首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Baboons possess Lp[a] that is similar to human Lp[a], including the presence of the unique protein, apo[a]. Baboon apo[a] occurred in at least nine isoforms distinguishable by size. Isoforms were resolved by 3-12% polyacrylamide gradient gel electrophoretic separation of serum proteins, and were detected with baboon apo[a]-specific antibodies. Thirty one different apo[a] isoform phenotypes were detected in a population of 165 unrelated baboons. Identical isoform phenotypes were observed in different samples from individual baboons, and isoform phenotypes were unaffected by changes in diet. In one experiment, 16 baboons were fed a series of five diets differing in amounts of cholesterol and saturated or unsaturated fats. There was no significant effect of diet on serum Lp[a] levels. In another group of baboons (n = 70) controlled for age and dietary history, enrichment of the diet with cholesterol and saturated fat caused a small, but significant (P less than 0.005), increase (means = 0.6 mg/dl) in serum Lp[a] concentration. Analysis of two large sire families suggested that apo[a] isoform patterns and serum Lp[a] concentrations were inherited. Putative parental alleles responsible for specific isoform bands appeared to segregate randomly. Heritability (h2) of serum Lp[a] concentration was estimated to be 0.95 +/- 0.04. We conclude that apo[a] isoform phenotypes and serum Lp[a] concentrations are inherited, and that Lp[a] concentrations are only slightly influenced by diet.  相似文献   

2.
The study aims were to develop a new isoform-independent enzyme-linked immunoassay (ELISA) for the measurement of lipoprotein(a) [Lp(a)], validate its performance characteristics, and demonstrate its accuracy by comparison with the gold-standard ELISA method and an LC-MS/MS candidate reference method, both developed at the University of Washington. The principle of the new assay is the capture of Lp(a) with monoclonal antibody LPA4 primarily directed to an epitope in apolipoprotein(a) KIV2 and its detection with monoclonal antibody LPA-KIV9 directed to a single antigenic site present on KIV9. Validation studies were performed following the guidelines of the Clinical Laboratory Improvement Amendments and the College of American Pathologists. The analytical measuring range of the LPA4/LPA-KIV9 ELISA is 0.27–1,402 nmol/L, and the method meets stringent criteria for precision, linearity, spike and recovery, dilutability, comparison of plasma versus serum, and accuracy. Method comparison with both the gold-standard ELISA and the LC-MS/MS method performed in 64 samples with known apolipoprotein(a) isoforms resulted in excellent correlation with both methods (r=0.987 and r=0.976, respectively). Additionally, the variation in apolipoprotein(a) size accounted for only 0.2% and 2.2% of the bias variation, respectively, indicating that the LPA4/LPA-KIV9 ELISA is not affected by apolipoprotein(a) size polymorphism. Peptide mapping and competition experiments demonstrated that the measuring monoclonal antibodies used in the gold-standard ELISA (a-40) and in the newly developed ELISA (LPA-KIV9) are directed to the same epitope, 4076LETPTVV4082, on KIV9. In conclusion, no statistically or clinically significant bias was observed between Lp(a) measurements obtained by the LPA4/LPA-KIV9 ELISA and those obtained by the gold-standard ELISA or LC-MS/MS, and therefore, the methods are considered equivalent.Supplementary key words: lipoprotein(a), monoclonal antibody, isoform, kringle, cardiovascular disease, aortic stenosis, metabolism, therapy, LPA-KIV9

