首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of wind‐dispersed seeds around a parent tree depends on diaspore and tree traits, as well as wind conditions and surrounding vegetation. This study of a neotropical canopy tree, Platypodium elegans, explored the extent to which parental variation in diaspore and tree traits explained (1) rate of diaspore descent in still air, (2) distributions of diaspores dispersed from a 40‐m tower in the forest, and (3) natural diaspore distributions around the parent tree. The geometric mean rate of descent in still air among 20 parents was highly correlated with geometric mean wing loading1/2 (r = 0.84). However, diaspore traits and rate of descent predicted less variation in dispersal distance from the tower, although descent rate−1 consistently correlated with dispersal distance. Measured seed shadows, particularly their distribution edges, differed significantly among six parents (DBH range 62–181 cm) and were best fit by six separate anisotropic dispersal kernels and surveyed fecundities. Measured rate of descent and tree traits, combined in a mechanistic seed dispersal model, did not significantly explain variation among parents in natural seed dispersal distances, perhaps due to the limited power to detect effects with only six trees. Seedling and sapling distributions were at a greater mean distance from the parents than seed distributions; saplings were heavily concentrated at far distances. Variation among parents in the distribution tails so critical for recruitment could not be explained by measured diaspore or tree traits with this sample size, and may be determined more by wind patterns and the timing of abscission in relation to wind conditions. Studies of wind dispersal need to devote greater field efforts at recording the “rare” dispersal events that contribute to far dispersal distances, following their consequences, and in understanding the mechanisms that generate them.  相似文献   

2.

Background

Plant functional traits co-vary along strategy spectra, thereby defining trade-offs for resource acquisition and utilization amongst other processes. A main objective of plant ecology is to quantify the correlations among traits and ask why some of them are sufficiently closely coordinated to form a single axis of functional specialization. However, due to trait co-variations in nature, it is difficult to propose a mechanistic and causal explanation for the origin of trade-offs among traits observed at both intra- and inter-specific level.

Methodology/Principal Findings

Using the Gemini individual-centered model which coordinates physiological and morphological processes, we investigated with 12 grass species the consequences of deliberately decoupling variation of leaf traits (specific leaf area, leaf lifespan) and plant stature (height and tiller number) on plant growth and phenotypic variability. For all species under both high and low N supplies, simulated trait values maximizing plant growth in monocultures matched observed trait values. Moreover, at the intraspecific level, plastic trait responses to N addition predicted by the model were in close agreement with observed trait responses. In a 4D trait space, our modeling approach highlighted that the unique trait combination maximizing plant growth under a given environmental condition was determined by a coordination of leaf, root and whole plant processes that tended to co-limit the acquisition and use of carbon and of nitrogen.

Conclusion/Significance

Our study provides a mechanistic explanation for the origin of trade-offs between plant functional traits and further predicts plasticity in plant traits in response to environmental changes. In a multidimensional trait space, regions occupied by current plant species can therefore be viewed as adaptive corridors where trait combinations minimize allometric and physiological constraints from the organ to the whole plant levels. The regions outside this corridor are empty because of inferior plant performance.  相似文献   

3.
Recent attempts to examine the biological processes responsible for the general characteristics of mutualistic networks focus on two types of explanations: nonmatching biological attributes of species that prevent the occurrence of certain interactions (“forbidden links”), arising from trait complementarity in mutualist networks (as compared to barriers to exploitation in antagonistic ones), and random interactions among individuals that are proportional to their abundances in the observed community (“neutrality hypothesis”). We explored the consequences that simple linkage rules based on the first two hypotheses (complementarity of traits versus barriers to exploitation) had on the topology of plant–pollination networks. Independent of the linkage rules used, the inclusion of a small set of traits (two to four) sufficed to account for the complex topological patterns observed in real-world networks. Optimal performance was achieved by a “mixed model” that combined rules that link plants and pollinators whose trait ranges overlap (“complementarity models”) and rules that link pollinators to flowers whose traits are below a pollinator-specific barrier value (“barrier models”). Deterrence of floral parasites (barrier model) is therefore at least as important as increasing pollination efficiency (complementarity model) in the evolutionary shaping of plant–pollinator networks.  相似文献   

