首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Echium oil (EO), which is enriched in 18:4 n-3, the immediate product of fatty acid desaturase 2 (FADS2) desaturation of 18:3 n-3, is as atheroprotective as fish oil (FO). The objective of this study was to determine whether botanical oils enriched in the FADS2 products 18:3 n-6 versus 18:4 n-3 are equally atheroprotective. LDL receptor KO mice were fed one of four atherogenic diets containing 0.2% cholesterol and 10% calories as palm oil (PO) plus 10% calories as: 1) PO; 2) borage oil (BO; 18:3 n-6 enriched); 3) EO (18:4 n-3 enriched); or 4) FO for 16 weeks. Mice fed BO, EO, and FO versus PO had significantly lower plasma total and VLDL cholesterol concentrations; hepatic neutral lipid content and inflammation, aortic CE content, aortic root intimal area and macrophage content; and peritoneal macrophage inflammation, CE content, and ex vivo chemotaxis. Atheromas lacked oxidized CEs despite abundant generation of macrophage 12/15 lipooxygenase-derived metabolites. We conclude that botanical oils enriched in 18:3 n-6 and 18:4 n-3 PUFAs beyond the rate-limiting FADS2 enzyme are equally effective in preventing atherosclerosis and hepatosteatosis compared with saturated/monounsaturated fat due to cellular enrichment of ≥20 PUFAs, reduced plasma VLDL, and attenuated macrophage inflammation.  相似文献   

2.
The present study examines the time dependent effects of n-6 and n-3 polyunsaturated fatty acids on liver microsomal lipid metabolism in FVB mice fed a diet supplemented with a mixture of free fatty acids (mainly 18:3n-6 and 20:5n-3) at 25 mg/g diet. Significant changes in the fatty acid composition of total liver and microsomal lipids were observed after 7 days on the diets. Thereafter, some animals remained on the same diet while others were fed a diet supplemented with hydrogenated coconut oil (HCO). With the exception of 20:5n-3 which showed a slower recovery, establishment of the HCO pattern was rapid indicating that the diet-induced changes could be easily reversed. The unsaturation index, the cholesterol/phospholipid ratio and the microviscosity of the microsomal membranes were not affected by these dietary manipulations. Unsaturated fatty acid supplementation reduced the activity of 9 desaturase by 50%. Feeding the HCO diet to mice previously fed the EPA/GLA diet led to a progressive increase in 9 desaturase activity, reaching 80% of the day zero values after 14 days. The monoene content of hepatic total lipids reflected, in most cases, the changes in enzyme activity. This study shows that a low dose of a n-3 and n-6 free fatty acid mixture increases the quantities of members of the n-3 family, without loss of n-6 fatty acids in microsomal membranes and modifies the activity of 9 desaturase without altering the microsome physicochemical parameters.  相似文献   

3.
Arachidonic acid (20:4Δ5,8,11,14, AA)-derived eicosanoids regulate inflammation and promote cancer development. Previous studies have targeted prostaglandin enzymes in an attempt to modulate AA metabolism. However, due to safety concerns surrounding the use of pharmaceutical agents designed to target Ptgs2 (cyclooxygenase 2) and its downstream targets, it is important to identify new targets upstream of Ptgs2. Therefore, we determined the utility of antagonizing tissue AA levels as a novel approach to suppressing AA-derived eicosanoids. Systemic disruption of the Fads1 (Δ5 desaturase) gene reciprocally altered the levels of dihomo-γ-linolenic acid (20:3Δ8,11,14, DGLA) and AA in mouse tissues, resulting in a profound increase in 1-series-derived and a concurrent decrease in 2-series-derived prostaglandins. The lack of AA-derived eicosanoids, e.g., PGE2, was associated with perturbed intestinal crypt proliferation, immune cell homeostasis, and a heightened sensitivity to acute inflammatory challenge. In addition, null mice failed to thrive, dying off by 12 weeks of age. Dietary supplementation with AA extended the longevity of null mice to levels comparable to wild-type mice. We propose that this new mouse model will expand our understanding of how AA and its metabolites mediate inflammation and promote malignant transformation, with the eventual goal of identifying new drug targets upstream of Ptgs2.  相似文献   

