首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Aging is the largest risk factor for cardiovascular disease, yet the molecular mechanisms underlying vascular aging remain unclear. Mitochondrial DNA (mtDNA) damage is linked to aging, but whether mtDNA damage or mitochondrial dysfunction is present and directly promotes vascular aging is unknown. Furthermore, mechanistic studies in mice are severely hampered by long study times and lack of sensitive, repeatable and reproducible parameters of arterial aging at standardized early time points. We examined the time course of multiple invasive and noninvasive arterial physiological parameters and structural changes of arterial aging in mice, how aging affects vessel mitochondrial function, and the effects of gain or loss of mitochondrial function on vascular aging. Vascular aging was first detected by 44 weeks (wk) of age, with reduced carotid compliance and distensibility, increased β‐stiffness index and increased aortic pulse wave velocity (PWV). Aortic collagen content and elastin breaks also increased at 44 wk. Arterial mtDNA copy number (mtCN) and the mtCN‐regulatory proteins TFAM, PGC1α and Twinkle were reduced by 44 wk, associated with reduced mitochondrial respiration. Overexpression of the mitochondrial helicase Twinkle (Tw+) increased mtCN and improved mitochondrial respiration in arteries, and delayed physiological and structural aging in all parameters studied. Conversely, mice with defective mitochondrial polymerase‐gamma (PolG) and reduced mtDNA integrity demonstrated accelerated vascular aging. Our study identifies multiple early and reproducible parameters for assessing vascular aging in mice. Arterial mitochondrial respiration reduces markedly with age, and reduced mtDNA integrity and mitochondrial function directly promote vascular aging.  相似文献   

3.
4.
5.

Background

Traumatic brain injury (TBI) has been shown to activate the peripheral innate immune system and systemic inflammatory response, possibly through the central release of damage associated molecular patterns (DAMPs). Our main purpose was to gain an initial understanding of the peripheral mitochondrial response following TBI, and how this response could be utilized to determine cerebral mitochondrial bioenergetics. We hypothesized that TBI would increase peripheral whole blood relative mtDNA copy number, and that these alterations would be associated with cerebral mitochondrial bioenergetics triggered by TBI.

Methodology

Blood samples were obtained before, 6 h after, and 25 h after focal (controlled cortical impact injury: CCI) and diffuse (rapid non-impact rotational injury: RNR) TBI. PCR primers, unique to mtDNA, were identified by aligning segments of nuclear DNA (nDNA) to mtDNA, normalizing values to nuclear 16S rRNA, for a relative mtDNA copy number. Three unique mtDNA regions were selected, and PCR primers were designed within those regions, limited to 25-30 base pairs to further ensure sequence specificity, and measured utilizing qRT-PCR.

Results

Mean relative mtDNA copy numbers increased significantly at 6 and 25 hrs after following both focal and diffuse traumatic brain injury. Specifically, the mean relative mtDNA copy number from three mitochondrial-specific regions pre-injury was 0.84 ± 0.05. At 6 and 25 h after diffuse non-impact TBI, mean mtDNA copy number was significantly higher: 2.07 ± 0.19 (P < 0.0001) and 2.37 ± 0.42 (P < 0.001), respectively. Following focal impact TBI, relative mtDNA copy number was also significantly higher, 1.35 ± 0.12 (P < 0.0001) at 25 hours. Alterations in mitochondrial respiration in the hippocampus and cortex post-TBI correlated with changes in the relative mtDNA copy number measured in peripheral blood.

Conclusions

Alterations in peripheral blood relative mtDNA copy numbers may be a novel biosignature of cerebral mitochondrial bioenergetics with exciting translational potential for non-invasive diagnostic and interventional studies.  相似文献   

6.
7.
8.
9.
10.
11.
We report the cloning and molecular analysis of Drosophila mitochondrial DNA helicase (d-mtDNA helicase) homologous to human TWINKLE, which encodes one of the genes responsible for autosomal dominant progressive external ophthalmoplegia. An RNA interference construct was designed that reduces expression of d-mtDNA helicase to an undetectable level in Schneider cells. RNA interference knockdown of d-mtDNA helicase decreases the copy number of mitochondrial DNA (mtDNA) approximately 5-fold. In a corollary manner, overexpression of d-mtDNA helicase increases mtDNA levels 1.4-fold. Overexpression of helicase active site mutants K388A and D483A results in a severe depletion of mtDNA and a dominant negative lethal phenotype. Overexpression of mutants analogous to human autosomal dominant progressive external ophthalmoplegia mutations shows differential effects. Overexpression of I334T and A442P mutants yields a dominant negative effect as for the active site mutants. In contrast, overexpression of A326T, R341Q, and W441C mutants results in increased mtDNA copy number, as observed with wild-type overexpression. Our dominant negative analysis of d-mtDNA helicase in cultured cells provides a tractable model for understanding human autosomal dominant progressive external ophthalmoplegia mutations.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.

Objective

An experimental model of endocardial thrombosis has not been developed and endocardial endothelial dysfunction in heart failure (HF) is understudied. We sought to determine whether disruption of the endothelial anti-coagulant activated protein C (APC) pathway in CREBA133 HF mice promotes endocardial thrombosis in the acute decompensated phase of the disease, and whether alterations in von Willebrand factor (vWF) secretion from HF endocardium reduces thrombus formation as HF stabilizes.

Approach and results

Echocardiography was used to follow HF development and to detect endocardial thrombi in CREBA133 mice. Endocardial thrombi incidence was confirmed with immunohistochemistry and histology. In early and acute decompensated phases of HF, CREBA133 mice had the highest incidence of endocardial thrombi and these mice also had a shorter tail-bleeding index consistent with a pro-thrombotic milieu. Both APC generation, and expression of receptors that promote APC function (thrombomodulin, endothelial protein C receptor, protein S), were suppressed in the endocardium of acute decompensated HF mice. However, in stable compensated HF mice, an attenuation occurred for vWF protein content and secretion from endocardial endothelial cells, vWF-dependent platelet agglutination (by ristocetin), and thrombin generation on the endocardial surface.

Conclusions

CREBA133 mice develop HF and endocardial endothelial dysfunction. Attenuation of the anti-coagulant APC pathway promotes endocardial thrombosis in early and acute decompensated phases of HF. However, in stable compensated HF mice, disruptions in endothelial vWF expression and extrusion may actually reduce the incidence of endocardial thrombosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号