4.
The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27–73%), and combined effects of seed traits and phylogeny of hardwood trees (5–55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 “global” axes of traits that were phylogenetically autocorrelated at the family and genus level and a third “local” axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30–76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak or more diffuse coevolutionary relationship between rodents and hardwood trees rather than a direct coevolutionary relationship.  相似文献   

5.
Negative correlations between dispersal and establishment are often reported in the plant literature; smaller seeds tend to disperse better but germinate less well, and produce smaller seedlings. However, because dispersal capacity is often quantified using proxies, such as the settling velocity of wind-dispersed seeds, little is known about the exact shape of this negative relationship, and how it is modified by other plant traits and environmental conditions. We studied the dispersal-establishment relationship in two wind-dispersed thistles (Carduus nutans and Carduus acanthoides). We applied a mechanistic wind dispersal model (WALD) to seeds released under a range of environmental conditions, and tested germination and seedling growth under standardized conditions in a greenhouse. Dispersal distance and establishment (germination and seedling growth) were not significantly correlated, although in both species smaller seeds dispersed farther, and showed lower germination and lower seedling growth rates. This apparent paradox can partly be explained by the significant influence of other factors such as release height and environment (wind and vegetation), which explained more variation in dispersal than did terminal velocity. Another potential explanation is the variation in seed traits: germination is strongly positively related to seed mass, weakly positively related to plume loading, but not significantly related to terminal velocity. This weakening of the correlation with germination is due to additional layers of trait (co)variability: for instance, seed mass and pappus size are positively correlated, and thus big seeds partially compensate for the negative effect of seed mass with larger pappi. Our mechanistic approach can thus lead to a better understanding of both potentially opposing selection pressures on traits like seed mass, and diluting effects of other seed, plant and environmental factors.  相似文献   

6.
Recent studies demonstrate that by focusing on traits linked to fundamental plant life‐history trade‐offs, ecologists can begin to predict plant community structure at global scales. Yet, consumers can strongly affect plant communities, and means for linking consumer effects to key plant traits and community assembly processes are lacking. We conducted a global literature review and meta‐analysis to evaluate whether seed size, a trait representing fundamental life‐history trade‐offs in plant offspring investment, could predict post‐dispersal seed predator effects on seed removal and plant recruitment. Seed size predicted small mammal seed removal rates and their impacts on plant recruitment consistent with optimal foraging theory, with intermediate seed sizes most strongly impacted globally – for both native and exotic plants. However, differences in seed size distributions among ecosystems conditioned seed predation patterns, with relatively large‐seeded species most strongly affected in grasslands (smallest seeds), and relatively small‐seeded species most strongly affected in tropical forests (largest seeds). Such size‐dependent seed predation has profound implications for coexistence among plants because it may enhance or weaken opposing life‐history trade‐offs in an ecosystem‐specific manner. Our results suggest that seed size may serve as a key life‐history trait that can integrate consumer effects to improve understandings of plant coexistence.  相似文献   

7.
Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM). This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades (“Reproduction”, “Feeding”, “Head and neck”, “Avian-style lung”, and “Metabolism”). Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait “Very high body mass”. Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits) were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size.  相似文献   

8.
While the effect of drought on plant communities and their associated ecosystem functions is well studied, little research has considered how responses are modified by soil depth and depth heterogeneity. We conducted a mesocosm study comprising shallow and deep soils, and variable and uniform soil depths, and two levels of plant community composition, and exposed them to a simulated drought to test for interactive effects of these treatments on the resilience of carbon dioxide fluxes, plant functional traits, and soil chemical properties. We tested the hypotheses that: (a) shallow and variable depth soils lead to increased resistance and resilience of ecosystem functions to drought due to more exploitative plant trait strategies; (b) plant communities associated with intensively managed high fertility soils, will have more exploitative root traits than extensively managed, lower fertility plant communities. These traits will be associated with higher resistance and resilience to drought and may interact with soil depth and depth heterogeneity to amplify the effects on ecosystem functions. Our results showed that while there were strong soil depth/heterogeneity effects on plant‐driven carbon fluxes, it did not affect resistance or resilience to drought, and there were no treatment effects on plant‐available carbon or nitrogen. We did observe a significant increase in exploitative root traits in shallow and variable soils relative to deep and uniform, which may have resulted in a compensation effect which led to the similar drought responses. Plant community compositions representative of intensive management were more drought resilient than more diverse “extensive” communities irrespective of soil depth or soil depth heterogeneity. In intensively managed plant communities, root traits were more representative of exploitative strategies. Taken together, our results suggest that reorganization of root traits in response to soil depth could buffer drought effects on ecosystem functions.  相似文献   

