首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Staphylococcus epidermidis orthopedic device infections are caused by direct inoculation of commensal flora during surgery and remain rare, although S. epidermidis carriage is likely universal. We wondered whether S. epidermidis orthopedic device infection strains might constitute a sub-population of commensal isolates with specific virulence ability. Biofilm formation and invasion of osteoblasts by S. aureus contribute to bone and joint infection recurrence by protecting bacteria from the host-immune system and most antibiotics. We aimed to determine whether S. epidermidis orthopedic device infection isolates could be distinguished from commensal strains by their ability to invade osteoblasts and form biofilms.

Materials and Methods

Orthopedic device infection S. epidermidis strains (n = 15) were compared to nasal carriage isolates (n = 22). Osteoblast invasion was evaluated in an ex vivo infection model using MG63 osteoblastic cells co-cultured for 2 hours with bacteria. Adhesion of S. epidermidis to osteoblasts was explored by a flow cytometric approach, and internalized bacteria were quantified by plating cell lysates after selective killing of extra-cellular bacteria with gentamicin. Early and mature biofilm formations were evaluated by a crystal violet microtitration plate assay and the Biofilm Ring Test method.

Results

No difference was observed between commensal and infective strains in their ability to invade osteoblasts (internalization rate 308+/−631 and 347+/−431 CFU/well, respectively). This low internalization rate correlated with a low ability to adhere to osteoblasts. No difference was observed for biofilm formation between the two groups.

Conclusion

Osteoblast invasion and biofilm formation levels failed to distinguish S. epidermidis orthopedic device infection strains from commensal isolates. This study provides the first assessment of the interaction between S. epidermidis strains isolated from orthopedic device infections and osteoblasts, and suggests that bone cell invasion is not a major pathophysiological mechanism in S. epidermidis orthopedic device infections, contrary to what is observed for S. aureus.  相似文献   

2.
The ability to treat osteochondral defects is a major clinical need. Existing polymer systems cannot address the simultaneous requirements of regenerating bone and cartilage tissues together. The challenge still lies on how to improve the integration of newly formed tissue with the surrounding tissues and the cartilage-bone interface. This study investigated the potential use of different silk fibroin scaffolds: mulberry (Bombyx mori) and non-mulberry (Antheraea mylitta) for osteochondral regeneration in vitro and in vivo. After 4 to 8 weeks of in vitro culture in chondro- or osteo-inductive media, non-mulberry constructs pre-seeded with human bone marrow stromal cells exhibited prominent areas of the neo tissue containing chondrocyte-like cells, whereas mulberry constructs pre-seeded with human bone marrow stromal cells formed bone-like nodules. In vivo investigation demonstrated neo-osteochondral tissue formed on cell-free multi-layer silk scaffolds absorbed with transforming growth factor beta 3 or recombinant human bone morphogenetic protein-2. Good bio-integration was observed between native and neo-tissue within the osteochondrol defect in patellar grooves of Wistar rats. The in vivo neo-matrix formed comprised of a mixture of collagen and glycosaminoglycans except in mulberry silk without growth factors, where a predominantly collagenous matrix was observed. Immunohistochemical assay showed stronger staining of type I and type II collagen in the constructs of mulberry and non-mulberry scaffolds with growth factors. The study opens up a new avenue of using inter-species silk fibroin blended or multi-layered scaffolds of a combination of mulberry and non-mulberry origin for the regeneration of osteochondral defects.  相似文献   

3.
The crude extract of the red seaweed, Asparagopsis sp. was evaluated for in vivo antibacterial activity against the shrimp vibrio pathogens. The algal extract was rationalized with commercial shrimp feed and orally administered for different duration of time followed by the artificial bacterial challenge experiment. In dose titration experiments, the oral administration of Asparagopsis sp. at a dosage of 850 mg kg–1 of biomass was highly efficacious in the treatment of natural infestations of Vibriosis in Penaeus monodon. The results of the confirmatory dose experiment revealed that the prophylactic treatment with moderate dose of 850 mg kg–1 of biomass day–1 for four weeks followed by 14 days of post infection therapy was highly effective in controlling Vibrio infection in shrimps. Moreover, results of the percent survival index and microbiological analysis clearly show that Asparagopsis extract incorporated medicated feed had broad therapeutic potential for managing shrimp Vibriosis. In addition, in vivo trials and results obtained in this work are based on the crude organic extract sourced from an unidentified Asparagopsis cryptic lineage, therefore further molecular analysis to identify the species will be required.  相似文献   

