首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In order to determine the effect of dietary vitamin E level and basal diet on vitamin E status, performance and tissue fatty acid content, five groups of eight Suffolk × Charollais wether lambs with an initial live weight of 28.4 (s.d. 1.6) kg were allocated to one of five concentrate-based diets supplemented with all-rac-α-tocopheryl acetate to contain 30 mg (C-30), 60 mg (C-60), 120 mg (C-120), 250 mg (C-250) or 500 mg (C-500) α-tocopheryl acetate/kg dry matter (DM), for 63 days. Two additional groups of eight lambs entered the study at 31.2 (s.d. 3.3) kg and were fed grass silage and 400 g/day concentrate for 56 days, with the whole diet providing the equivalent of 60 mg (S-60) or 500 mg (S-500) α-tocopheryl acetate/kg DM. Lambs were weighed and blood samples obtained by venipuncture weekly. Dietary vitamin E level did not affect performance (P > 0.05), but lambs fed grass silage grew more slowly (P < 0.001) and had a higher (P < 0.001) feed conversion ratio (kg feed/kg gain) than those fed concentrates. At day 0 plasma α-tocopherol concentrations were 0.8 μg/ml and did not differ between treatments (P > 0.05). Plasma α-tocopherol concentrations then decreased in all lambs except for those fed S-500, which increased, and at slaughter were (μg/ml) 0.07, 0.23, 0.39, 0.76 and 1.57 in C-30, C-60, C-120, C-250 and C-500 and 1.18 and 1.93 in S-60 and S-500, respectively. At slaughter, muscle and liver α-tocopherol concentrations were in the deficiency range for lambs fed C-30, C-60 or C-120, whereas plasma creatine kinase and tissue polyunsaturated fatty acids were unaffected by dietary vitamin E level, but creatine kinase levels were higher (P < 0.05) and glutathione peroxidise levels lower (P < 0.001) in lambs fed grass silage than concentrates alone. Muscle and liver α-tocopherol concentrations were 1.8- and 4.1-fold higher in lambs fed S-60 than C-60, but there was less of a difference between lambs fed S-500 or C-500 with muscle and liver differences of 0.4- and 0.7-fold, respectively. Tissue n-3 polyunsaturated fatty acid concentrations were higher (P < 0.05) and n-6 fatty acids lower in lambs receiving the grass silage compared to concentrate-based diets, but were not affected by dietary vitamin E level. It is concluded that lower plasma and tissue levels of α-tocopherol are present in lambs supplemented with all-rac-α-tocopheryl acetate on a concentrate compared to a mixed diet of silage and concentrates, and that normal growth can be achieved at tissue levels previously considered to represent deficiency.  相似文献   

2.
When supplementing lamb diets with vitamin E, an equivalence factor of 1.36 is used to discriminate between RRR-α-tocopheryl acetate and all-rac-α-tocopheryl acetate. However, more recent studies suggest a need for new equivalence factors for livestock animals. The current study aimed to determine the effect of RRR- and all-rac-α-tocopheryl acetate supplementation on α-tocopherol deposition in lamb tissues. A total of 108 Rasa Aragonesa breed lambs were fed increasing amounts of all-rac-α-tocopheryl acetate (0.25, 0.5, 1.0 and 2.0 g/kg compound feed) or RRR-α-tocopheryl acetate (0.125, 0.25, 0.5 and 1.0 g/kg compound feed) by adding them to a basal diet that contained 0.025 g/kg feed of all-rac-α-tocopheryl acetate as part of the standard vitamin and mineral mixture. The diets were fed for the last 14 days before slaughtering at 25.8±1.67 kg BW. Within 20 min after slaughter samples of muscle, heart, liver, brain and spleen were frozen at −20°C until α-tocopherol analysis. Increased supplementation of either vitamin E sources led to a significant increase (P < 0.001) in α-tocopherol concentration in all tissues studied. The tissue with the highest α-tocopherol concentration was the liver followed by spleen, heart and muscle. At similar supplementation levels (0.25, 0.50 and 1.0 g/kg compound feed), α-tocopherol content in the selected tissues was not affected by α-tocopherol source. However, the ratios between RRR- and all-rac-α-tocopheryl acetate increased with the increasing α-tocopherol supplementation (at 0.25 and 1.0 g/kg compound feed), from 1.06 to 1.16 in muscle, 1.07 to 1.15 in heart, 0.91 to 0.94 in liver and 0.98 to 1.10 in spleen. The highest relative proportion of Ʃ2S (sum of SSS-, SSR-, SRS- and SRR-α-tocopherol)-configured stereoisomers was found in the liver of lambs supplemented with all-rac-α-tocopheryl acetate accounting for up to 35 to 39% of the total α-tocopherol retained, whereas the proportion of Ʃ2S-configured stereoisomers in the other tissues accounted for <14%. Increasing all-rac-α-tocopheryl acetate supplementation was also found to affect the 2R-configured stereoisomer profile in muscle, heart and spleen with increasing proportions of RRS-, RSR- and RSS- at the cost of RRR-α-tocopherol. In all tissues, the relative proportion of all non-RRR-stereoisomers in lambs receiving RRR-α-tocopheryl acetate was lower than RRR-α-tocopherol. These results confirm that the relative bioavailability of RRR- and all-rac-α-tocopheryl acetate is dose- and tissue-dependent and that a single ratio to discriminate the two sources cannot be used.  相似文献   