9.
Plants that share the same habitat often exhibit similar biological traits. As climatic conditions change with increasing elevation, biological traits are expected to vary among plant species with temperate endemic, alpine endemic, or widespread elevational distributions. On a northeast Tibetan flora including temperate (1,850–2,800 m a.s.l.), subalpine (2,800–3,400 m a.s.l.), and alpine (3,400–4,150 m a.s.l.) vegetations, we analyzed patterns of change for ten traits of 326 annual and perennial herbaceous species using both univariate and multivariate analyses. The traits selected for this study fit in different groups, i.e., traits related to light competition, photosynthesis, reproduction, defense, and dispersal. We found that plant shape (plant height and leaf distribution along stem) and leaf traits (specific leaf area and leaf area) were significant predictors of plants’ elevational distributions, suggesting an important role for a trade-off between light competition and biomass costs in support structures, and between photosynthetic efficiency and leaf defense. Moreover, species with a broad distribution had significantly higher seed germination and shorter first germination time, as compared to species with narrow distributions, which indicates that rapid regeneration may be crucial for widespread species. However, dispersal-related traits may not be the main factor in shaping plants’ elevational distribution because no significant difference was detected in wind- and animal-dispersal ability. In addition, annual species potentially may have different strategies and adaptive mechanisms because we detected no differences in trait related to the elevational distributions.  相似文献   

10.
Seed quality in tomato is associated with many complex physiological and genetic traits. While plant processes are frequently controlled by the action of small‐ to large‐effect genes that follow classic Mendelian inheritance, our study suggests that seed quality is primarily quantitative and genetically complex. Using a recombinant inbred line population of Solanum lycopersicum × Solanum pimpinellifolium, we identified quantitative trait loci (QTLs) influencing seed quality phenotypes under non‐stress, as well as salt, osmotic, cold, high‐temperature and oxidative stress conditions. In total, 42 seed quality traits were analysed and 120 QTLs were identified for germination traits under different conditions. Significant phenotypic correlations were observed between germination traits under optimal conditions, as well as under different stress conditions. In conclusion, one or more QTLs were identified for each trait with some of these QTLs co‐locating. Co‐location of QTLs for different traits can be an indication that a locus has pleiotropic effects on multiple traits due to a common mechanistic basis. However, several QTLs also dissected seed quality in its separate components, suggesting different physiological mechanisms and signalling pathways for different seed quality attributes.  相似文献   

11.
The success of species invasions depends on multiple factors, including propagule pressure, disturbance, productivity, and the traits of native and non‐native species. While the importance of many of these determinants has already been investigated in relative isolation, they are rarely studied in combination. Here, we address this shortcoming by exploring the effect of the above‐listed factors on the success of invasions using an individual‐based mechanistic model. This approach enables us to explicitly control environmental factors (temperature as surrogate for productivity, disturbance, and propagule pressure) as well as to monitor whole‐community trait distributions of environmental adaptation, mass, and dispersal abilities. We simulated introductions of plant individuals to an oceanic island to assess which factors and species traits contribute to invasion success. We found that the most influential factors were higher propagule pressure and a particular set of traits. This invasion trait syndrome was characterized by a relative similarity in functional traits of invasive to native species, while invasive species had on average higher environmental adaptation, higher body mass, and increased dispersal distances, that is, had greater competitive and dispersive abilities. Our results highlight the importance in management practice of reducing the import of alien species, especially those that display this trait syndrome and come from similar habitats as those being managed.  相似文献   