4.
Leishmania mexicana and Leishmania tropica infection were comparatively studied in C57BL/6 mice. Infection with 104 amastigotes of L. mexicana was followed by the appearance of a single lesion which ulcerated in 8 weeks and healed in 24 weeks. Mice infected with 104 amastigotes of L. tropica developed less severe lesions which healed in 18 weeks. In both cases healing was accompanied by a delayed hypersensitivity response and an in vitro lymphocyte reactivity to leishmanial antigens. Mice recovered from a primary infection with L. mexicana or L. tropica were resistant to both homologous and heterologous challenge. In vitro and in vivo immunological tests indicated that L. mexicana and L. tropica share antigenic determinants which are involved in cell-mediated immune responses to these parasites.  相似文献   

5.
S. epidermidis is one of the leading causes of orthopaedic infections associated with biofilm formation on implant devices. Open fractures are at risk of S. epidermidis transcutaneous contamination leading to higher non-union development compared to closed fractures. Although the role of infection in delaying fracture healing is well recognized, no in vivo models investigated the impact of subclinical low-grade infections on bone repair and non-union. We hypothesized that the non-union rate is directly related to the load of this commonly retrieved pathogen and that a low-grade contamination delays the fracture healing without clinically detectable infection. Rat femurs were osteotomized and stabilized with plates. Fractures were infected with a characterized clinical-derived methicillin-resistant S. epidermidis (103, 105, 108 colony forming units) and compared to uninfected controls. After 56 days, bone healing and osteomyelitis were clinically assessed and further evaluated by micro-CT, microbiological and histological analyses. The biofilm formation was visualized by scanning electron microscopy. The control group showed no signs of infection and a complete bone healing. The 103 group displayed variable response to infection with a 67% of altered bone healing and positive bacterial cultures, despite no clinical signs of infection present. The 105 and 108 groups showed severe signs of osteomyelitis and a non-union rate of 83–100%, respectively. The cortical bone reaction related to the periosteal elevation in the control group and the metal scattering detected by micro-CT represented limitations of this study. Our model showed that an intra-operative low-grade S. epidermidis contamination might prevent the bone healing, even in the absence of infectious signs. Our findings also pointed out a dose-dependent effect between the S. epidermidis inoculum and non-union rate. This pilot study identifies a relevant preclinical model to assess the role of subclinical infections in orthopaedic and trauma surgery and to test specifically designed diagnostic, prevention and therapeutic strategies.  相似文献   

6.
Stem cell-based tissue engineering shows promise for bone regeneration and requires artificial microenvironments to enhance the survival, proliferation and differentiation of the seeded cells. Silk fibroin, as a natural protein polymer, has unique properties for tissue regeneration. The present study aimed to evaluate the influence of porous silk scaffolds on rat bone marrow stem cells (BMSCs) by lenti-GFP tracking both in vitro and in vivo in cranial bone defects. The number of cells seeded within silk scaffolds in rat cranial bone defects increased from 2 days to 2 weeks after implantation, followed by a decrease at eight weeks. Importantly, the implanted cells survived for 8 weeks in vivo and some of the cells might differentiate into endothelial cells and osteoblasts induced by the presence of VEGF and BMP-2 in the scaffolds to promote angiogenesis and osteogenesis. The results demonstrate that porous silk scaffolds provide a suitable niche to maintain long survival and function of the implanted cells for bone regeneration.  相似文献   