3.
Little information is available on the effects of different sources of tannins on ruminant product quality. Nowadays several tannin-rich extracts, produced from different plants, are available and contain tannins belonging to different chemical groups, but most of these have not been used so far as feed supplements. The present study aimed at comparing the effects of feeding three tannin extracts (one containing condensed tannins and two containing hydrolysable tannins) to lambs on growth performances and meat oxidative stability. Comisana male lambs were divided into four groups (n=9 each) and were fed for 75 days: a concentrate-based diet (CON), or CON supplemented with 4% tannin extracts from either mimosa (MI; Acacia mearnsii, De Wild; condensed tannins), chestnut (CH; Castanea sativa, Mill; hydrolysable ellagitannins) or tara (TA; Cesalpinia spinosa, (Molina) Kuntze; hydrolysable gallotannins). Only CH reduced growth rate, final weight, carcass weight and feed intake (P<0.05). Tannins did not affect the concentration of the main fatty acid classes and the peroxidability of the intramuscular fat (P>0.05). The TA diet increased (P<0.001) the concentration of γ-tocopherol in muscle and tended to increase that of α-tocopherol (P=0.058). Oxidative stability of raw and cooked meat, or of meat homogenates incubated with pro-oxidants, was not affected by the extracts. These results, compared with those reported in the literature, highlight that some effects of tannins cannot be easily generalized, but may strictly depend on their specific characteristics and on conditions inherent to the basal diet and the metabolic status of the animals.  相似文献   

4.
Vitamin E and selenium have been reported to improve immune function across a range of species. Ewes lambing on poor-quality dry pasture in autumn in Western Australia are at risk of being deficient in vitamin E and selenium at lambing thus predisposing their lambs to deficiencies and increasing the risk of infection and disease. This study tested the hypotheses that (i) supplementation of autumn-lambing ewes with vitamin E plus selenium in late gestation will increase the concentrations of vitamin E and selenium in plasma in the ewe and lamb and (ii) that the increased concentrations of vitamin E and selenium in plasma in the lambs will improve their innate and adaptive immune responses and thus survival. Pregnant Merino ewes were divided into a control group (n=58) which received no supplementation or a group supplemented with vitamin E plus selenium (n=55). On days 111, 125 and 140 of pregnancy ewes in the vitamin E plus selenium group were given 4 g all-rac-α-tocopherol acetate orally. On day 111 the ewes were also given 60 mg of selenium as barium selenate by subcutaneous injection. The concentrations of α-tocopherol and selenium were measured in ewes and/or lambs from day 111 of pregnancy to 14 weeks of age±10 days (weaning). Immune function of the lamb was assessed by analysing the numbers and phagocytic capacities of monocytes and polymorphonuclear leucocytes and plasma IgG and anti-tetanus toxoid antibody concentrations between birth and 14 weeks of age±10 days. Maternal supplementation with vitamin E plus selenium increased the concentration of α-tocopherol in plasma (1.13 v. 0.67 mg/l; P<0.001) and selenium in whole blood (0.12 v. 0.07 mg/l; P<0.01) of the ewes at lambing compared with controls. Supplementation also increased the concentration of α-tocopherol (0.14 v. 0.08 mg/l; P<0.001) and selenium (0.08 v. 0.05 mg/l; P<0.01) in lambs at birth compared with controls. There was no significant effect of supplementation on immune function or survival in the lambs.  相似文献   