4.
In order to evaluate the effects of fatty acids on immune cell membrane structure and function, it is often necessary to maintain cells in culture. However, cell culture conditions typically reverse alterations in polyunsaturated fatty acid (PUFA) composition achieved by dietary lipid manipulation. Therefore, we hypothesized that T-cells from transgenic mice expressing the Caenorhabditis elegans n-3 desaturase (fat-1) gene would be resistant to the culture-induced loss of n-3 PUFA and, therefore, obviate the need to incorporate fatty acids or homologous serum into the medium. CD4+ T-cells were isolated from (i) control wild type (WT) mice fed a safflower oil-n-6 PUFA enriched diet (SAF) devoid of n-3 PUFA, (ii) fat-1 transgenic mice (enriched with endogenous n-3 PUFA) fed a SAF diet, or (iii) WT mice fed a fish oil (FO) based diet enriched in n-3 PUFA. T-cell phospholipids isolated from WT mice fed FO diet (enriched in n-3 PUFA) and fat-1 transgenic mice fed a SAF diet (enriched in n-6 PUFA) were both enriched in n-3 PUFA. As expected, the mol% levels of both n-3 and n-6 PUFA were decreased in cultures of CD4+ T-cells from FO-fed WT mice after 3 d in culture. In contrast, the expression of n-3 desaturase prevented the culture-induced decrease of n-3 PUFA in CD4+ T-cells from the transgenic mice. Carboxyfluorescein succinidyl ester (CFSE) -labeled CD4+ T-cells from fat-1/SAF vs. WT/SAF mice stimulated with anti-CD3 and anti-CD28 for 3 d, exhibited a reduced (P<0.05) number of cell divisions. We conclude that fat-1-containing CD4+ T-cells express a physiologically relevant, n-3 PUFA enriched, membrane fatty acid composition which is resistant to conventional cell culture-induced depletion.  相似文献   

5.
Cystic fibrosis (CF) patients and model systems exhibit consistent abnormalities in PUFA metabolism, including increased metabolism of linoleate to arachidonate. Recent studies have connected these abnormalities to increased expression and activity of the Δ6- and Δ5-desaturase enzymes. However, the mechanism connecting these changes to the CF transmembrane conductance regulator (CFTR) mutations responsible for CF is unknown. This study tests the hypothesis that increased activity of AMP-activated protein kinase (AMPK), previously described in CF bronchial epithelial cells, causes these changes in fatty acid metabolism by driving desaturase expression. Using CF bronchial epithelial cell culture models, we confirm elevated activity of AMPK in CF cells and show that it is due to increased phosphorylation of AMPK by Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ). We also show that inhibition of AMPK or CaMKKβ reduces desaturase expression and reverses the metabolic alterations seen in CF cells. These results signify a novel AMPK-dependent mechanism linking the genetic defect in CF to alterations in PUFA metabolism.  相似文献   

6.
7.
8.
Δ12 and ω3 fatty acid desaturases are key enzymes in the synthesis of polyunsaturated fatty acids (PUFAs), which are important constituents of membrane glycerolipids and also precursors to signaling molecules in many organisms. In this study, we determined the substrate specificity and regioselectivity of the Δ12 and ω3 fatty acid desaturases from Saccharomyces kluyveri (Sk-FAD2 and Sk-FAD3). Based on heterologous expression in Saccharomyces cerevisiae, it was found that Sk-FAD2 converted C16–20 monounsaturated fatty acids to diunsaturated fatty acids by the introduction of a second double bond at the ν+3 position, while Sk-FAD3 recognized the ω3 position of C18 and C20. Furthermore, fatty acid analysis of major phospholipids suggested that Sk-FAD2 and Sk-FAD3 have no strong substrate specificity toward the lipid polar head group or the sn-positions of fatty acyl groups in phospholipids.  相似文献   

