首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night) on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1) in a well-rested condition (following 6 nights of 9 hours in bed/night); and 2) following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency). Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care providers).  相似文献   

2.
Moriya J  Sugiura Y 《PloS one》2012,7(4):e34244
Working memory capacity is one of the most important cognitive functions influencing individual traits, such as attentional control, fluid intelligence, and also psychopathological traits. Previous research suggests that anxiety is associated with impaired cognitive function, and studies have shown low verbal working memory capacity in individuals with high trait anxiety. However, the relationship between trait anxiety and visual working memory capacity is still unclear. Considering that people allocate visual attention more widely to detect danger under threat, visual working memory capacity might be higher in anxious people. In the present study, we show that visual working memory capacity increases as trait social anxiety increases by using a change detection task. When the demand to inhibit distractors increased, however, high visual working memory capacity diminished in individuals with social anxiety, and instead, impaired filtering of distractors was predicted by trait social anxiety. State anxiety was not correlated with visual working memory capacity. These results indicate that socially anxious people could potentially hold a large amount of information in working memory. However, because of an impaired cognitive function, they could not inhibit goal-irrelevant distractors and their performance decreased under highly demanding conditions.  相似文献   

3.
Recent studies demonstrated that working memory could be improved by training. We recruited healthy adult participants and used adaptive running working memory training tasks with a double-blind design, combined with the event-related potentials (ERPs) approach, to explore the influence of updating function training on brain activity. Participants in the training group underwent training for 20 days. Compared with the control group, the training group''s accuracy (ACC) in the two-back working memory task had no significant differences after training, but reaction time (RT) was reduced significantly. Besides, the amplitudes of N160 and P300 increased significantly whereas that of P200 decreased significantly. The results suggest that training could have improved the participants'' capacity on both inhibitory and updating.  相似文献   

4.
Zhou J  Yin J  Chen T  Ding X  Gao Z  Shen M 《PloS one》2011,6(9):e23873

Background

The limited capacity of visual working memory (VWM) requires us to select the task relevant information and filter out the irrelevant information efficiently. Previous studies showed that the individual differences in VWM capacity dramatically influenced the way we filtered out the distracters displayed in distinct spatial-locations: low-capacity individuals were poorer at filtering them out than the high-capacity ones. However, when the target and distracting information pertain to the same object (i.e., multiple-featured object), whether the VWM capacity modulates the feature-based filtering remains unknown.

Methodology/Principal Findings

We explored this issue mainly based on one of our recent studies, in which we asked the participants to remember three colors of colored-shapes or colored-landolt-Cs while using two types of task irrelevant information. We found that the irrelevant high-discriminable information could not be filtered out during the extraction of VWM but the irrelevant fine-grained information could be. We added 8 extra participants to the original 16 participants and then split the overall 24 participants into low- and high-VWM capacity groups. We found that regardless of the VWM capacity, the irrelevant high-discriminable information was selected into VWM, whereas the irrelevant fine-grained information was filtered out. The latter finding was further corroborated in a second experiment in which the participants were required to remember one colored-landolt-C and a more strict control was exerted over the VWM capacity.

Conclusions/Significance

We conclude that VWM capacity did not modulate the feature-based filtering in VWM.  相似文献   

5.
Few studies have addressed action control training. In the current study, participants were trained over 19 days in an adaptive training task that demanded constant switching, maintenance and updating of novel action rules. Participants completed an executive functions battery before and after training that estimated processing speed, working memory updating, set-shifting, response inhibition and fluid intelligence. Participants in the training group showed greater improvement than a no-contact control group in processing speed, indicated by reduced reaction times in speeded classification tasks. No other systematic group differences were found across the different pre-post measurements. Ex-Gaussian fitting of the reaction-time distribution revealed that the reaction time reduction observed among trained participants was restricted to the right tail of the distribution, previously shown to be related to working memory. Furthermore, training effects were only found in classification tasks that required participants to maintain novel stimulus-response rules in mind, supporting the notion that the training improved working memory abilities. Training benefits were maintained in a 10-month follow-up, indicating relatively long-lasting effects. The authors conclude that training improved action-related working memory abilities.  相似文献   