5.
The purpose of this study was to investigate the possible antioxidant effect of an aqueous extract of Ajuga iva (Ai) in streptozotocin (STZ)-induced diabetic rats. Twelve diabetic rats were divided into two groups fed a casein diet supplemented or not with Ai (0.5%), for 4 weeks. In vitro, the Ai extract possessed a very high antioxidant effect (1 mg/ml was similar to those of trolox 300 mmol/l). The results indicated that plasma thiobarbituric acid reactive substances (TBARS) values were reduced by 41% in Ai-treated compared with untreated diabetic rats. TBARS concentrations were lower 1.5-fold in liver, 1.8-fold in heart, 1.9-fold in muscle and 2.1-fold in brain in Ai-treated than untreated group. In erythrocytes, Ai treatment increased significantly the activities of glutathione peroxidase (GSH-Px) (+25%) and glutathione reductase (GSSH-Red) (+22%). Superoxide dismutase activity was increased in muscle (+22%), while GSH-Px activity was significantly higher in liver (+28%), heart (+40%) and kidney (+45%) in Ai-treated compared with untreated group. Liver and muscle GSSH-Red activity was, respectively, 1.6- and 1.5-fold higher in Ai-treated than untreated diabetic group. Catalase activity was significantly increased in heart (+36%) and brain (+32%) in Ai-treated than untreated group. Ai treatment decreased plasma nitric oxide (?33%), carbonyls (?44%) and carotenoids (?68%) concentrations. In conclusion, this study indicates that Ajuga iva aqueous extract improves the antioxidant status by reducing lipid peroxidation and enhancing the antioxidant enzymes activities in plasma, erythrocytes and tissues of diabetic rats.  相似文献   

6.
7.
Two experiments were conducted: Expt 1 determined the optimal allowance of vitamin E in the diet for broiler chicks aged 0–3 weeks; Expt 2 investigated the effects of different dietary levels of vitamin E (α-tocopherol) on the performance and the oxidative stability of thigh meat of broiler chicks during storage. In Expt 1, 1-day-old 900 broiler chicks were allocated to five treatments, each with six replicates (cages) of 22 as-hatched chicks for performance evaluation, and another cage of 45 male chicks for determining plasma and hepatic α-tocopherol and thiobarbituric acid reactive substances (TBARS) concentration in blood and liver. The basal dietary α-tocopherol concentration was 13 mg/kg, and the five α-tocopherol acetate supplementation levels were 0, 5, 10, 50 and 100 mg/kg. For 0–3-week-old broiler chicks fed with maize–soya bean meal–soya oil type diet, supplementation of vitamin E did not influence the feed intake, but tended to improve growth and feed utilization, however there was no significant correlation between performance and vitamin E supplementation level. Significant positive correlations existed between dietary supplemental vitamin E level and plasma or hepatic α-tocopherol concentrations (P<0.05), and a negative correlation with hepatic TBARS levels no matter at what age (11, 16 and 21 days). In Expt 2, 2200 broiler chicks were randomly allocated to five treatments with four replicates (pens) in each. Chicks were fed ad libitum five pellet diets supplemented with vitamin E at 5, 10, 20, 50 and 100 mg/kg of diet, respectively. The basal dietary α-tocopherol level of grower and finisher diets were 7 and 6 mg/kg, respectively. Supplementation of vitamin E tended to improve growth and feed utilization of birds during 0–3 weeks of age, but the performance from 0 to 6 weeks of age were not influenced. The hepatic α-tocopherol concentrations of 6-week-old chicks linearly increased with the dietary vitamin E levels (R2=0.98, P<0.001). The content of TBARS in the thigh meat over 4 days of storage under 4°C was significantly decreased by increasing dietary vitamin E level (P<0.05). There was a significant inverse relationship between TBARS value in the thigh meat and the dietary vitamin E level (R2=0.93, P<0.01). Supplementation of vitamin E significantly improved the meat quality stability substantially against oxidative deterioration. Comparing the hepatic α-tocopherol levels of chicks in Expts 1 and 2, total allowance of dietary α-tocopherol of 20–30 mg/kg could sustain relatively constant hepatic α-tocopherol level at round about 2–2.5 μg/kg.  相似文献   