12.
Plant development is remarkably plastic but how precisely can the plant customize its form to specific environments? When the plant adjusts its development to different environments, related traits can change in a coordinated fashion, such that two traits co-vary across many genotypes. Alternatively, traits can vary independently, such that a change in one trait has little predictive value for the change in a second trait. To characterize such “tunability” in developmental plasticity, we carried out a detailed phenotypic characterization of complex root traits among 96 accessions of the model Arabidopsis thaliana in two nitrogen environments. The results revealed a surprising level of independence in the control of traits to environment – a highly tunable form of plasticity. We mapped genetic architecture of plasticity using genome-wide association studies and further used gene expression analysis to narrow down gene candidates in mapped regions. Mutants in genes implicated by association and expression analysis showed precise defects in the predicted traits in the predicted environment, corroborating the independent control of plasticity traits. The overall results suggest that there is a pool of genetic variability in plants that controls traits in specific environments, with opportunity to tune crop plants to a given environment.  相似文献   

13.
Biological traits analysis (BTA) links community structure to both ecological functions and response to environmental drivers through species’ attributes. In consequence, it has become a popular approach in marine benthic studies. However, BTA will reach a dead end if the scientific community does not acknowledge its current shortcomings and limitations: (a) uncertainties related to data origins and a lack of standardized reporting of trait information; (b) knowledge gaps on the role of multiple interacting traits on driving the organisms’ responses to environmental variability; (c) knowledge gaps regarding the mechanistic links between traits and functions; (d) a weak focus on the spatial and temporal variability that is inherent to the trait expression of species; and, last but not least, (e) the large reliance on expert knowledge due to an enormous knowledge gap on the basic ecology of many benthic species. BTA will only reach its full potential if the scientific community is able to standardize and unify the reporting and storage of traits data and reconsider the importance of baseline observational and experimental studies to fill knowledge gaps on the mechanistic links between biological traits, functions, and environmental variability. This challenge could be assisted by embracing new technological advances in marine monitoring, such as underwater camera technology and artificial intelligence, and making use of advanced statistical approaches that consider the interactive nature and spatio‐temporal variability of biological systems. The scientific community has to abandon some dead ends and explore new paths that will improve our understanding of individual species, traits, and the functioning of benthic ecosystems.  相似文献   

14.
The diversity of traits associated with plant regeneration is often shaped by functional trade‐offs where plants typically do not excel at every function because resources allocated to one function cannot be allocated to another. By analyzing correlations among seed traits, empirical studies have shown that there is a trade‐off between seedling development and the occupation of new habitats, although only a small range of taxa have been tested; whether such trade‐off exists in a biodiverse and complex landscape remains unclear. Here, we amassed seed trait data of 1,119 species from a biodiversity hotspot of the Mountains of Southwest China and analyzed the relationship between seed mass and the number of seeds and between seed mass and time to germination. Our results showed that seed mass was negatively correlated with seed number but positively correlated with time to germination. The same trend was found regardless of variation in life‐form and phylogenetic conservatism. Furthermore, the relation between seed mass and other seed traits was randomly dispersed across the phylogeny at both the order and family levels. Collectively, results suggest that there is a functional trade‐off between seedling development and new habitat occupation for seed plants in this region. Larger seeds tend to produce fewer seedlings but with greater fitness compared to those produced by smaller seeds, whereas smaller seeds tend to have a larger number of seeds that germinate faster compared to large‐seeded species. Apart from genetic constraints, species that produce large seeds will succeed in sites where resource availability is low, whereas species with high colonization ability (those that produce a high number of seeds per fruit) will succeed in new niches. This study provides a mechanistic explanation for the relatively high levels of plant diversity currently found in a heterogeneous region of the Mountains of Southwest China.  相似文献   