6.
Although impairments in working memory (WM) are well documented in schizophrenia, the specific factors that cause these deficits are poorly understood. In this study, we hypothesized that a heightened susceptibility to attentional capture at an early stage of visual processing would result in working memory encoding problems. 30 patients with schizophrenia and 28 demographically matched healthy participants were presented with a search array and asked to report the orientation of the target stimulus. In some of the trials, a flanker stimulus preceded the search array that either matched the color of the target (relevant-flanker capture) or appeared in a different color (irrelevant-flanker capture). Working memory capacity was determined in each individual using the visual change detection paradigm. Patients needed considerably more time to find the target in the no-flanker condition. After adjusting the individual exposure time, both groups showed equivalent capture costs in the irrelevant-flanker condition. However, in the relevant-flanker condition, capture costs were increased in patients compared to controls when the stimulus onset asynchrony between the flanker and the search array was high. Moreover, the increase in relevant capture costs correlated negatively with working memory capacity. This study demonstrates preserved stimulus-driven attentional capture but impaired contingent attentional capture associated with low working memory capacity in schizophrenia. These findings suggest a selective impairment of top-down attentional control in schizophrenia, which may impair working memory encoding.  相似文献   

7.
During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures.  相似文献   

8.

Background

Although limited in capacity, visual working memory (VWM) plays an important role in many aspects of visually-guided behavior. Recent experiments have demonstrated an electrophysiological marker of VWM encoding and maintenance, the contralateral delay activity (CDA), which has been shown in multiple tasks that have both explicit and implicit memory demands. Here, we investigate whether the CDA is evident during visual search, a thoroughly-researched task that is a hallmark of visual attention but has no explicit memory requirements.

Methodology/Principal Findings

The results demonstrate that the CDA is present during a lateralized search task, and that it is similar in amplitude to the CDA observed in a change-detection task, but peaks slightly later. The changes in CDA amplitude during search were strongly correlated with VWM capacity, as well as with search efficiency. These results were paralleled by behavioral findings showing a strong correlation between VWM capacity and search efficiency.

Conclusions/Significance

We conclude that the activity observed during visual search was generated by the same neural resources that subserve VWM, and that this activity reflects the maintenance of previously searched distractors.  相似文献   

9.
Although some studies have shown that cognitive training can produce improvements to untrained cognitive domains (far transfer), many others fail to show these effects, especially when it comes to improving fluid intelligence. The current study was designed to overcome several limitations of previous training studies by incorporating training expectancy assessments, an active control group, and “Mind Frontiers,” a video game-based mobile program comprised of six adaptive, cognitively demanding training tasks that have been found to lead to increased scores in fluid intelligence (Gf) tests. We hypothesize that such integrated training may lead to broad improvements in cognitive abilities by targeting aspects of working memory, executive function, reasoning, and problem solving. Ninety participants completed 20 hour-and-a-half long training sessions over four to five weeks, 45 of whom played Mind Frontiers and 45 of whom completed visual search and change detection tasks (active control). After training, the Mind Frontiers group improved in working memory n-back tests, a composite measure of perceptual speed, and a composite measure of reaction time in reasoning tests. No training-related improvements were found in reasoning accuracy or other working memory tests, nor in composite measures of episodic memory, selective attention, divided attention, and multi-tasking. Perceived self-improvement in the tested abilities did not differ between groups. A general expectancy difference in problem-solving was observed between groups, but this perceived benefit did not correlate with training-related improvement. In summary, although these findings provide modest evidence regarding the efficacy of an integrated cognitive training program, more research is needed to determine the utility of Mind Frontiers as a cognitive training tool.  相似文献   

10.

Background

Based on the relationship between working memory and error detection, we investigated the capacity of adult dyslexic readers'' working memory to change as a result of training, and the impact of training on the error detection mechanism.

Methodology

27 dyslexics and 34 controls, all university students, participated in the study. ERP methodology and behavioral measures were employed prior to, immediately after, and 6 months after training. The CogniFit Personal Coach Program, which consists of 24 sessions of direct training of working memory skills, was used.

Findings

Both groups of readers gained from the training program but the dyslexic readers gained significantly more. In the dyslexic group, digit span increased from 9.84±3.15 to 10.79±3.03. Working memory training significantly increased the number of words per minute read correctly by 14.73%. Adult brain activity changed as a result of training, evidenced by an increase in both working memory capacity and the amplitude of the Error-related Negativity (ERN) component (24.71%). When ERN amplitudes increased, the percentage of errors on the Sternberg tests decreased.