8.
α-Tocopherol is a lipid-soluble antioxidant that is specifically required for reproduction and embryogenesis. However, since its discovery, α-tocopherol's specific biologic functions, other than as an antioxidant, and the mechanism(s) mediating its requirement for embryogenesis remain unknown. As an antioxidant, α-tocopherol protects polyunsaturated fatty acids (PUFAs) from lipid peroxidation. α-Tocopherol is probably required during embryonic development to protect PUFAs that are crucial to development, specifically arachidonic (ARA) and docosahexaenoic (DHA) acids. Additionally, ARA and DHA are metabolized to bioactive lipid mediators via lipoxygenase enzymes, and α-tocopherol may directly protect, or it may mediate the production and/or actions of, these lipid mediators. In this review, we discuss how α-tocopherol (1) prevents the nonspecific, radical-mediated peroxidation of PUFAs, (2) functions within a greater antioxidant network to modulate the production and/or function of lipid mediators derived from 12- and 12/15-lipoxygenases, and (3) modulates 5-lipoxygenase activity. The application and implication of such interactions are discussed in the context of α-tocopherol requirements during embryogenesis.  相似文献   

9.
Sixteen lambs were divided into two groups and fed two different diets. Eight lambs were stall-fed with a concentrate-based diet (C), and the remaining eight lambs were allowed to graze on Lolium perenne (G). The antioxidant status was measured in the liver and plasma samples before and after solid-phase extraction (SPE) to probe the antioxidant effects that grass phenolic compounds may have conferred onto the animal tissues. The liver and plasma samples from grass-fed lambs displayed a greater antioxidant capacity than the tissues from C lamb group, but only if samples had not been passed through SPE cartridges. Finally, the feed and animal tissues, which had been purified by SPE, were analysed by liquid chromatography combined with mass spectrometry (LC–MS) to identify phenolic compounds present in L. perenne and to evaluate the results from the antioxidant assays. It would appear that the improvement of the antioxidant capacity of lamb liver and plasma from lambs fed ryegrass was not related to the direct transfer of phenolic compounds from grass to the animal tissues.  相似文献   

10.
This study was performed to determine the effects of different copper (Cu) sources and levels on plasma superoxide dismutase (SOD), lipid peroxidation, and Cu status of lambs. Fifty Dorper × Mongolia wether lambs (approximately 3?month of age; average BW?=?23.8?±?0.6?kg) were divided into five equal groups each with ten animals according to their weight. Treatments consisted of (1) control (no supplemental Cu), (2) 10?mg Cu/kg DM from Cu-lysine, (3) 20?mg Cu/kg DM from Cu-lysine, (4) 10?mg Cu/kg DM from tribasic copper chloride (Cu(2)(OH)(3)Cl; TBCC), and (5) 20?mg Cu/kg DM from TBCC. The Cu concentration was 6.74?mg/kg DM in the basal diet. Plasma copper concentrations and ceruloplasmin activities were not affected on day?30 by Cu supplementation. Copper supplementation increased plasma and liver copper concentrations and ceruloplasmin activities on day?60. Muscle Cu concentrations were not affected by Cu supplementation. There were no differences in plasma, liver, and muscle Cu concentrations and ceruloplasmin activities between Cu-lysine and TBCC. Liver copper concentrations and plasma ceruloplasmin activities were increased in lambs supplemented with 20?mg Cu/kg DM than in those supplemented with 10?mg Cu/kg DM on day?60. However, copper levels had no effects on Cu concentrations in plasma and muscle. Malondialdehyde (MDA) concentrations were decreased in plasma and liver tissues, but not affected in muscle by Cu supplementation. Plasma SOD activities were increased by Cu supplementation. There were no differences in plasma, liver, and muscle MDA concentrations and plasma SOD activities between Cu sources and levels. These results indicated that Cu supplementation increased plasma SOD activity, lipid oxidative stability, and copper status of lambs, but did not influence lipid oxidative stability in sheep muscle. Cu-lysine and TBCC were of similar availability when offered to finishing sheep.  相似文献   