Lipoprotein(a) [Lp(a)] is an apo B-containing lipoprotein that is a genetic, independent risk factor for cardiovascular disease and aortic stenosis (1). Lp(a) is similar in composition to LDL but additionally characterized by the presence of a carbohydrate-rich protein termed apolipoprotein(a) [apo(a)] that is covalently linked by a disulfide bond to the single molecule of apoB-100. The presence of apo(a) imparts specific pathophysiological and metabolic characteristics to Lp(a) rendering it significantly different from LDL (2).Apo(a) is formed by repeated kringle (K) structures (KIV), a single copy of KV, and an inactive protease domain, all possessing a high amino acid sequence homology with the corresponding structure of plasminogen. In apo(a), KIV is formed by 10 different subtypes (KIV1 to KIV10), each present as a single copy with the exception of KIV2 which is present in a highly variable number in different individuals ranging from 1 to >40 copies of identical repeats. The repeats are due to copy number variations in the LPA gene, and therefore, individuals may inherit highly different apo(a) molecular weight ranging from ∼300 to 800 kDa. The variation in the number of KIV2 gives origin to the >40 apo(a) isoforms circulating in human plasma of different individuals and is primarily responsible for the size heterogeneity of Lp(a). The concentration of Lp(a) is also highly heterogeneous, varying >1000 fold within the population, and to a major extent is genetically controlled and inversely related to the copy number variation in the LPA gene (2).The large size heterogeneity of apo(a) has been a major challenge to the immunochemical measurement of Lp(a) because the variable number of repeated KIV2 motifs results in a variable number of antigenic epitopes in the samples to be analyzed. Consequently, plasma levels of Lp(a) will be overestimated or underestimated in test samples when the number of KIV2 is higher or smaller than those present in the assay calibrator (3).Ideally, use of monoclonal antibodies directed to a single antigenic site on apo(a) will be able to solve the impact of the variable number of KIV2. However, the high homology of the apo(a) kringles (∼75–94%) (4) has proven to be highly challenging in developing monoclonal antibodies binding to a unique epitope not present in KIV2.In 1995, Marcovina et al. described the production of a monoclonal antibody (a-40) directed to a unique epitope located in KIV9 of apo(a) and its use as a detecting antibody in the development of an enzyme-linked immunoassay (ELISA) demonstrated to accurately measure Lp(a) without the impact of the apo(a) size polymorphism in the samples (5). Because this ELISA does not measure the variable mass of Lp(a) but the number of circulating particles, the Lp(a) concentration is expressed in nmol/L. However, while this ELISA has been extensively used in research and for assay standardization as a “gold standard”, the assay has never been made available outside of the University of Washington.A monoclonal antibody (LPA-KIV9), also directed to KIV9, was recently generated at the University of California San Diego and extensively evaluated as previously reported (6). The aim of the current study was to develop a new sandwich Lp(a) ELISA modeled on the approach used by Marcovina et al. (5) and based on two monoclonal antibodies LPA-KIV9 (6) and LPA4 (7). To demonstrate its performance characteristics, we report here the extensive validation of this assay.  相似文献   

3.
Lipoprotein(a) [Lp(a)] is a quantitative trait in human plasma. Lp(a) consists of a low-density lipoprotein and the plasminogen-related apolipoprotein(a) [apo(a)]. The apo(a) gene determines a size polymorphism of the protein, which is related to Lp(a) levels in plasma. In an attempt to gain a deeper insight into the genetic architecture of this risk factor for coronary heart disease, we have investigated the basis of the apo(a) size polymorphism by pulsed field gel electrophoresis of genomic DNA employing various restriction enzymes (SwaI, KpnI, KspI, SfiI, NotI) and an apo(a) kringle-IV-specific probe. All enzymes detected the same size polymorphism in the kringle IV repeat domain of apo(a). With KpnI, 26 different alleles were identified among 156 unrelated subjects; these alleles ranged in size from 32kb to 189kb and differed by increments of 5.6kb, corresponding to one kringle IV unit. There was a perfect match between the size of the apo(a) DNA phenotypes and the size of apo(a) isoforms in plasma. The apo(a) DNA polymorphism was further used to estimate the magnitude of the apo(a) gene effect on Lp(a) levels by a sib-pair comparison approach based on 253 sib-pairs from 64 families. Intra-class correlation of log-transformed Lp(a) levels was high in sib-pairs sharing both parental alleles (r = 0.91), significant in those with one common allele (r = 0.31), and absent in those with no parental allele in common (r = 0.12). The data show that the intra-individual variability in Lp(a) levels is almost entirely explained by variation at the apo(a) locus but that only a fraction (46%) is explained by the DNA size polymorphism. This suggests further heterogeneity relating to Lp(a) levels in the apo(a) gene.  相似文献   