7.
Bone graft substitutes have become an essential component in a number of orthopedic applications. Autologous bone has long been the gold standard for bone void fillers. However, the limited supply and morbidity associated with using autologous graft material has led to the development of many different bone graft substitutes. Allogeneic demineralized bone matrix (DBM) has been used extensively to supplement autograft bone because of its inherent osteoconductive and osteoinductive properties. Synthetic and natural bone graft substitutes that do not contain growth factors are considered to be osteoconductive only. Bioactive glass has been shown to facilitate graft containment at the operative site as well as activate cellular osteogenesis. In the present study, we present the results of a comprehensive in vitro and in vivo characterization of a combination of allogeneic human bone and bioactive glass bone void filler, NanoFUSE® DBM. NanoFUSE® DBM is shown to be biocompatible in a number of different assays and has been cleared by the FDA for use in bone filling indications. Data are presented showing the ability of the material to support cell attachment and proliferation on the material thereby demonstrating the osteoconductive nature of the material. NanoFUSE® DBM was also shown to be osteoinductive in the mouse thigh muscle model. These data demonstrate that the DBM and bioactive glass combination, NanoFUSE® DBM, could be an effective bone graft substitute.  相似文献   

8.
Homologous resistance to F. hepatica and T. taeniaeformis and cross resistance between these two parasites was investigated in the rat. Rats given a primary infection with F. hepatica were challenged with either F. hepatica or T. taeniaeformis. Conversely rats given a primary infection with T. taeniaeformis were challenged with either F. hepatica or T. taeniaeformis.Infection with F. hepatica generated significant resistance against challenge with F. hepatica given 9 weeks later. Similarly, infection with T. taeniaeformis protected against challenge with T. taeniaeformis given 6 weeks later. Infection with F. hepatica also generated significant resistance against challenge with T. taeniaeformis given 4, 8 or 9 weeks later. Primary infection with T. taeniaeformis did not protect against challenge with F. hepatica.  相似文献   

9.
Epidemiologic studies correlate low vitamin C intake with bone loss. The genetic deletion of enzymes involved in de novo vitamin C synthesis in mice, likewise, causes severe osteoporosis. However, very few studies have evaluated a protective role of this dietary supplement on the skeleton. Here, we show that the ingestion of vitamin C prevents the low-turnover bone loss following ovariectomy in mice. We show that this prevention in areal bone mineral density and micro-CT parameters results from the stimulation of bone formation, demonstrable in vivo by histomorphometry, bone marker measurements, and quantitative PCR. Notably, the reductions in the bone formation rate, plasma osteocalcin levels, and ex vivo osteoblast gene expression 8 weeks post-ovariectomy are all returned to levels of sham-operated controls. The study establishes vitamin C as a skeletal anabolic agent.  相似文献   

10.
Porous calcium phosphate ceramics are used in orthopedic and craniofacial applications to treat bone loss, or in dental applications to replace missing teeth. The implantation of these materials, however, does not induce stem cell differentiation, so suitable additional materials such as porous calcium phosphate discs are needed to influence physicochemical responses or structural changes. Rabbit adipose-derived stem cells (ADSC) and mouse osteoblastic cells (MC3T3-E1) were evaluated in vitro by the MTT assay, semi-quantitative RT-PCR, and immunoblotting using cells cultured in medium supplemented with extracts from bioceramics, including calcium metaphosphate (CMP), hydroxyapatite (HA) and collagen-grafted HA (HA-col). In vivo evaluation of the bone forming capacity of these bioceramics in rat models using femur defects and intramuscular implants for 12 weeks was performed. Histological analysis showed that newly formed stromal-rich tissues were observed in all the implanted regions and that the implants showed positive immunoreaction against type I collagen and alkaline phosphatase (ALP). The intramuscular implant region, in particular, showed strong positive immunoreactivity for both type I collagen and ALP, which was further confirmed by mRNA expression and immunoblotting results, indicating that each bioceramic material enhanced osteogenesis stimulation. These results support our hypothesis that smart bioceramics can induce osteoconduction and osteoinduction in vivo, although mature bone formation, including lacunae, osteocytes, and mineralization, was not prominent until 12 weeks after implantation.  相似文献   

11.
Viability studies on frozen--thawed rat islets of Langerhans.   总被引:1,自引:0,他引:1  
In an attempt to determine logistical methods of curing diabetes mellitus in man, an investigation has been made on the viability, in vitro and in vivo, of deeply frozen (?150 °C) cryoprotected rat islets of Langerhans. It is found that rat islets, after recovery from a frozen bank of several syngeneic donors, secrete insulin, when thawed, cultured, and then subjected to a high glucose challenge. Cryoprotected frozen-thawed islets are also examined by electron microscopy. In vivo transplantation of recovered frozen islets has been studied for a period of 16 weeks in one streptozotocindiabetic Lewis rat. All normal tests indicated recovery. After sacrifice, staining procedures showed viable islets in the liver, the site of reimplantation, and only dead islet Beta cells in the pancreas.  相似文献   

12.