11.
It has been hypothesized that oxidative stress plays a key role in aging. In order to elucidate the role of the antioxidant network — including α-tocopherol (αT) and αT transfer protein — in aging in vivo, α-tocopherol transfer protein knockout (αTTP?/?) mice were fed a vitamin-E-depleted diet, and wild-type (WT) mice were fed a diet containing 0.002 wt.% αT from the age of 3 months to 1 1/2 years. The lipid oxidation markers total hydroxyoctadecadienoic acid (tHODE) and 8-iso-prostaglandin F2α, and antioxidant levels in the blood, liver and brain were measured at 3, 6, 12 and 18 months. tHODE levels in the plasma of αTTP?/? mice were elevated at 6 months compared to 3 months, and were significantly higher those in WT mice, although they decreased thereafter. On the other hand, tHODE levels in the liver and brain were constantly higher in αTTP?/? mice than in WT mice. Motor activities decreased with aging in both mouse types; however, those in the αTTP?/? mice were lower than those in the WT mice. It is intriguing to note that motor activities were significantly correlated with the stereoisomer ratio (Z,E/E,E) of HODE, which is a measure of antioxidant capacity in vivo, in the plasma, in the liver and even in the brain, but not with other factors such as antioxidant levels.In summary, using the biomarker tHODE and its stereoisomer ratio, we demonstrated that αT depletion was associated with a decrease in motor function, and that this may be primarily attributable to a decrease in the total antioxidant capacity in vivo.  相似文献   

12.
This investigation was designed to evaluate the effects of feeding either free range or in confinement using concentrated diets with the same ingredients and oil source (5.5% of olive oleins) but with different antioxidant supplementation [control diet with a basal level of α-tocopheryl acetate (control); 200 mg/kg synthetic all-rac-α-tocopheryl acetate (Eall-rac); 200 mg/kg natural RRR-α-tocopheryl-acetate (ERRR-); flavonoid extract-enriched diet (AFlav); and phenolic compound-enriched extract (APhen)] on the fatty acid composition and lipid oxidation of Iberian pig muscle longissimus dorsi. The α-tocopherol concentration was significantly higher in muscles from free-range and ERRR- pigs than in muscles from Eall-rac pigs, and γ-tocopherol was only detected in muscles from free-range pigs. Longissimus dorsi muscles from free-range pigs had a significantly lower content of saturated fatty acids and higher content of polyunsaturated fatty acids than muscles from the other five groups of pigs fed in confinement; however, no significant effect on monounsaturated fatty acids was observed. No effect of dietary antioxidant supplementation (synthetic or natural α-tocopherol, flavonoid extract, or phenol extract) on the fatty acid composition of muscles was observed. A significant influence of dietary treatment on lipid oxidation was observed after 3 (P < 0.01), and 7 and 10 (P < 0.001) days of refrigerated storage, respectively. The lowest thiobarbituric acid-reactive substances (TBARS) values were found in pork chops from the free-range and ERRR- groups, intermediate values from the Eall-rac group, followed by AFlav and APhen, while the highest TBARS values corresponded to muscles from pigs fed the control concentrate. The source of α-tocopherol had a significant effect on lipid oxidation (P < 0.05), whereas the AFlav and APhen groups had similar TBARS values.  相似文献   