4.
Elevated levels of lipoprotein (a) [Lp(a)] are positively correlated with risk of cardiovascular disease and are thought to be a function of allelic variation in apo(a), the unique protein component of Lp(a). In this article we examine subspecies variation in Lp(a) levels and apo(a) isoforms in the baboon. Breeding populations of the five subspecies (Papio hamadryas hamadryas, P.h. cynocephalus, P.h. ursinus, P.h. papio, and P.h. anubis) of common long-tailed baboons are maintained at the Southwest Foundation for Biomedical Research. Serum samples were obtained from at least 20 unrelated animals of each subspecies. Twelve different size isoforms (including the null) of apo(a) were identified across the five subspecies. These isoforms act as alleles; a maximum likelihood method was used to obtain the allele frequencies. Significant differences in apo(a) isoform frequencies were found between subspecies (chi 2(44) = 163.10, p less than 0.0001). Quantitative levels of Lp(a) also differed among subspecies. We evaluated the correlation between genetic distances calculated using the quantitative Lp(a) levels and the apo(a) isoform data. Observed genetic relationships among the subspecies are consistent with the present-day geographic distribution and information from other marker protein systems. The findings indicate that the marker apo(a) may have great utility in both evolutionary and biomedical studies.  相似文献   

5.
Lipoprotein (a) [Lp(a)] was isolated from several donors and its apolipoprotein (a) [apo(a)] dissociated by a reductive treatment, generating the apo(a)-free form of Lp(a) [Lp(a--)] that contains apolipoprotein B (apo B) as its sole protein. Using anti-apo B monoclonal antibodies, the properties of apo B in Lp(a), Lp(a--), and autologous low-density lipoprotein (LDL) were compared. Marked differences in apo B immunoreactivity were found between these lipoproteins, due to the presence of apo(a) in Lp(a). Apo(a) enhanced the expression of two epitopes in the amino-terminal part of apo B while it diminished the immunoreactivity of three other epitopes in the LDL receptor binding domain. Accordingly, the binding of the lipoproteins to the LDL receptor was also decreased in the presence of apo(a). In a different experimental system, the incubation of antibodies that react with 27 distinct epitopes distributed along the whole length of apo B sequence with plastic-bound Lp(a) and Lp(a--) failed to reveal any epitope of apo B that is sterically hindered by the presence of apo(a). Our results demonstrate that the presence of apo(a) modified the organization and function of apo B in Lp(a) particles. The data presented indicate that most likely the modification is not due to a steric hindrance but that some more profound conformational changes are involved. We suggest that the formation of the disulfide bridge between apo B and apo(a) in Lp(a) alters the system of disulfide bonds present in apo B and thereby modifies apo B structure.  相似文献   

6.
The risk factor, Lipoprotein(a), [(Lp(a)], has been measured in numerous clinical studies by a variety of immunochemical assay methods. It is becoming apparent that for many of these assays antibody specificity towards the apolipoprotein(a) [apo(a)] repetitive component [the kringle 4 - type 2 repeats] and apo(a) size heterogeneity can significantly affect the accuracy of serum Lp(a) measurements. To address this issue, we investigated whether our current in house Lp(a) [Mercodia] assay showed such bias compared to a recently available assay [Apo-Tek], claiming to possess superior capability for isoform-independent measurement of Lp(a). Levels of Lipoprotein(a) by both Apo-Tek and Mercodia assays correlated inversely with apo(a) isoform sizes. No significant differences were observed between assays in ranges of Lp(a) concentration within each isoform group. The Mercodia assay exhibited similar isoform-independent behaviour to that of Apo-Tek for e quantitation of serum Lipoprotein(a). Essentially identical results were obtained by the two methods, suggesting that Mercodia assay's capture monoclonal antibody also (as is the case for Apo-Tek) does not recognize the kringle 4-type 2 repetitive domain of apo(a). Correlation of Lp(a) concentrations in patient specimens between Apo-Tek and Mercodia assays showed good agreement, although an overall higher degree of imprecision and non-linearity was noted for the Apo-Tek procedure. A change-over to the Apo-Tek assay would therefore not improve on our current assessment of risk contribution from Lp(a) for atherosclerotic vascular disease in individuals with measurable levels of circulating Lipoprotein(a).  相似文献   