Background

Endothelial function in hypercholesterolemic rabbits is usually evaluated ex vivo on isolated aortic rings. In vivo evaluation requires invasive imaging procedures that cannot be repeated serially.

Aim

We evaluated a non-invasive ultrasound technique to assess early endothelial function in rabbits and compare data with ex vivo measurements.

Methods

Twenty-four rabbits (fed with a cholesterol diet (0.5%) for 2 to 8 weeks) were given progressive infusions of acetylcholine (0.05–0.5 μg/kg/min) and their endothelial function was assessed in vivo by transcutaneous vascular ultrasound of the abdominal aorta. Ex vivo endothelial function was evaluated on isolated aortic rings and compared to in vivo data.

Results

Significant endothelial dysfunction was demonstrated in hypercholesterolemic animals as early as 2 weeks after beginning the cholesterol diet (aortic cross-sectional area variation: -2.9% vs. +4% for controls, p < 0.05). Unexpectedly, response to acetylcholine at 8 weeks was more variable. Endothelial function improved in 5 rabbits while 2 rabbits regained a normal endothelial function. These data corroborated well with ex vivo results.

Conclusion

Endothelial function can be evaluated non-invasively in vivo by transcutaneous vascular ultrasound of the abdominal aorta in the rabbit and results correlate well with ex vivo data.  相似文献   

13.
Nonunion of fractured bones is a common clinical problem for orthopedic surgeons. This study aimed to investigate the effects of simvastatin locally applied from calcium sulfate (CS) combined with a mesenchymal stem cell (MSC) sheet on fracture healing. In vitro, the proliferation and differentiation of rat bone marrow–derived MSCs stimulated by simvastatin were investigated. In vivo, an osteotomy model was made in rat tibia, and fractured tibias were treated with CS, CS/simvastatin, CS/MSC sheet or simvastatin-loaded CS with MSC or untreated (control). Tibias were harvested at 2 or 8 weeks and underwent real-time quantitative polymerase chain reaction, x-ray, micro-CT and histological analysis. The expression levels of bone morphogenetic protein 2, alkaline phosphatase, osteocalcin, osteoprotegerin and vascular endothelial growth factor of simvastatin-induced MSCs increased with the concentrations of the simvastatin, significantly higher than those in the MSCs group. At 2 weeks, the CS/simvastatin/MSC sheet group showed significantly higher expressions of bone morphogenetic protein 2, alkaline phosphatase, osteocalcin, osteoprotegerin and vascular endothelial growth factor, with more callus formation around the fracture site compared with the other four groups. At 8 weeks, complete bone union was obtained in the CS/simvastatin/MSC sheet group. By contrast, newly regenerated bone tissue partially bridged the gap in the CS/simvastatin group and the CS/MSC sheet group; the control and CS group showed nonunion of the tibia. These results show that both simvastatin and the MSC sheet contributed to the formation of new bone and that the tibia fracture was completely healed by transplantation of the MSC sheet with locally applied simvastatin. Such MSC sheet with locally applied simvastatin might contribute to the treatment of fractures, bone delayed unions or nonunions in clinical practice.  相似文献   