13.
Recently, an unusual compound named habenariol was isolated from the freshwater orchid, Habenaria repens. Its phenolic structure suggested that habenariol should have substantial antioxidant activity. This possibility was investigated by evaluating the capacity of habenariol to inhibit copper-induced lipid peroxidation of human low density lipoprotein (LDL), a popular experimental model. LDL was incubated with 5 μM cupric chloride in the presence and absence of habenariol or a positive control, viz., α-tocopherol. Both kinetic and end-point spectrophotometric assays were used to determine extent of lipid peroxidation of LDL. In the kinetic assay, the time elapsing before the onset of rapid formation of conjugated lipid hydroperoxides in LDL (marked by a sharp increase in UV absorbance) was prolonged by habenariol, indicative of an antioxidant effect. In the end-point assay, direct colorimetric measurement confirmed habenariol's ability to inhibit formation of lipid hydroperoxides. However, in both assays, habenariol was less potent than α-tocopherol in inhibiting lipid peroxidation of LDL.  相似文献   

14.
Chitosan (CHI) is a natural biopolymer with antimicrobial, anti-inflammatory, antioxidant and digestive modulatory effects, which can be used in the ruminant diet to replace antibiotics. The aim of this study was to evaluate the effects of CHI on lamb growth traits, nutrients digestibility, muscle and fatty deposition, meat fatty acid (FA) profile, meat quality traits and serum metabolome. Thirty 30-month-old male lambs, half Suffolk and half Dorper, with an average BW of 21.65 ± 0.86 kg, were fed in a feedlot system for a total of 70 days. The lambs were separated into two groups according to the diet: the control (CON) group which received the basal diet and the CHI group which received the basal diet with the addition of CHI as 2 g/kg of DM in the diet. Lambs supplemented with CHI had a greater (P< 0.05) final BW, DM intake, final body metabolic weight (P< 0.05) and lower residual feed intake than the CON group. Animals fed CHI had a greater (P< 0.05) starch digestibility at 14 and 28 days, average daily gain at 14, 42 and 56 days, greater feed efficiency at 28 days and feed conversation at 14 and 42 days in feedlot. Most of the carcass traits were not affected (P> 0.05) by the treatment; however, the CHI supplementation improved (P< 0.05) dressing and longissimus muscle area. The treatments had no effect (P> 0.05) on the meat colour and other quality measurements. Meat from the CHI-fed lambs had a greater concentration (P< 0.05) of oleic-cis-9 acid, linoleic acid, linolenic-trans-6 acid, arachidonic acid and eicosapentaenoic acid. According to the variable importance in projection score, the most important metabolites to differentiate between the CON and the CHI group were hippurate, acetate, hypoxanthine, arginine, malonate, creatine, choline, myo-inositol, 2-oxoglutarate, alanine, glycerol, carnosine, histidine, glutamate and 3-hydroxyisobutyrate. Similarly, fold change (FC) analysis highlighted succinate (FC = 1.53), arginine (FC = 1.51), hippurate (FC = 0.68), myo-inositol (FC = 1.48), hypoxanthine (FC = 1.45), acetate (FC = 0.73) and malonate (FC = 1.35) as metabolites significantly different between groups. In conclusion, the present data showed that CHI changes the muscle metabolism improving muscle mass deposition, the lamb’s performance and carcass dressing. In addition, CHI led to an alteration in the FA metabolism, changes in the meat FA profile and improvements in meat quality.  相似文献   

15.
In this study, we investigated the effects of maternal gestation and/or lactation diets supplemented with extruded linseed (rich in 18:3n-3) on growth performance and long-chain polyunsaturated faaty acid (PUFA) accumulation in muscle tissues of suckling lambs. A total of 36 dairy ewes were fed a control diet (CON) and a diet containing linseed (LIN) during the last 8 weeks of gestation and/or the first 4 weeks of lactation. The four dietary treatments consisted of the following gestation/lactation feeding treatments: CON/CON, CON/LIN, LIN/LIN or LIN/CON. The lambs born from ewes fed the aforementioned diets were reared exclusively on milk and were slaughtered at 4 weeks of age. Profiles of ewes’ milk fatty acids and that of intramuscular fat (IMF) of leg muscles from lambs were determined. Compared with the CON/CON, LIN/CON offspring tended to grow slower and to have reduced cold carcass weights. Moreover, the LIN supplementation only in the prepartum period (LIN/CON) resulted in greater PUFAn-3 accumulation in the IMF compared with the CON/CON offspring due to increased 20:5n-3 (1.20 v. 0.64 mg/100 mg of total FA), 22:5n-3 (1.91 v. 1.46;) and 22:6n-3 (1.25 v. 0.89) contents, respectively. Compared with the CON/CON diet, providing LIN only during lactation (CON/LIN) caused a greater PUFAn-3 content in the IMF mainly due to a greater 18:3n-3 (1.79 v. 0.75 mg/100 g total FA) concentration. Continuous PUFAn-3 exposure, both via the maternal gestation and lactation diet, had no additive effects on PUFAn-3 accumulation in tissues. The results suggest that linseed, as an 18:3n-3 source, seems to be more efficient in increasing long-chain PUFAn-3 in fetal than in suckling lamb tissues.  相似文献   