7.
We describe the development of five murine monoclonal antibodies (14A12, 39A1, 53A9, 73A7, and 128A6) specific to human apolipoprotein[a] (Mr approximately 570,000), and their characterization by a number of procedures including cotitration, competition and inhibition enzyme-linked immunosorbent assays (ELISA), immunoblotting of native lipoproteins and of SDS-solubilized apolipoproteins electrophoresed in polyacrylamide gels, and dot immunobinding assays. The patterns of immunoreactivity of these antibodies were similar. Each reacted in ELISA assays and upon electroimmunoblotting with purified apo[a], with apo[a] liberated by reduction of Lp[a], and with delipidated Lp[a] solubilized in SDS, but by contrast, they reacted with native Lp[a] to a significant degree only upon electroimmunoblotting. No reactivity was seen with LDL-apoB-100 or with other apolipoproteins. The cross-reactivity of these antibodies with the homologous protein, plasminogen, was examined by comparison of the amount of plasminogen or apo[a] required for 50% inhibition of antibody binding to apo[a], and by an ELISA assay. The inhibition assay showed reactivity with plasminogen to be 37- to 50-fold lower than with apo[a], while dot immunobinding showed the lower limit of detection of plasminogen and of apo[a] to be approximately 320 and 31 micrograms, respectively. In an ELISA sandwich assay based on monoclonal antibodies LHLP-1, 14A12, and 53A9, the lower limit of Lp[a] detection (approximately 1 ng/ml protein) was about 100-fold less than that of plasminogen. Chemical modification of apo[a] revealed a significant contribution of arginine residues to the epitopes of 14A12, 39A1, and 53A9. Modification of cysteine residues with iodoacetamide was without effect, thereby distinguishing these antibodies from LHLP-1. Each antibody reacted with the six major size forms of apo[a] (Mr approximately 450,000-750,000) in immunoblots of human sera electrophoresed in SDS-polyacrylamide gels. Marked heterogeneity in apo[a] phenotype was detected and both single and double band phenotypes were observed in a randomized study. Cotitration and competition binding studies showed varying degrees of interaction between all five epitopes, with the exception of 128A6 which appeared to be independent of 39A1 and 53A9 (and vice versa). These data suggest that our five monoclonal antibodies recognize epitopes on apolipoprotein[a] that are exposed and accessible on the native Lp[a] particle. We conclude that our monoclonal antibodies recognize a specific region of apo[a], and that this region undergoes a conformational change upon adsorption of Lp[a] to plastic thereby diminishing epitope recognition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Lipoprotein (a) (Lp[a]) is a cholesterol-rich lipoprotein resembling LDL but also containing a large polypeptide designated apolipoprotein (a) (apo[a]). Its levels are highly variable among individuals and, in a number of studies, are strongly correlated with the risk of coronary artery disease (CAD). In an effort to determine which genes control Lp(a) levels, we have studied 25 multiplex families (comprising 298 members) enriched for CAD. The apo(a) gene was genotyped among the families, using a highly informative pulse-field gel electrophoresis procedure. In addition, polymorphisms of the gene for the other major protein of Lp(a), apolipoprotein B (apoB), were examined. Quantitative sib-pair linkage analysis indicates that apo(a) is the major gene controlling Lp(a) levels in this CAD population (P = .001; 99 sib pairs), whereas the apoB gene demonstrated no significant quantitative linkage effect. We estimate that the apo(a) locus accounts for < or = 98% of variance of Lp(a) serum levels. Approximately 43% of this variation is explained by size polymorphisms within the apo(a) gene. These results indicate that the apo(a) gene is the major determinant of Lp(a) serum levels not only in the general population but also in a high-risk CAD population.  相似文献   

9.
Summary Apolipoprotein(a) [apo(a)] exhibits a genetic size polymorphism explaining about 40% of the variability in lipoprotein(a) [Lp(a)] concentration in Tyroleans. Lp(a) concentrations and apo(a) phenotypes were determined in 7 ethnic groups (Tyrolean, Icelandic, Hungarian, Malay, Chinese, Indian, Black Sudanese) and the effects of the apo(a) size polymorphism on Lp(a) levels were estimated in each group. Average Lp(a) concentrations were highly significantly different among these populations, with the Chinese (7.0mg/dl) having the lowest and the Sudanese (46mg/dl) the highest levels. Apo(a) phenotype and derived apo(a) allele frequencies were also significantly different among the populations. Apo(a) isoform effects on Lp(a) levels were not significantly different among populations. Lp(a) levels were however roughly twice as high in the same phenotypes in the Indians, and several times as high in the Sudanese, compared with Caucasians. The size variation of apo(a) explains from 0.77 (Malays) to only 0.19 (Sudanese) of the total variability in Lp(a) levels. Together these data show (I) that there is considerable heterogeneity of the Lp(a) polymorphism among populations, (II) that differences in apo(a) allele frequencies alone do not explain the differences in Lp(a) levels among populations and (III) that in some populations, e.g. Sudanese Blacks, Lp(a) levels are mainly determined by factors that are different from the apo(a) size polymorphism.  相似文献   

