首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Ski slope vegetation at Snoqualmie Pass in Washington State, USA, was surveyed in order to identify community types and to compare it with vegetation development patterns in Japan. Ski slopes in Japan, most of which were constructed after 1960, underwent heavy land recontouring, while those at Snoqualmie Pass were constructed before 1950 with less modification. Three points apply to Japanese ski slope vegetation and differentiate these slopes from those at Snoqualmie Pass: (i) grasslands of introduced species are widespread and persistent; (ii) unvegetated patches are uncommon; and (iii) wetland vegetation has developed. These differences are mainly derived from the intensity of human impact, history of the slope and its scale: namely, ski slopes in Washington are older and larger than those in Japan. Ski slope vegetation in Washington was primarily differentiated by a soil moisture gradient. The large size of Washington ski slopes permitted the inclusion and development of wetland habitats, whereas most ski slopes in Japan are constructed on ridges and do not contain wetlands. Most introduced species in Japan are eliminated soon after seeding. In contrast, the long-term management of ski slopes decreased soil erosion and/or unvegetated patches in Washington and created relatively permanent grasslands composed of introduced species. Tsuga heterophylla and Abies amabilis were found established on the ski slopes in Washington, whereas in Japan the pioneer tree species are shade-intolerant broadleaved species. These differences may be a result of the different disturbance histories of ski slopes in the two countries. In addition, along with the conifers, early successional forbs such as Anaphalis margaritacea and Epilobium angustifolium are well established on Washington ski slopes. Results show that disturbances created by ski slope development greatly affect the vegetation, even on older, less heavily impacted ski slopes.  相似文献   

2.
Summary 48 plant species of the families Asteraceae, Chenopodiaceae, Ericaceae, Fabaceae, Lamiaceae, Polygonaceae and Urticaceae were investigated in 14 natural habitats of Central Europe having different nitrate supplies, with respect to their nitrate content, nitrate reductase activity (NRA) and organic nitrogen content. Plants that were flowering were selected where possible for analysis. The plants were subdivided into flowers, laminae, petioles+shoot axes and below-ground organs. Each organ was analyzed separately. Differences among species were found for the three variables investigated. Apart from the Fabaceae, which had particularly high concentrations of organic N, these differences reflect mainly the ecological behaviour, i.e. high nitrate and organic N contents and NRA values per g dry weight were found in species on sites rich in nitrate, and vice versa. Nitrate content, NRA and organic N content were correlated with nitrogen figures of Central European vascular plants defined by Ellenberg (1979). By use of regression equations this correlation was tested with species from other systematic groups. Some species were attributed with calculated N figures for the first time.  相似文献   

3.
Sea otters (Enhydra lutris kenyoni) historically occurred in Washington State, USA, until their local extinction in the early 1900s as a result of the maritime fur trade. Following their extirpation, 59 sea otters were translocated from Amchitka Island, Alaska, USA, to the coast of Washington, with 29 released at Point Grenville in 1969 and 30 released at La Push in 1970. The Washington Department of Fish and Wildlife has outlined 2 main objectives for sea otter recovery: a target population level and a target geographic distribution. Recovery criteria are based on estimates of population abundance, equilibrium abundance (K), and geographic distribution; therefore, estimates of these parameters have important management implications. We compiled available survey data for sea otters in Washington State since their translocation (1977–2019) and fit a Bayesian state-space model to estimate past and current abundance, and equilibrium abundance at multiple spatial scales. We then used forward projections of population dynamics to explore potential scenarios of range recolonization and as the basis of a sensitivity analysis to evaluate the relative influence of movement behavior, frontal wave speed, intrinsic growth, and equilibrium density on future population recovery potential. Our model improves upon previous analyses of sea otter population dynamics in Washington by partitioning and quantifying sources of estimation error to estimate population dynamics, by providing robust estimates of K, and by simulating long-term population growth and range expansion under a range of realistic parameter values. Our model resulted in predictions of population abundance that closely matched observed counts. At the range-wide scale, the population size in our model increased from an average of 21 independent sea otters (95% CI = 13–29) in 1977 to 2,336 independent sea otters (95% CI = 1,467–3,359) in 2019. The average estimated annual growth rate was 12.42% and varied at a sub-regional scale from 6.42–14.92%. The overall estimated mean K density of sea otters in Washington was 1.71 ± 0.90 (SD) independent sea otters/km2 of habitat (1.96 ± 1.04 sea otters/km2, including pups), and estimated densities within the current range correspond on average to 87% of mean sub-regional equilibrium values (range = 66–111%). The projected value of K for all of Washington was 5,287 independent sea otters (95% CI = 2,488–8,086) and 6,080 sea otters including pups (95% CI = 2,861–9,300), assuming a similar range of equilibrium densities in currently un-occupied habitats. Sensitivity analysis of simulations of sea otter population growth and range expansion suggested that mean K density estimates in currently occupied sub-regions had the largest impact on predicted future population growth (r2 = 0.52), followed by the rate of southward range expansion (r2 = 0.26) and the mean K density estimate of currently unoccupied sub-regions to the south of the current range (r2 = 0.04). Our estimates of abundance and sensitivity analysis of simulations of future population abundance and geographic range help determine population status in relation to population recovery targets and identify the most influential parameters affecting future population growth and range expansion for sea otters in Washington State.  相似文献   

4.
芜湖市镜湖轮虫群落结构分析及水质的生态学评价   总被引:16,自引:0,他引:16  
2003年1—12月,对芜湖市镜湖轮虫群落结构的周年动态进行了研究,并分析了轮虫密度与有关生态因子间的关系。经鉴定,共发现轮虫55种,隶属于15科21属。密度优势种为裂痕龟纹轮虫(Anuraeopsis fissa)、暗小异尾轮虫(Trichocerca pusilla)、前额犀轮虫(Rhinoglena frontalis)、红多肢轮虫(Polyarthra remata)、长三肢轮虫(Filinia longise-ta)、广布多肢轮虫(Polyarthra vulgaris)和多须伪前翼轮虫(Proalides tentaculates),而生物量优势种为前节晶囊轮虫(Asplanchna priodonta)、多须伪前翼轮虫和暗小异尾轮虫。全年轮虫的总密度与水温、叶绿素a浓度及小型纤毛虫密度具有显著的相关性;温度对全年轮虫总密度的影响最大,叶绿素a浓度对春、冬季轮虫总密度影响最大,小型纤毛虫密度对夏季轮虫总密度影响最大,而水温是影响秋季轮虫总密度的主要因素。根据污染指示生物、物种多样性指数和Q值并结合水理化性质对治理后的镜湖水质所进行的初步评价表明,经清淤、截流和换水等措施治理后,小湖区应偏属寡污-β中污至β中污型水体,大湖区属于β中污型水体;目前镜湖水体处于中营养后期—富营养化初期阶段。    相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号