Conclusions

We suggest that by expanding the working memory capacity, larger units of information are retained in the system, enabling more effective error detection. The crucial functioning of the central-executive as a sub-component of the working memory is also discussed.  相似文献   

11.
One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants’ episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary.  相似文献   

12.
M Spronk  EK Vogel  LM Jonkman 《PloS one》2012,7(8):e42262
The present study investigated the development of visuospatial working memory (VSWM) capacity and the efficiency of filtering in VSWM in adolescence. To this end, a group of IQ-matched adults and adolescents performed a VSWM change detection task with manipulations of WM-load and distraction, while performance and electrophysiological contralateral delay activity (CDA) were measured. The CDA is a lateralized ERP marker of the number of targets and distracters that are selectively encoded/maintained in WM from one hemifield of the memory display. Significantly lower VSWM-capacity (Cowan's K) was found in adolescents than adults, and adolescents' WM performance (in terms of accuracy and speed) also suffered more from the presence of distracters. Distracter-related CDA responses were partly indicative of higher distracter encoding/maintenance in WM in adolescents and were positively correlated with performance measures of distracter interference. This correlation suggests that the higher interference of distracters on WM performance in adolescents was caused by an inability to block distracters from processing and maintenance in WM. The lower visuospatial WM-capacity (K) in adolescents in the high load (3 items) condition was accompanied by a trend (p<.10) towards higher CDA amplitudes in adolescents than adults, whereas CDA amplitudes in the low load (1 item) condition were comparable between adolescents and adults. These findings point to immaturity of frontal-parietal WM-attention networks that support visuospatial WM processing in adolescence.  相似文献   

13.
Practice on a procedural task involves within-session learning and between-session consolidation of learning, with the latter requiring a minimum of about four hours to evolve due to involvement of slower cellular processes. Learning to attend to threats is vital for survival and thus may involve faster memory consolidation than simple procedural learning. Here, we tested whether attention to threat modulates the time-course and magnitude of learning and memory consolidation effects associated with skill practice. All participants (N = 90) practiced in two sessions on a dot-probe task featuring pairs of neutral and angry faces followed by target probes which were to be discriminated as rapidly as possible. In the attend-threat training condition, targets always appeared at the angry face location, forming an association between threat and target location; target location was unrelated to valence in a control training condition. Within each attention training condition, duration of the between-session rest interval was varied to establish the time-course for emergence of consolidation effects. During the first practice session, we observed robust improvement in task performance (online, within-session gains), followed by saturation of learning. Both training conditions exhibited similar overall learning capacities, but performance in the attend-threat condition was characterized by a faster learning rate relative to control. Consistent with the memory consolidation hypothesis, between-session performance gains (delayed gains) were observed only following a rest interval. However, rest intervals of 1 and 24 hours yielded similar delayed gains, suggesting accelerated consolidation processes. Moreover, attend-threat training resulted in greater delayed gains compared to the control condition. Auxiliary analyses revealed that enhanced performance was retained over several months, and that training to attend to neutral faces resulted in effects similar to control. These results provide a novel demonstration of how attention to threat can accelerate and enhance memory consolidation effects associated with skill acquisition.  相似文献   

14.
While the role of selective attention in filtering out irrelevant information has been extensively studied, its characteristics and neural underpinnings when multiple environmental stimuli have to be processed in parallel are much less known. Building upon a dual-task paradigm that induced spatial awareness deficits for contralesional hemispace in right hemisphere-damaged patients, we investigated the electrophysiological correlates of multimodal load during spatial monitoring in healthy participants. The position of appearance of briefly presented, lateralized targets had to be reported either in isolation (single task) or together with a concurrent task, visual or auditory, which recruited additional attentional resources (dual-task). This top-down manipulation of attentional load, without any change of the sensory stimulation, modulated the amplitude of the first positive ERP response (P1) and shifted its neural generators, with a suppression of the signal in the early visual areas during both visual and auditory dual tasks. Furthermore, later N2 contralateral components elicited by left targets were particularly influenced by the concurrent visual task and were related to increased activation of the supramarginal gyrus. These results suggest that the right hemisphere is particularly affected by load manipulations, and confirm its crucial role in subtending automatic orienting of spatial attention and in monitoring both hemispaces.  相似文献   

15.
The goal of the present study was to examine the extent to which working memory supports the maintenance of object locations during active spatial navigation. Participants were required to navigate a virtual environment and to encode the location of a target object. In the subsequent maintenance period they performed one of three secondary tasks that were designed to selectively load visual, verbal or spatial working memory subsystems. Thereafter participants re-entered the environment and navigated back to the remembered location of the target. We found that while navigation performance in participants with high navigational ability was impaired only by the spatial secondary task, navigation performance in participants with poor navigational ability was impaired equally by spatial and verbal secondary tasks. The visual secondary task had no effect on navigation performance. Our results extend current knowledge by showing that the differential engagement of working memory subsystems is determined by navigational ability.  相似文献   

16.