10.
The aim of this study was to assess the independent contributions of plasma levels of lipoprotein(a) (Lp(a)), Lp(a) cholesterol, and of apo(a) isoform size to prospective coronary heart disease (CHD) risk. Plasma Lp(a) and Lp(a) cholesterol levels, and apo(a) isoform size were measured at examination cycle 5 in subjects participating in the Framingham Offspring Study who were free of CHD. After a mean follow-up of 12.3 years, 98 men and 47 women developed new CHD events. In multivariate analysis, the hazard ratio of CHD was approximately two-fold greater in men in the upper tertile of plasma Lp(a) levels, relative to those in the bottom tertile (P < 0.002). The apo(a) isoform size contributed only modestly to the association between Lp(a) and CHD and was not an independent predictor of CHD. In multivariate analysis, Lp(a) cholesterol was not significantly associated with CHD risk in men. In women, no association between Lp(a) and CHD risk was observed. Elevated plasma Lp(a) levels are a significant and independent predictor of CHD risk in men. The assessment of apo(a) isoform size in this cohort does not add significant information about CHD risk. In addition, the cholesterol content in Lp(a) is not a significant predictor of CHD risk.  相似文献   

11.
Lipoprotein (a) (Lp(a] from the plasma of normolipidemic human donors was isolated by rate zonal and isopycnic density gradient ultracentrifugation. The final preparations usually contained varying amounts of isopycnic low-density lipoproteins (LDL), which were totally removed either by heparin-Sepharose column chromatography or by chromatofocusing. The Lp(a) preparations exhibited both inter- and intraindividual density heterogeneity which was accounted for by the differences in their protein and lipid composition. In addition, there was heterogeneity in the size of apoprotein (a) (apo(a] which was found to be linked to apoprotein B (apo-B) through disulfide bonds. Three different apo(a) species were obtained; they had a size either smaller, equal to, or larger than apo-B-100, the protein moiety of LDL. The apo(a) that was smaller than apo-B resided in a low-density Lp(a) particle whose peak was in the 1.019-1.063 g/ml density range. The larger apo(a) was a component of the dense Lp(a) particle and was responsible for the increased density in this Lp(a) species. The third apo(a) which was equivalent in size to apo-B resided in a density range intermediate between the other two Lp(a)s. It is concluded that Lp(a) may differ not only from one individual to another, but also within the same individual who may have more than one Lp(a) species. Part of this heterogeneity may be accounted for by differences in the (a) polypeptide.  相似文献   

12.
A procedure was developed for the dissociation of apolipoprotein (a) (apo (a)) from pure human lipoprotein (a) (Lp(a)) prepared by density gradient ultracentrifugation and gel filtration. Lp(a) was ultracentrifuged through a layer of saline which was adjusted to a density of 1.182 g/mL and contained 30 mM dithiothreitol (50 mM) and phenylmethylsulfonyl fluoride (1.25 mM). Following centrifugation, the lipid and apolipoprotein B (apo B) were recovered as a lipoprotein (Lp(a) B) in the supernatant fraction, while the apo (a) was recovered as a lipid-poor protein pellet. An investigation of the supernatant lipoprotein by electron microscopy and compositional analysis revealed that it was similar in size and composition to low density lipoprotein (LDL) isolated from the same density range and contained apo B100 with an amino acid and carbohydrate composition which was similar to apo B from LDL. Estimates of the apparent molecular weight of the apo (a) varied amongst individuals but was always greater than apo B100 (congruent to 450,000). The amino acid composition of apo (a), which was very distinct from apo B, was characterized by a higher content of serine, threonine, proline, and tyrosine, but lower amounts of isoleucine, phenylalanine, and lysine when compared with apo B of Lp(a) or LDL. The apo (a) contained a much higher proportion of carbohydrate, in particular N-acetylgalactosamine, galactose, and N-acetylneuraminic acid (which were three- to six-fold higher) than the apo B of Lp(a). It is concluded that apo (a) is distinct from other apolipoproteins owing to its low avidity for lipid and the nature of the interaction with apo B. Lp(a) consists of an LDL-like particle with a carbohydrate-rich apo (a) attached to the surface of apo B.  相似文献   