9.
A cDNA for a structurally variant acyl-acyl carrier protein (ACP) desaturase was isolated from milkweed (Asclepias syriaca) seed, a tissue enriched in palmitoleic (16:19)* and cis-vaccenic (18:111) acids. Extracts of Escherichia coli that express the milkweed cDNA catalyzed 9 desaturation of acyl-ACP substrates, and the recombinant enzyme exhibited seven- to ten-fold greater specificity for palmitoyl (16:0)-ACP and 30-fold greater specificity for myristoyl (14:0)-ACP than did known 9-stearoyl (18:0)-ACP desaturases. Like other variant acyl-ACP desaturases reported to date, the milkweed enzyme contains fewer amino acids near its N-terminus compared to previously characterized 9-18:0-ACP desaturases. Based on the activity of an N-terminal deletion mutant of a9 -18:0-ACP desaturase, this structural feature likely does not account for differences in substrate specificities.  相似文献   

10.
We investigated the mechanism by which rat retina conserves docosahexaenoic acid during essential fatty acid deficiency. Weanling female albino rats were fed diets containing either 10% by weight hydrogenated coconut oil, safflower oil, or linseed oil for 15 weeks. Plasma and rod outer segment (ROS) membranes were prepared for fatty acid and phospholipid molecular species analysis. In addition, retinas were removed for morphometric analysis. We found the following: (1) Plasma phospholipids and cholesterol esters from coconut oil, safflower oil, and linseed oil diet groups were enriched in 20:3(n-9), 20:4(n-6), and 20:5(n-3), respectively. The levels of these 20-carbon fatty acids in the ROS, however, were only slightly affected by diet. (2) The fatty acids and molecular species of ROS phospholipids from the safflower oil and coconut oil groups showed a selective replacement of 22:6(n-3) with 22:5(n-6), as evidenced by a reduction of the 22:6(n-3)-22:6(n-3) molecular species and an increase in the 22:5(n-6)-22:6(n-3) species. (3) The renewal rate of ROS integral proteins, determined by autoradiography, was 10% per day for each diet group. (4) Morphometric analysis of retinas showed no differences in the outer nuclear layer area or in ROS length between the three groups. We conclude that the conservation of 22:6(n-3) in ROS is not accomplished through reductions in the rate of membrane turnover, the total amount of ROS membranes, or in the number of rod cells. The retina may conserve 22:6(n-3) through recycling within the retina or between the retina and the pigment epithelium, or through the selective uptake of 22-carbon polyunsaturated fatty acids from the circulation.  相似文献   

11.
植物脂肪酸脱饱和酶特性及转基因研究进展   总被引:5,自引:0,他引:5  
脂肪酸代谢是有机体的基本代谢之一。植物体内首先合成的是饱和脂肪酸,然后在脂肪酸脱饱和酶作用下形成不饱和脂肪酸。目前已经从很多植物中克隆到了脂肪酸合成相关的酶,并对其功能进行了鉴定。详细介绍了近年来应用基因工程技术对植物油中不饱和脂肪酸含量和组分进行改造所取得的进展,并对其在植物抗性育种中的应用进行了展望。  相似文献   

12.
The PUFAs include many bioactive lipids. The microbial metabolism of C18 PUFAs is known to produce their bioactive isomers, such as conjugated FAs and hydroxy FAs, but there is little information on that of C20 PUFAs. In this study, we aimed to obtain anaerobic bacteria with the ability to produce novel PUFAs from C20 PUFAs. Through the screening of ∼100 strains of anaerobic bacteria, Clostridium bifermentans JCM 1386 was selected as a strain with the ability to saturate PUFAs during anaerobic cultivation. This strain converted arachidonic acid (cis-5,cis-8,cis-11,cis-14-eicosatetraenoic acid) and EPA (cis-5,cis-8,cis-11,cis-14,cis-17-EPA) into cis-5,cis-8,trans-13-eicosatrienoic acid and cis-5,cis-8,trans-13,cis-17-eicosatetraenoic acid, giving yields of 57% and 67% against the added PUFAs, respectively. This is the first report of the isolation of a bacterium transforming C20 PUFAs into corresponding non-methylene-interrupted FAs. We further investigated the substrate specificity of the biohydrogenation by this strain and revealed that it can convert two cis double bonds at the ω6 and ω9 positions in various C18 and C20 PUFAs into a trans double bond at the ω7 position. This study should serve to open up the development of novel potentially bioactive PUFAs.  相似文献   