14.
Botrytis cinerea, the fungus causing gray mould disease, is usually controlled by cultural and chemical methods. It would be interesting to see if mycoviruses were a feasible method for reducing fungal virulence thus controlling the disease, but first more has to be understood of the RNA silencing mechanism and whether mycoviruses can combat such defences. Analysis of the B. cinerea genome data identified two Dicer genes: dcr1 and dcr2. In other fungi, mutation or deletion of dcr2 usually leads to impaired gene silencing. Targeted gene disruption created two independent B. cinerea Δdcr2 mutants in a ku70 background. When the Δdcr2 mutants were transformed with an argininosuccinate synthetase (bcass1) silencing cassette, many of these transformants displayed arginine auxotrophy, suggesting that silencing was still functional in a Δdcr2 mutant. Transfection of the wild-type and dcr2-disrupted B. cinerea lines with Botrytis virus F (BVF) gave no readily detectable alteration in fungal growth rate or virulence. Expression of dcr2, but not dcr1, was suppressed in the wild-type at 7 days post infection with BVF, whereas in a Δdcr2 mutant, dcr1 expression was suppressed. By 28 days post BVF-infection, dcr1 and dcr2 were expressed to the elevated levels typically observed when gene silencing is induced. This shows that whilst dcr2 is not essential for gene silencing or for controlling mycovirus such as BVF, it would appear that the mycovirus BVF is able to suppress the normal expression of genes involved in the silencing pathway, at least during early stages of infection of B. cinerea.  相似文献   

15.

Background

The treatment of forearm fracture-nonunions continues to represent a therapeutic challenge, and reported outcomes are moderate at best. Limiting aspects of this particular anatomic location include the relation between restoration of shaft length with the anatomy and long-term functional outcome of adjacent joints, as well as the risk of elbow and wrist stiffness related to prolonged immobilization. The present study was designed to assess the outcome of autologous bone grafting with compression plating and early functional rehabilitation in patients with forearm fracture non-unions.

Methods

Prospective follow-up study in 31 consecutive patients presenting with non-unions of the forearm diaphysis (radius, n = 11; ulna, n = 9; both bones, n = 11). Surgical revision was performed by restoring anatomic forearm length by autologous bone grafting of the resected non-union from the iliac crest and compression plating using a 3.5 mm dynamic compression plate (DCP) or limited-contact DCP (LC-DCP). The main outcome parameters consisted of radiographic bony union and functional outcome, as determined by the criteria defined by Harald Tscherne in 1978. Patients were routinely followed on a short term between 6 weeks to 6 months, with an average long-term follow-up of 3.6 years (range 2 to 6 years).

Results

Radiographically, a bony union was achieved in 30/31 patients within a mean time of 3.5 months of revision surgery (range 2 to 5 months). Clinically, 29/31 patients showed a good functional outcome, according to the Tscherne criteria, and 26/31 patients were able to resume their previous work. Two postoperative infections occurred, and one patient developed a persistent infected nonunion. No case of postoperative failure of fixation was seen in the entire cohort.

Conclusion

Revision osteosynthesis of forearm nonunions by autologous iliac crest bone grafting and compression plating represents a safe and efficacious modality for the treatment of these challenging conditions.  相似文献   

16.
Hair-follicle-associated pluripotent (HAP) stem cells can differentiate into many cell types, including neurons and heart muscle cells, and have been shown to repair peripheral nerves and the spinal cord in mice. HAP stem cells can be obtained from each individual patient for regenerative medicine which overcomes problems with immune rejection. Previously, we have demonstrated that genetically-encoded protein markers such as GFP in transgenic mice can be used to visualize HAP stem cells in vivo by multiphoton tomography. Detection and visualization of stem cells in vivo without exogenous labels such as GFP would be important for human application. In the present report, we demonstrate label-free visualization of hair follicle stem cells in mouse whiskers by multiphoton tomography due to the intrinsic fluorophores such as NAD(P)H/flavins. We compared multiphoton tomography of GFP-labeled HAP stem cells and unlabeled stem cells in isolated mouse whiskers. We show that observation of HAP stem cells by label-free multiphoton tomography is comparable to detection using GFP-labeled stem cells. The results described here have important implications for detection and isolation of human HAP stem cells for regenerative medicine.  相似文献   