15.
Failure to quantify differences in the shape of inter‐specific trait distributions (e.g., skew, kurtosis) when comparing co‐occurring alien and native plants hinders the integration of biological invasions and plant community ecology. Within a plant community, understanding the circumstances that lead to the shape of the inter‐specific distribution of one or more functional plant traits being unimodal, bimodal, multimodal or skewed has the potential to shed new light on community vulnerability to invasion, subsequent ecosystem impacts and the selection pressures (e.g., stabilizing, directional or disruptive) acting upon native and alien species. Ignoring differences in the shape of inter‐specific trait distributions of alien and native species could miss important insights into plant invasions, including: the existence of unsaturated native plant communities, empty niches, shifting trait optima of species as a result of environmental change and incomplete colonization–extinction processes following invasion. Future comparisons of functional trait differences between native and alien species should include assessment of the shapes of inter‐specific trait distributions since these may differ even when the mean values of traits are similar for native and alien species. The infrequent application of such approaches may explain the limited generalizations regarding the drivers and consequences of plant invasions in plant communities.  相似文献   

16.
The accuracy of trait measurements greatly affects the quality of genetic analyses. During automated phenotyping, trait measurement errors, i.e. differences between automatically extracted trait values and ground truth, are often treated as random effects that can be controlled by increasing population sizes and/or replication number. In contrast, there is some evidence that trait measurement errors may be partially under genetic control. Consistent with this hypothesis, we observed substantial nonrandom, genetic contributions to trait measurement errors for five maize (Zea mays) tassel traits collected using an image-based phenotyping platform. The phenotyping accuracy varied according to whether a tassel exhibited “open” versus. “closed” branching architecture, which is itself under genetic control. Trait-associated SNPs (TASs) identified via genome-wide association studies (GWASs) conducted on five tassel traits that had been phenotyped both manually (i.e. ground truth) and via feature extraction from images exhibit little overlap. Furthermore, identification of TASs from GWASs conducted on the differences between the two values indicated that a fraction of measurement error is under genetic control. Similar results were obtained in a sorghum (Sorghum bicolor) plant height dataset, demonstrating that trait measurement error is genetically determined in multiple species and traits. Trait measurement bias cannot be controlled by increasing population size and/or replication number.

The accuracy of high-throughput phenotyping can be affected by genetically determined measurement biases, which can alter the results of genetic analyses.  相似文献   

17.
Trait and functional trait approaches have revolutionized ecology improving our understanding of community assembly, species coexistence, and biodiversity loss. Focusing on traits promotes comparability across spatial and organizational scales, but terms must be used consistently. While several papers have offered definitions, it remains unclear how ecologists operationalize “trait” and “functional trait” terms. Here, we evaluate how researchers and the published literatures use these terms and explore differences among subdisciplines and study systems (taxa and biome). By conducting both a survey and a literature review, we test the hypothesis that ecologists’ working definition of “trait” is adapted or altered when confronting the realities of collecting, analyzing and presenting data. From 486 survey responses and 712 reviewed papers, we identified inconsistencies in the understanding and use of terminology among researchers, but also limited inclusion of definitions within the published literature. Discrepancies were not explained by subdiscipline, system of study, or respondent characteristics, suggesting there could be an inconsistent understanding even among those working in related topics. Consistencies among survey responses included the use of morphological, phonological, and physiological traits. Previous studies have called for unification of terminology; yet, our study shows that proposed definitions are not consistently used or accepted. Sources of disagreement include trait heritability, defining and interpreting function, and dealing with organisms in which individuals are not clearly recognizable. We discuss and offer guidelines for overcoming these disagreements. The diversity of life on Earth means traits can represent different features that can be measured and reported in different ways, and thus, narrow definitions that work for one system will fail in others. We recommend ecologists embrace the breadth of biodiversity using a simplified definition of “trait” more consistent with its common use. Trait‐based approaches will be most powerful if we accept that traits are at least as diverse as trait ecologists.  相似文献   