13.
DHA(22:6n-3)、EPA(20:5n-3)和ARA(20:4n-6)三种长链多不饱和脂肪酸在生物体内活性最强,它们在促进大脑发育和功能维持以及在预防和治疗心血管疾病、炎症、癌症等多种疾病方面有着重要作用。然而,尽管哺乳动物体内有完整的长链多不饱和脂肪酸合成酶系,但哺乳动物合成这些长链多不饱和脂肪酸的效率很低而主要依赖于食物获取。本研究应用转基因方法,将哺乳动物来源的Δ6和Δ5脂肪酸去饱和酶以及Δ6和Δ5脂肪酸延长酶这4种酶的编码基因构建成为一个多基因表达载体,然后转染哺乳动物细胞HEK293T,实现了4个目的基因的超表达,再通过气质联用(GC-MS)分析证实了DHA、EPA和ARA等长链多不饱和脂肪酸的合成效率及水平显著增加,DHA的水平更是提高了2.5倍。由此可见,哺乳动物具有某种抑制长链多不饱和脂肪酸高水平合成的机制,但通过Δ6和Δ5脂肪酸去饱和酶以及Δ6和Δ5脂肪酸延长酶的超表达,能够打破哺乳动物这种抑制机制,从而显著提高DHA、EPA、ARA等的合成水平。同时,本研究的思路也为在转基因动物中生产长链多不饱和脂肪酸提供了重要的启示。  相似文献   

14.
脂肪酸脱饱和酶的研究进展   总被引:10,自引:0,他引:10  
脂肪酸脱饱和酶催化与载体结合的饱和脂肪酸或不饱和脂肪酸在脂酰链上形成双键。脂肪酸脱饱和酶分为脂酰CoA脱饱和酶、脂酰ACP脱饱和酶和脂酰脂脱饱和酶三类。它在控制生物膜的形成与物理性质,保护光合机构和决定贮脂与膜脂的脂肪酸组成与不饱和度等方面起着关键作用。  相似文献   

15.
16.
Hydroxy FAs, one of the gut microbial metabolites of PUFAs, have attracted much attention because of their various bioactivities. The purpose of this study was to identify lactic acid bacteria with the ability to convert linoleic acid (LA) to hydroxy FAs. A screening process revealed that a gut bacterium, Lactobacillus acidophilus NTV001, converts LA mainly into 13-hydroxy-cis-9-octadecenoic acid and resulted in the identification of the hydratase responsible, fatty acid hydratase 1 (FA-HY1). Recombinant FA-HY1 was purified, and its enzymatic characteristics were investigated. FA-HY1 could convert not only C18 PUFAs but also C20 and C22 PUFAs. C18 PUFAs with a cis carbon-carbon double bond at the Δ12 position were converted into the corresponding 13-hydroxy FAs. Arachidonic acid and DHA were converted into the corresponding 15-hydroxy FA and 14-hydroxy FA, respectively. To the best of our knowledge, this is the first report of a bacterial FA hydratase that can convert C20 and C22 PUFAs into the corresponding hydroxy FAs. These novel hydroxy FAs produced by using FA-HY1 should contribute to elucidating the bioactivities of hydroxy FAs.  相似文献   