16.
Vitamin E (α-tocopherol) is an essential fat-soluble nutrient with antioxidant properties. α-Tocopherol transfer protein (α-TTP), the product of the gene responsible for familial isolated vitamin E deficiency, plays an important role in maintaining the plasma α-tocopherol level by mediating the secretion of α-tocopherol by the liver. However, the mechanisms underlying hepatic α-tocopherol secretion are not fully understood. This study was undertaken to elucidate the mechanism of α-tocopherol re-efflux from hepatocytes, the cells that have the most important role in regulating plasma-α-tocopherol concentrations. From in vitro experiments using [3H]α-tocopheryl acetate and McARH7777 cells that stably express α-tocopherol transfer protein (α-TTP), the following results were obtained. First, addition of apolipoprotein A-I (apoA-I), a direct acceptor of the ATP-binding cassette transporter A1 (ABCA1)-secreted lipids, increased α-tocopherol secretion in a dose-dependent manner. Second, probucol, an antiatherogenic compound reported to be an inactivator of ABCA1 reduced hepatic α-tocopherol secretion. Third, ABCA1-RNAi suppressed hepatic α-tocopherol secretion. In a mouse in vivo experiment, addition of 1% probucol to the diet decreased plasma α-tocopherol concentrations. These results strongly suggest that ABCA1 is substantially involved in hepatic α-tocopherol secretion.  相似文献   

17.
The aim of this study was to investigate how different finishing period lengths with α-tocopherol supplementation or alfalfa grazing affect mRNA expression levels of genes related to vitamin E metabolism in L. thoracis (LT) muscle and subcutaneous fat (SF) from lambs of the Rasa Aragonesa breed. Indoors, concentrate-fed light lambs (n = 48) were supplemented with 500 dl-α-tocopheryl acetate/kg concentrate for an average finishing period length of 0 (C), 10.7 (VE10d), 21.2 (VE20d) and, 32.3 (VE30d) days before slaughtering. Simultaneously, 8 lambs with their dams were alfalfa-grazed. The α-tocopherol affected in a short-term the expression of genes in LT muscle (ABCA1, LPL, APOE, and SREBP1) and SF (ABCA1, SCARB1, LPL, and PPARG). On the contrary, PPARA gene expression showed a long-term α-tocopherol effect because the highest levels of PPARA mRNA were found in the VE30d.  相似文献   