13.
14.
The plasma concentration of human lipoprotein(a) [Lp(a)] is correlated with the risk of heart disease. A distinct feature of the Lp(a) particle is the apolipoprotein (a) [apo(a)], which is associated with apoB-100, the main protein component of low-density lipoprotein. We now report that apo(a), which has extensive homology to plasminogen, binds to immobilized fibronectin. The binding of Lp(a) was localized to the C-terminal heparin-binding domain of fibronectin. Incubation of Lp(a) with fibronectin resulted in fragmentation of fibronectin. The cleavage pattern, as visualized by gel electrophoresis and immunoblotting, was reproducibly obtained with Lp(a) purified from five different individuals and was distinct from that obtained upon proteolysis of fibronectin by plasmin or kallikrein. The use of synthetic peptide substrates demonstrated that the amino acid specificity for Lp(a) was arginine rather than lysine. The proteolytic activity of Lp(a) was localized to apo(a) and experiments with inhibitors indicated that the proteolytic activity was of serine proteinase-type.  相似文献   

15.
Lipoprotein Lp(a) was isolated by immunoaffinity chromatography using anti apolipoprotein B and anti apolipoprotein (a) immunosorbents. Besides apolipoproteins (a) and B, this fraction was shown to contain apolipoproteins C and E. Therefore, it was decided to further purify this crude Lp(a) into particles containing apolipoprotein E and particles free of apo E, using chromatography with an anti apolipoprotein E immunosorbent. Lp(a), free of apolipoprotein E was cholesterol ester rich and triacylglycerol poor and was found mainly in the LDL size range. In contrast, Lp(a) containing apolipoprotein E was triacylglycerol rich and was distributed mainly in the VLDL and IDL size range. Binding of these two fractions, one containing apo E and one free of it, to the apo B/E receptor of HeLa cells was studied. Both fractions bound to the receptor but the one containing apo E had a better affinity than the one free of apo E. Further studies are needed to identify the clinical importance of these two different entities.  相似文献   

16.
Plasma lipoprotein [a] (Lp[a]) concentrations are inversely associated with, and largely determined by, apolipoprotein [a] (apo[a]) gene size, a highly polymorphic trait. We studied if, within an individual, the smaller apo[a] isoform always dominated, whether there was interaction between the two alleles, and whether these features differed between Caucasians and African Americans. We determined apo[a] gene sizes, apo[a] protein sizes and relative amounts, and plasma Lp[a] levels in 430 individuals (263 Caucasians and 167 African Americans). Of the 397 heterozygotes with at least one detectable apo[a] isoform (238 Caucasians and 159 African Americans), the larger allele dominated in 28% of Caucasians and 23% of African Americans, while the smaller allele dominated in 56% of Caucasians and 45% of African Americans. In Caucasians, dominance of the smaller allele increased with Lp[a] levels, from 44% at Lp[a] < or = 30 nM to 81% at Lp[a] >100 nM (P < 0.0001). Dominance by the smaller allele increased with increasing size of the larger allele in both groups but with the smaller allele only in African Americans. There was no interaction between apo[a] alleles within genotypes; one apo[a] isoform level was not associated with the other isoform level, and isoform levels were not affected by the difference in size. More of the dominance pattern was explained by Lp[a] level and apo[a] genotype in African Americans than in Caucasians (29% vs. 13%). Thus, genotype influences isoform-specific Lp[a] levels and dominance patterns differently in African Americans and in Caucasians.  相似文献   

17.
Enzyme-linked immunoassay for Lp[a]   总被引:8,自引:0,他引:8  
Based on our findings that rabbit antisera raised against human Lp[a] or apo[a] have the potential to cross-react with plasminogen, and in some cases have nearly equal affinities for plasminogen and Lp[a], we have developed an assay for plasma Lp[a] based on a "sandwich" ELISA that is insensitive to the presence of plasminogen. This was accomplished through the use of anti-apo[a] as a capture antibody and quantitation of the bound Lp[a], i.e., the apoB-100-apo[a] complex, with an anti-apoB antibody. Although apo[a] is heterogeneous in size, all Lp[a] particles tested, either in pure form or contained in whole plasma, gave parallel dose-response curves and were immunologically equivalent. However, when purified Lp[a] particles with different apo[a] isoforms were studied, those having larger isoforms were, on a weight basis, less reactive than those having a smaller size. Nearly equivalent reactivity was observed when protein concentration was expressed on a molar basis. The distribution of Lp[a] in a population of 84 subjects was skewed with one-third of the individuals having less than 1 mg/dl Lp[a] protein. All subjects tested had measurable concentrations of Lp[a] with a lower limit of detection of 0.030 mg/dl Lp[a] protein. The mean level was 3.2 mg/dl with a range of 0.045 to 13.3 mg/dl. These studies demonstrate the successful development of an ELISA for Lp[a] protein that is insensitive to the presence of plasminogen; that heterogeneity of Lp[a] and apo[a] are an important source of variation in the assay; and the need for an appropriate Lp[a] standard in order to minimize this variation.  相似文献   