17.
For developing a clinically effective bone regeneration strategy, we compare the bone regeneration potential of cultured allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) and of autologous BM-MSCs loaded onto allogeneic cancellous bone granule scaffolds. A critical-sized segmental bone defect was made at the mid-shaft of both radiuses in 19 New Zealand White rabbits (NWRs). In the experimental group, allogeneic BM-MSCs loaded onto small-sized allogeneic cancellous bone granules (300~700 um in diameter) were implanted in one side of a bone defect. In the control group, autologous BM-MSCs loaded onto allogeneic cancellous granules were grafted in the other side. Bone regeneration was assessed by radiographic evaluation at 4, 8, 12 and 16 weeks post-implantation and by micro-computed tomography (micro-CT) and histological evaluation at 8 and 16 weeks. The experimental groups showed lower bone quantity indices (BQIs) than the control groups at 12 and 16 weeks (p?<?0.05), although no significant difference was observed at 4 and 8 weeks (p?>?0.05). Micro-CT analysis revealed that both groups had similar mean total bone volume and other parameters including trabecular thickness, number and separation at either 8 or 16 weeks. Only bone surface area revealed less area in the experimental group at 16 weeks. Histological evaluation of 8-week and 16-week specimens showed similar biologic processes of new bone formation and maturation. There was no inflammatory reaction indicating an adverse immune response in both allogeneic and autologous MSC groups. In conclusion, allogeneic BM-MSCs loaded onto allogeneic cancellous bone granules had comparable bone regeneration potential to autologous BM-MSCs in a rabbit radial defect model.  相似文献   

18.
19.
Septic pneumonias resulting from bacterial infections of the lung are a leading cause of human death worldwide. Little is known about the capacity of CD8 T cell-mediated immunity to combat these infections and the types of effector functions that may be most effective. Pneumonic plague is an acutely lethal septic pneumonia caused by the Gram-negative bacterium Yersinia pestis. We recently identified a dominant and protective Y. pestis antigen, YopE69–77, recognized by CD8 T cells in C57BL/6 mice. Here, we use gene-deficient mice, Ab-mediated depletion, cell transfers, and bone marrow chimeric mice to investigate the effector functions of YopE69–77-specific CD8 T cells and their relative contributions during pulmonary Y. pestis infection. We demonstrate that YopE69–77-specific CD8 T cells exhibit perforin-dependent cytotoxicity in vivo; however, perforin is dispensable for YopE69–77-mediated protection. In contrast, YopE69–77-mediated protection is severely impaired when production of TNFα and IFNγ by CD8 T cells is simultaneously ablated. Interestingly, TNFα is absolutely required at the time of challenge infection and can be provided by either T cells or non-T cells, whereas IFNγ provided by T cells prior to challenge appears to facilitate the differentiation of optimally protective CD8 T cells. We conclude that cytokine production, not cytotoxicity, is essential for CD8 T cell-mediated control of pulmonary Y. pestis infection and we suggest that assays detecting Ag-specific TNFα production in addition to antibody titers may be useful correlates of vaccine efficacy against plague and other acutely lethal septic bacterial pneumonias.  相似文献   

20.
The rising number of primary joint replacements worldwide causes an increase of revision surgery of endoprostheses due bacterial infection. Revision surgery using non-cemented implants seems beneficial for the long-term outcome and the use of antibiotic-impregnated bone grafts might control the infection and give a good support for the implant. In this study we evaluated the release of antibiotics from fresh-frozen and lyophilized allogeneic bone grafts. Lyophilized bone chips and fresh frozen bone chips were mixed with gentamicin sulphate, gentamicin palmitate, vancomycin, calcium carbonate/calcium sulphate impregnated with gentamicin sulphate, and calcium carbonate/calcium sulphate bone substitute material impregnated with vancomycin. The efficacy of each preparation was measured by drug release tests and bacterial susceptibility using B. subtilis, S. aureus and methicillin-resistant Staphylococcus aureus. The release of gentamicin from lyophilized bone was similar to the release rate from fresh frozen bone during all the experimental time. That fact might be related to the similar porosity and microstructure of the bone chips. The release of gentamicin from lyophilized and fresh frozen bone was high in the first and second day, decreasing and keeping a low rate until the end of the second week. Depending on the surgical strategy either polymethylmethacrylate or allogeneic bone are able to deliver sufficient concentrations of gentamicin to achieve bacterial inhibition within two weeks after surgery. In case of uncemented revision of joint replacements allogeneic bone is able to deliver therapeutic doses of gentamicin and peak levels immediately after implantation during a fortnight. The use of lyophilized and fresh frozen bone allografts as antibiotic carriers is recommended for prophylaxis of bone infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号