18.
Currently, consumers are increasingly interested in obtaining high-quality and healthy lamb meat. Compared to grain-based diets, dietary forage legumes such as alfalfa and condensed tannin (CT)-rich sainfoin increase the levels of polyunsaturated fatty acids (PUFAs) that are beneficial for health in lamb meat thanks to their high content in PUFA and/or their impact on ruminal biohydrogenation. However, they can therefore adversely affect its oxidative stability. Thus, the impact of dietary forage legumes on lamb longissimus thoracis (LT) muscle FA composition and their stability to peroxidation was studied in 36 Romane lambs grazing alfalfa (AF; n = 12) or alfalfa plus daily supplementation with CT-rich sainfoin pellets (AS; n = 12; 15 g DM/kg BW, 42 g CT/kg DM) or stall-fed concentrate and grass hay indoors (SI; n = 12). Lambs were slaughtered at a mean age of 162 ± 8.0 days after an average experimental period of 101 ± 8.1 days. Forage legumes-grazing lambs outperformed SI lambs in LT nutritional quality, with more conjugated linoleic acids and n-3 PUFAs, especially 18:3n-3, eicosapentaenoic and docosahexaenoic acids (P < 0.001), and thus lower n-6 PUFA/n-3 PUFA and 18:2 n-6/18:3 n-3 ratios (P < 0.001). Peroxidizability index was higher (P < 0.001) in LT muscle of forage legumes-grazing lambs. Concurrently, two endogenous antioxidant enzyme activities, superoxide dismutase and glutathione peroxidase, were, respectively, similar and lower (P < 0.001) for forage legumes-grazing compared with SI lambs. A lower vitamin E level in SI lambs compared with forage legumes-grazing lambs (1.0 v. 3.8 mg/g, P < 0.001) could explain that malondialdehyde content, a marker of lipid oxidation intensity, was 0.63 µg/g in SI after 8 days in aerobic packaging conditions, whereas it remaining steady at 0.16 µg/g in forage legumes-grazing lambs. Dietary forage alfalfa thus improved FA composition of lamb LT muscle and their stability to oxidation when compared to SI lambs. However, supplementation of alfalfa-grazing lambs with CT-rich sainfoin pellets did not affect the nutritional quality of LT muscle FAs.  相似文献   

19.
In this study we investigated the hypothesis that a high-salt diet to hyperinsulinemic rats might impair antioxidant defense owing to its involvement in the activation of sodium reabsorption to lead to higher oxidative stress. Rats were fed a standard (CON), a high-salt (HS), or a high-fructose (HF) diet for 10 weeks after which, 50% of the animals belonging to the HF group were switched to a regimen of high-fructose and high-salt diet (HFS) for 10 more weeks, while the other groups were fed with their respective diets. Animals were then euthanized and their blood and liver were examined. Fasting plasma glucose was found to be significantly higher (approximately 50%) in fructose-fed rats than in the control and HS rats, whereas fat liver also differed in these animals, producing steatosis. Feeding fructose-fed rats with the high-salt diet triggered hyperinsulinemia and lowered insulin sensitivity, which led to increased levels of serum sodium compared to the HS group. This resulted in membrane perturbation, which in the presence of steatosis potentially enhanced hepatic lipid peroxidation, thereby decreasing the level of antioxidant defenses, as shown by GSH/GSSG ratio (HFS rats, 7.098±2.1 versus CON rats, 13.2±6.1) and superoxide dismutase (HFS rats, 2.1±0.05 versus CON rats, 2.3±0.1%), and catalase (HFS rats, 526.6±88.6 versus CON rats, 745.8±228.7 U/mg ptn) activities. Our results indicate that consumption of a salt-rich diet by insulin-resistant rats may lead to regulation of sodium reabsorption, worsening hepatic lipid peroxidation associated with impaired antioxidant defenses.  相似文献   

20.
Physical restraint has been associated with increased oxidative damage to lipid, protein, and DNA. The purpose of this experiment was to determine whether physical restraint would further exacerbate oxidative stress in mice fed a selenium (Se) and vitamin E (VE) deficient diet. Three-week-old mice were fed a Torula yeast diet containing adequate or deficient Se and VE. Menhaden oil was added to the deficient diet to impose an additional oxidative stress. After 4 wk feeding, half the mice in each group were restrained for 5 d in well-ventilated conical tubes for 8 h daily. Mice fed the Se and VE deficient diets had increased liver thiobarbituric acid-reactive substance (TBARS) levels and decreased liver glutathione peroxidase (GPX1) activity and α-tocopherol levels. Plasma corticosterone levels were elevated in restrained mice fed the deficient diet compared to unrestrained mice fed the adequate diet. Restraint had no effect on liver TBARS or α-tocopherol levels. Liver GPX1 activity, however, was lower in restrained mice fed the adequate diet. In addition, liver superoxide dismutase (SOD) activity was lower in the restrained mice fed the adequate or deficient diet. Thus, under our conditions, Se and VE deficient diet, but not restraint, increased lipid peroxidation in mice. Restraint, however, decreased antioxidant protection in mice due to decreased activities of GPX1 and SOD enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号