17.
二十二碳六烯酸(DHA,22:6n-3)是一种长度为22个碳原子且含有6个双键的ω-3系多不饱和脂肪酸,在人体中具有重要生物学功能。人体及其他哺乳动物体内只能合成少量的DHA,更多的需求必须从食物中获取。然而,DHA的天然资源(主要是深海鱼类等海洋产品)日趋枯竭,开发新型资源以满足不断扩大的市场需求势在必行。本研究利用转基因技术,在哺乳动物细胞中使Δ6和Δ5脂肪酸去饱和酶以及Δ6和Δ5脂肪酸延长酶超表达,同时表达来源于秀丽隐杆线虫Caenorhabditis elegans的Δ15去饱和酶和小眼虫Euglena gracilis的Δ4去饱和酶,结果表明,这6种酶的表达或超表达能将ω-6系的亚油酸(LA,18:2n-6)有效地转化为DHA(22:6n-3),后者的含量从对照组的16.74%提高到实验组的25.3%。本研究的策略及技术路线为将来利用遗传改造的哺乳动物生产珍稀的DHA(22:6n-3)等长链多不饱和脂肪酸产品提供了重要的启示。  相似文献   

18.
Epidermal fatty acid-binding protein (E-FABP), a member of the family of FABPs, exhibits a robust expression in neurons during axonal growth in development and in nerve regeneration following nerve injury. This study examines the impact of E-FABP expression in normal neurite extension in differentiating pheochromocytoma cell (PC12) cultures supplemented with selected long chain free fatty acids (LCFFA). We found that E-FABP binds to a broad range of saturated and unsaturated LCFFAs, including those with potential interest for neuronal differentiation and axonal growth such as C22:6n-3 docosahexaenoic acid (DHA), C20:5n-3 eicosapentaenoic acid (EPA), and C20:4n-6 arachidonic acid (ARA). PC12 cells exposed to nerve growth factor (NGFDPC12) exhibit high E-FABP expression that is blocked by mitogen-activated protein kinase kinase (MEK) inhibitor U0126. Nerve growth factor-differentiated pheochromocytoma cells (NGFDPC12) antisense clones (NGFDPC12-AS) which exhibit low E-FABP expression have fewer/shorter neurites than cells transfected with vector only or NGFDPC12 sense cells (NGFDPC12-S). Replenishing NGFDPC12-AS cells with biotinylated recombinant E-FABP (biotin-E-FABP) protein restores normal neurite outgrowth. Cellular localization of biotin-E-FABP in NGFDPC12 was detected mostly in the cytoplasm and in the nuclear region. Treatment of NGFDPC12 with DHA, EPA, or ARA further enhances neurite length but it does not trigger further induction of TrkA or MEK phosphorylation or E-FABP mRNA observed in differentiating PC12 cells without LCFFA supplementation. Significantly, DHA and EPA neurite stimulating effects are higher in NGFDPC12-S than in NGFDPC12-AS cells. These findings are consistent with the scenario that neurite extension of differentiating PC12 cells, including further stimulation by DHA and EPA, requires sufficient cellular levels of E-FABP.  相似文献   

19.
20.
Omega-3-PUFAs, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are associated with prevention of various aspects of metabolic syndrome. In the present studies, the effects of oil rich in EPA on gene expression and activation of nuclear receptors was examined and compared with other ω3-PUFAs. The EPA-rich oil (EO) altered the expression of FA metabolism genes in THP-1 cells, including stearoyl CoA desaturase (SCD) and FA desaturase-1 and -2 (FASDS1 and -2). Other ω3-PUFAs resulted in a similar gene expression response for a subset of genes involved in lipid metabolism and inflammation. In reporter assays, EO activated human peroxisome proliferator-activated receptor α (PPARα) and PPARβ/γ with minimal effects on PPARγ, liver X receptor, retinoid X receptor, farnesoid X receptor, and retinoid acid receptor γ (RARγ); these effects were similar to that observed for purified EPA. When serum from a 6 week clinical intervention with dietary supplements containing olive oil (control), DHA, or two levels of EPA were applied to THP-1 cells, the expression of SCD and FADS2 decreased in the cells treated with serum from the ω3-PUFA-supplemented individuals. Taken together, these studies indicate regulation of gene expression by EO that is consistent with treating aspects of dyslipidemia and inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号