs to the family of light-oxygen-voltage (LOV) proteins that were first described in plant phototropins and form a subgroup of the Per-Arnt-Sim (PAS) superfamily. Here, we report the three-dimensional structure of the LOV domain of YtvA in its dark and light states. The protein assumes the global fold common to all PAS domains and dimerizes via a hydrophobic interface. Directly C-terminal to the core of the LOV domain, an alpha-helix extends into the solvent. Light absorption causes formation of a covalent bond between a conserved cysteine residue and atom C(4a) of the FMN ring, which triggers rearrangements throughout the LOV domain. Concomitantly, in the dark and light structures, the two subunits of the dimeric protein rotate relative to each other by 5 degrees . This small quaternary structural change is presumably a component of the mechanism by which the activity of YtvA is regulated in response to light. In terms of both structure and signaling mechanism, YtvA differs from plant phototropins and more closely resembles prokaryotic heme-binding PAS domains.  相似文献   

17.
The plant blue light receptor phototropin comprises a protein kinase domain and two FMN-binding LOV domains (LOV1 and LOV2). Blue light irradiation of recombinant LOV domains is conducive to the addition of a cysteinyl thiolate group to carbon 4a of the FMN chromophore, and spontaneous cleavage of that photoadduct completes the photocycle of the receptor. The present study is based on (13)C NMR signal modulation observed after reconstitution of LOV domains of different origins with random libraries of (13)C-labeled FMN isotopologues. Using this approach, all (13)C signals of FMN bound to LOV1 and LOV2 domains of Avena sativa and to the LOV2 domain of the fern, Adiantum capillus-veneris, could be unequivocally assigned under dark and under blue light irradiation conditions. (13)C Chemical shifts of FMN are shown to be differently modulated by complexation with the LOV domains under study, indicating slight differences in the binding interactions of FMN and the apoproteins.  相似文献   

18.
Phototropin (phot) is a blue-light receptor in plants. The molecule has two FMN (flavin mononucleotide)-binding domains named the LOV (light-oxygen-voltage) domain, that is a subset of a PAS (per-arnt-sim) superfamily. Illumination of phot-LOV domains produces a covalent C(4a) flavin-cysteinyl adduct, which is called the S390 intermediate state. According to the crystal structures of the LOV2 domain of Adiantum phytochrome3 (phy3), a fusion protein of phot containing the phytochrome chromophoric domain, in the unphotolyzed and S390 states, and the side chain of Gln1029 switches hydrogen bonds with the FMN chromophore. Gln1029 is the hydrogen-bonding donor of the C(4)=O group of FMN in the unphotolyzed state, whereas Gln1029 is the hydrogen-bonding acceptor of the N(5)-H group of FMN in S390. In this paper, we measured the light-induced structural changes in the Q1029L mutant protein of phy3-LOV2 by means of low-temperature FTIR spectroscopy, and the obtained spectra are compared with those of the wild type. Low-temperature UV-visible spectroscopy of Q1029L detected only one intermediate state, S390, at 77-295 K, as well as the wild type. The C(4)=O stretch of FMN at 1710 cm(-1) is shifted to 1723 cm(-1) in Q1029L, presumably because of the lack of hydrogen bonds between Gln1029 and FMN. Upon formation of S390, the C(4)=O group hydrogen bond is weakened in both wild type and Q1029L. These observations are fully consistent with the X-ray crystal structures of the unphotolyzed and S390 states. On the other hand, the C(4)=O stretch of FMN and amide-I vibrations are temperature-independent in Q1029L, in contrast to wild type, in which highly temperature-dependent FTIR spectra are detected. Amide-I vibrations of Q1029L at room temperature are similar to those of the wild type at 77-150 K but not at room temperature. These facts imply that the Q1029L mutant protein lacks progressive protein structural changes following flavin-cysteinyl adduct formation in the wild type, which eventually alter structures of beta sheet and alpha helix in the protein moiety. Hydrogen-bonding interaction of Gln1029 with the FMN chromophore likely plays an important role in the protein structural changes of phy3-LOV2.  相似文献   

19.
Phototropins (phot1 and phot2) are autophosphorylating serine/threonine kinases that function as photoreceptors for phototropism, light-induced chloroplast movement, and stomatal opening in Arabidopsis. The N-terminal region of phot1 and phot2 contains two specialized PAS domains, designated LOV1 and LOV2, which function as binding sites for the chromophore flavin mononucleotide (FMN). Both LOV1 and LOV2 undergo a self-contained photocycle, which involves the formation of a covalent adduct between the FMN chromophore and a conserved active-site cysteine residue (Cys39). Replacement of Cys39 with alanine abolishes the light-induced photochemical reaction of LOV1 and LOV2. Here we have used the Cys39Ala mutation to investigate the role of LOV1 and LOV2 in regulating phototropin function. Photochemical analysis of a bacterially expressed LOV1 + LOV2 fusion protein indicates that LOV2 functions as the predominant light-sensing domain for phot1. LOV2 also plays a major role in mediating light-dependent autophosphorylation of full-length phot1 expressed in insect cells and transgenic Arabidopsis. Moreover, photochemically active LOV2 alone in full-length phot1 is sufficient to elicit hypocotyl phototropism in transgenic Arabidopsis, whereas photochemically active LOV1 alone is not. Further photochemical and biochemical analyses also indicate that the LOV1 and LOV2 domains of phot2 exhibit distinct roles. The significance for the different roles of the phototropin LOV domains is discussed.  相似文献   

20.
Iwata T  Nozaki D  Tokutomi S  Kagawa T  Wada M  Kandori H 《Biochemistry》2003,42(27):8183-8191
Phototropin (Phot) is a blue-light receptor in plants. The molecule has two FMN (flavin mononucleotide) binding domains named LOV (light-, oxygen-, and voltage-sensing), which is a subset of the PAS (Per-Arnt-Sim) superfamily. Illumination of the phot-LOV domains in the dark state (D447) produces a covalent C(4a) flavin-cysteinyl adduct (S390) via a triplet excited state (L660), which reverts to D447 in the dark. In this work, we studied the light-induced structural changes in the LOV2 domain of Adiantum phytochrome3 (phy3), which is a fusion protein of phot containing the phytochrome chromophoric domain, by low-temperature UV-visible and FTIR spectroscopy. UV-visible spectroscopy detected only one intermediate state, S390, in the temperature range from 77 to 295 K, indicating that the adduct is produced even at temperatures as low as 77 K, although a portion of D447 cannot be converted to S390 at low temperatures possibly because of motional freezing. In the whole temperature range, FTIR spectra in the S-H stretching frequency region showed that Cys966 of phy3-LOV2 is protonated in D447 and unprotonated on illumination, supporting adduct formation. The pK(a) of the S-H group in D447 is estimated to be >10. FTIR spectra also showed the light-induced appearance of a positive peak around 3621 cm(-1) in the whole temperature range, indicating that adduct formation accompanies rearrangement of a hydrogen bond of a water molecule(s), which can be either water25, water45, or both, near the chromophore. In contrast to the weak temperature dependence of the spectral changes in the UV-visible absorption and the FTIR of both S-H and O-H stretching bands, light-induced changes in the amide I vibration that probes protein backbone structure vary significantly with the increase in temperature. The spectral changes suggest that light excitation of FMN loosens the local structure around it, particularly in turns, in the early stages and that another change subsequently takes place to tighten it, mainly in beta-structure, but some occur in the alpha-helical structure of the protein moiety as well. Interestingly, these changes proceed without altering the shape of UV-visible spectra, suggesting the presence of multiple conformation states in S390.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号