首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Various physiological and behavioral processes exhibit circadian rhythmicity. These rhythms are usually maintained by negative feedback loops of core clock genes, namely, CLOCK, BMAL, PER, and CRY. Recently, dysfunction in the circadian clock has been recognized as an important foundation for the pathophysiology of lifestyle-related diseases, such as obesity, cardiovascular disease, and some cancers. We have reported that angiopoietin-like protein 2 (ANGPTL2) contributes to the pathogenesis of these lifestyle-related diseases by inducing chronic inflammation. However, molecular mechanisms underlying regulation of ANGPTL2 expression are poorly understood. Here, we assess circadian rhythmicity of ANGPTL2 expression in various mouse tissues. We observed that ANGPTL2 rhythmicity was similar to that of the PER2 gene, which is regulated by the CLOCK/BMAL1 complex. Promoter activity of the human ANGPTL2 gene was significantly induced by CLOCK and BMAL1, an induction markedly attenuated by CRY co-expression. We also identified functional E-boxes in the ANGPTL2 promoter and observed occupancy of these sites by endogenous CLOCK in human osteosarcoma cells. Furthermore, Cry-deficient mice exhibited arrhythmic Angptl2 expression. Taken together, these data suggest that periodic expression of ANGPTL2 is regulated by a molecular clock.  相似文献   

3.
Evaluating individual circadian rhythm traits is crucial for understanding the human biological clock system. The present study reports characterization of physiological and molecular parameters in 13 healthy male subjects under a constant routine condition, where interfering factors were kept to minimum. We measured hormonal secretion levels and examined temporal expression profiles of circadian clock genes in peripheral leukocytes and beard hair follicle cells. All 13 subjects had prominent daily rhythms in melatonin and cortisol secretion. Significant circadian rhythmicity was found for PER1 in 9 subjects, PER2 in 3 subjects, PER3 in all 13 subjects, and BMAL1 in 8 subjects in leukocytes. Additionally, significant circadian rhythmicity was found for PER1 in 5 of 8 subjects tested, PER2 in 2 subjects, PER3 in 6 subjects, and BMAL1 in 3 subjects in beard hair follicle cells. The phase of PER1 and PER3 rhythms in leukocytes correlated significantly with that of physiological rhythms. Our results demonstrate that leukocytes and beard hair follicle cells possess an endogenous circadian clock and suggest that PER1 and PER3 expression would be appropriate biomarkers and hair follicle cells could be a useful tissue source for the evaluation of biological clock traits in individuals.  相似文献   

4.
ABSTRACT

In Cushing’s syndrome, the cortisol rhythm is impaired and can be associated with the disruption in the rhythmic expression of clock genes. In this study, we evaluated the expression of CLOCK, BMAL1, CRY1, CRY2, PER1, PER2, PER3 genes in peripheral blood leukocytes of healthy individuals (n = 13) and Cushing’s disease (CD) patients (n = 12). Participants underwent salivary cortisol measurement at 0900 h and 2300 h. Peripheral blood samples were obtained at 0900 h, 1300 h, 1700 h, and 2300 h for assessing clock gene expression by qPCR. Gene expression circadian variations were evaluated by the Cosinor method. In healthy controls, a circadian variation in the expression of CLOCK, BMAL1, CRY1, PER2, and PER3 was observed, whereas the expression of PER1 and CRY2 followed no specific pattern. The expression of PER2 and PER3 in healthy leukocytes presented a late afternoon acrophase, similarly to CLOCK, whereas CRY1 showed night acrophase, similarly to BMAL1. In CD patients, the circadian variation in the expression of clock genes was lost, along with the abolition of cortisol circadian rhythm. However, CRY2 exhibited a circadian variation with acrophase during the dark phase in patients. In conclusion, our data suggest that Cushing’s disease, which is characterized by hypercortisolism, is associated with abnormalities in the circadian pattern of clock genes. Higher expression of CRY2 at night outlines its putative role in the cortisol circadian rhythm disruption.  相似文献   

5.
6.
7.
8.
The circadian clock can regulate the metabolic process of xenobiotics, but little is known as to circadian rhythms can be perturbed by xenobiotics. Styrene is a organic chemical widely used in occupational settings. The effects of styrene on the circadian genes of HuDE cells were evaluated after serum-shocking synchronization. A subtoxic dose of 100 µM of styrene altered the expression of clock genes BMAL1, PER2, PER3, CRY1, CRY2, and REV-ERB-α.  相似文献   

9.
10.
11.
ABSTRACT

Most of the processes that occur in the mind and body follow natural rhythms. Those with a cycle length of about one day are called circadian rhythms. These rhythms are driven by a system of self-sustained clocks and are entrained by environmental cues such as light-dark cycles as well as food intake. In mammals, the circadian clock system is hierarchically organized such that the master clock in the suprachiasmatic nuclei of the hypothalamus integrates environmental information and synchronizes the phase of oscillators in peripheral tissues.

The circadian system is responsible for regulating a variety of physiological and behavioral processes, including feeding behavior and energy metabolism. Studies revealed that the circadian clock system consists primarily of a set of clock genes. Several genes control the biological clock, including BMAL1, CLOCK (positive regulators), CRY1, CRY2, PER1, PER2, and PER3 (negative regulators) as indicators of the peripheral clock.

Circadian has increasingly become an important area of medical research, with hundreds of studies pointing to the body’s internal clocks as a factor in both health and disease. Thousands of biochemical processes from sleep and wakefulness to DNA repair are scheduled and dictated by these internal clocks. Cancer is an example of health problems where chronotherapy can be used to improve outcomes and deliver a higher quality of care to patients.

In this article, we will discuss knowledge about molecular mechanisms of the circadian clock and the role of clocks in physiology and pathophysiology of concerns.  相似文献   

12.
13.
Circulating hematopoietic stem cells exhibit robust circadian fluctuations, which influence the mobilized cell yield, even during enforced stem cell mobilization. However, alterations in the expression of circadian clock genes during granulocyte colony-stimulating factor (G-CSF)-induced peripheral blood stem cell (PBSC) mobilization are not fully elucidated. Therefore, we measured the expression of these genes in human peripheral blood leukocytes from 21 healthy donors. While CRY1 mRNA expression significantly increased by 3.9-fold (p?<?0.01), the expression of PER3, CRY2 and BMAL1 mRNAs significantly decreased (by 0.2-fold, 0.2-fold, and 0.6-fold, respectively; p?<?0.001) after G-CSF administration. Moreover, CRY1 mRNA expression was inversely correlated with the plasma level of noradrenaline (r?=??0.36, p?<?0.05), while PER3, CRY2, and BMAL1 mRNA expression directly correlated with the plasma level of noradrenaline (r?=?0.55, r?=?0.66, and r?=?0.57, respectively; p?<?0.001). Thus, significant correlations between the levels of circadian clock gene mRNAs and the plasma level of noradrenaline, a sympathetic nervous system neurotransmitter, were established. The modulation of sympathetic activation and of the circadian clock may be novel therapeutic targets for increasing stem cell yields in PBSC donors.  相似文献   

14.
15.
16.
17.
18.
Hair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK–regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号