18.
Nothofagus (southern beech), with an 80-million-year-old fossil record, has become iconic as a plant genus whose ancient Gondwanan relationships reach back into the Cretaceous era. Closely associated with Wegener's theory of “Kontinentaldrift”, Nothofagus has been regarded as the “key genus in plant biogeography”. This paradigm has the New Zealand species as passengers on a Moa's Ark that rafted away from other landmasses following the breakup of Gondwana. An alternative explanation for the current transoceanic distribution of species seems almost inconceivable given that Nothofagus seeds are generally thought to be poorly suited for dispersal across large distances or oceans. Here we test the Moa's Ark hypothesis using relaxed molecular clock methods in the analysis of a 7.2-kb fragment of the chloroplast genome. Our analyses provide the first unequivocal molecular clock evidence that, whilst some Nothofagus transoceanic distributions are consistent with vicariance, trans-Tasman Sea distributions can only be explained by long-distance dispersal. Thus, our analyses support the interpretation of an absence of Lophozonia and Fuscospora pollen types in the New Zealand Cretaceous fossil record as evidence for Tertiary dispersals of Nothofagus to New Zealand. Our findings contradict those from recent cladistic analyses of biogeographic data that have concluded transoceanic Nothofagus distributions can only be explained by vicariance events and subsequent extinction. They indicate that the biogeographic history of Nothofagus is more complex than envisaged under opposing polarised views expressed in the ongoing controversy over the relevance of dispersal and vicariance for explaining plant biodiversity. They provide motivation and justification for developing more complex hypotheses that seek to explain the origins of Southern Hemisphere biota.  相似文献   

19.
Quantifying how functional traits relate to environmental gradients provides insight into mechanisms governing species distributions. Here, we bring together the fields of species distribution modelling and functional trait ecology with hierarchical modelling by explicitly incorporating traits into a multi‐species distribution model. We combined traits from the leaf‐height‐seed strategy scheme (specific leaf area (SLA), plant height and seed mass) with a distribution model for 20 eucalypt taxa in Victoria, Australia. The key insight of this approach is how traits modulate species responses to environmental gradients. The strongest link was between SLA and percent rock cover (species with low SLA had positive responses to rockiness, whereas high SLA species responded negatively to rockiness). We found evidence for complex yet potentially important interactions. For instance, the probability of species occurrence increased with rainfall and solar radiation on average yet the response varied depending on species height and SLA. Tall species were predicted to increase with rainfall and solar radiation across the range of SLA values (tall species with low SLA were especially sensitive to rainfall). Short species responded positively to rainfall and solar radiation only if they had low SLA. This framework readily accounts for interactions between combinations of traits and environmental variables unlike multi‐step approaches. Further application of this concept will contribute to a generalized mechanistic understanding of how traits influence species distributions along environmental gradients, with implications for understanding the response of species to global change.  相似文献   

20.
Quantifying the association of plant functional traits to environmental gradients is a promising approach for understanding and projecting community responses to land use and climatic changes. Although habitat fragmentation and climate are expected to affect plant communities interactively, there is a lack of empirical studies addressing trait associations to fragmentation in different climatic regimes.In this study, we analyse data on the key functional traits: specific leaf area (SLA), plant height, seed mass and seed number. First, we assess the evidence for the community assembly mechanisms habitat filtering and competition at different spatial scales, using several null-models and a comprehensive set of community-level trait convergence and divergence indices. Second, we analyse the association of community-mean traits with patch area and connectivity along a south–north productivity gradient.We found clear evidence for trait convergence due to habitat filtering. In contrast, the evidence for trait divergence due to competition fundamentally depended on the null-model used. When the null-model controlled for habitat filtering, there was only evidence for trait divergence at the smallest sampling scale (0.25 m × 0.25 m). All traits varied significantly along the S–N productivity gradient. While plant height and SLA were consistently associated with fragmentation, the association of seed mass and seed number with fragmentation changed along the S–N gradient.Our findings indicate trait convergence due to drought stress in the arid sites and due to higher productivity in the mesic sites. The association of plant traits to fragmentation is likely driven by increased colonization ability in small and/or isolated patches (plant height, seed number) or increased persistence ability in isolated patches (seed mass).Our study provides the first empirical test of trait associations with fragmentation along a productivity gradient. We conclude that it is crucial to study the interactive effects of different ecological drivers on plant functional traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号