Background

Because pain often signals the occurrence of potential tissue damage, a nociceptive stimulus has the capacity to involuntarily capture attention and take priority over other sensory inputs. Whether distraction by nociception actually occurs may depend upon the cognitive characteristics of the ongoing activities. The present study tested the role of working memory in controlling the attentional capture by nociception.

Methodology and Principal Findings

Participants performed visual discrimination and matching tasks in which visual targets were shortly preceded by a tactile distracter. The two tasks were chosen because of the different effects the involvement of working memory produces on performance, in order to dissociate the specific role of working memory in the control of attention from the effect of general resource demands. Occasionally (i.e. 17% of the trials), tactile distracters were replaced by a novel nociceptive stimulus in order to distract participants from the visual tasks. Indeed, in the control conditions (no working memory), reaction times to visual targets were increased when the target was preceded by a novel nociceptive distracter as compared to the target preceded by a frequent tactile distracter, suggesting attentional capture by the novel nociceptive stimulus. However, when the task required an active rehearsal of the visual target in working memory, the novel nociceptive stimulus no longer induced a lengthening of reaction times to visual targets, indicating a reduction of the distraction produced by the novel nociceptive stimulus. This effect was independent of the overall task demands.

Conclusion and Significance

Loading working memory with pain-unrelated information may reduce the ability of nociceptive input to involuntarily capture attention, and shields cognitive processing from nociceptive distraction. An efficient control of attention over pain is best guaranteed by the ability to maintain active goal priorities during achievement of cognitive activities and to keep pain-related information out of task settings.  相似文献   

17.
The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items.OUR MODEL SUGGESTS THAT WORKING MEMORY CAPACITY IS DETERMINED BY TWO FUNDAMENTAL PROCESSES: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions.  相似文献   

18.
The objective of the paper was to study the developmental continuity of working memory function from infancy to preschool age. At the age of 10 to 11 months 44 participants completed delayed response task (A-not-B) that measures working memory function. Between 5 and 7 years of age the same participants performed three tasks assessing working memory for temporal order in auditory and visual modalities and a control task measuring short-term visuospatial memory. The dependence of temporal-order memory at preschool age on individual level of infant working memory was found for all methods of measurement despite the differences in way of presentation and reproducing of the stimuli order. Results indicate direct continuity in the development of working memory function from infancy to preschool age.  相似文献   

19.
Artificial grammar learning (AGL) provides a useful tool for exploring rule learning strategies linked to general purpose pattern perception. To be able to directly compare performance of humans with other species with different memory capacities, we developed an AGL task in the visual domain. Presenting entire visual patterns simultaneously instead of sequentially minimizes the amount of required working memory. This approach allowed us to evaluate performance levels of two bird species, kea (Nestor notabilis) and pigeons (Columba livia), in direct comparison to human participants. After being trained to discriminate between two types of visual patterns generated by rules at different levels of computational complexity and presented on a computer screen, birds and humans received further training with a series of novel stimuli that followed the same rules, but differed in various visual features from the training stimuli. Most avian and all human subjects continued to perform well above chance during this initial generalization phase, suggesting that they were able to generalize learned rules to novel stimuli. However, detailed testing with stimuli that violated the intended rules regarding the exact number of stimulus elements indicates that neither bird species was able to successfully acquire the intended pattern rule. Our data suggest that, in contrast to humans, these birds were unable to master a simple rule above the finite-state level, even with simultaneous item presentation and despite intensive training.  相似文献   

20.
The interruptive effect of painful experimental stimulation on cognitive processes is a well-known phenomenon. This study investigated the influence of pain duration on the negative effects of pain on cognition. Thirty-four healthy volunteers performed a rapid serial visual presentation task (RSVP) in which subjects had to detect (visual detection task) and count the occurrence of a target letter (working memory task) in two separate sessions while being stimulated on the left volar forearm with either short (2 sec) or long (18 sec) painful heat stimuli of equal subjective intensity. The results show that subjects performed significantly worse in the long pain session as indexed by decreased detection and counting performance. Interestingly, this effect on performance was also observed during control trials of the long pain session in which participants did not receive any painful stimulation. Moreover, subjects expected long painful stimulation to have a greater impact on their performance and individual expectation correlated with working memory performance. These findings suggest that not only the length of painful stimulation but also its expected ability to impair cognitive functioning might influence the interruptive function of pain. The exact relevance of expectation for the detrimental effects of pain on cognitive processes needs to be explored in more detail in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号