18.
We have developed a sensitve, high-resolution method for the analysis of the apolipoprotein(a) [apo(a)] isoforms using sodium dodecyl sulfate (SDS)-agarose/ gradient polyacrylamide gel electrophoresis. In an analysis of the genetic polymorphism of apo(a) isoforms and their relationship with plasma lipoprotein(a) [Lp(a)] levels in Japanese and Chinese, this method identified 25 different apo(a) isoforms and detected one or two apo(a) isoforms in more than 99.5% of the individuals tested. The apparent molecular weights of the apo(a) isoforms ranged from 370 kDa to 950 kDa, and 22 of the 25 different apo(a) isoforns had a higher molecular weight than of apo B-100. Studies on Japanese families confirmed the autosomal codominant segregation of apo(a) isoforms and the existence of a null allele at the apo(a) locus. The observed frequency distribution of apo(a) isoform phenotypes fit the expectations of the Hardy-Weinberg equilibrium in both the Japanese and Chinese populations. Our data indicate the existence of at least 26 alleles, including a null allele, at the apo(a) locus. The frequency distribution patterns of the apo(a) isoform alleles in Japanese and Chinese were similar to each other and also similar to that of apo(a) gene sizes reported in Caucasian American individuals. The average heterozygosity at the apo(a) locus was 92% in Japanese and 93% in Chinese. A highly significant inverse correlation was observed between plasma Lp(a) levels and the size of apo(a) isoforms in both the Japanese (r=-0.677, P=0.0001) and the Chinese (r=-0.703, P=0.0001). A highly skewed distribution of Lp(a) concentrations towards lower levels in the Japanese population may be explained by high frequencies of alleles encoding large apo(a) isoforms and the null allele.  相似文献   

19.
The distributions of plasma lipoprotein(a), or Lp(a), levels differ significantly among ethnic groups. Individuals of African descent have a two- to threefold higher mean plasma level of Lp(a) than either Caucasians or Orientals. In Caucasians, variation in the plasma Lp(a) levels has been shown to be largely determined by sequence differences at the apo(a) locus, but little is known about either the genetic architecture of plasma Lp(a) levels in Africans or why they have higher levels of plasma Lp(a). In this paper we analyze the plasma Lp(a) levels of 257 sibling pairs from 49 independent African American families. The plasma Lp(a) levels were much more similar in the sibling pairs who inherited both apo(a) alleles identical by descent (IBD) (r = .85) than in those that shared one (r = .48) or no (r = .22) parental apo(a) alleles in common. On the basis of these findings, it was estimated that 78% of the variation in plasma Lp(a) levels in African Americans is attributable to polymorphism at either the apo(a) locus or sequences closely linked to it. Thus, the apo(a) locus is the major determinant of variation in plasma Lp(a) levels in African Americans, as well as in Caucasians. No molecular evidence was found for a common "high-expressing" apo(a) allele in the African Americans. We propose that the higher plasma levels of Lp(a) in Africans are likely due to a yet-to-be-identified trans-acting factor(s) that causes an increase in the rate of secretion of apo(a) or a decrease in its catabolism.  相似文献   

20.
We have investigated the influence of apo(a) genetics on the relationship between interleukin (IL)-6, and lipoprotein (a) [Lp(a)] levels in 154 patients with monoclonal gammopathy and 189 healthy subjects. No significant differences in Lp(a) levels and distribution of subjects with different sizes of apo(a) isoforms were found between patients and healthy controls. Relationship between IL-6 and Lp(a) levels was strongly dependent on the size of apo(a) isoforms. In patients with high-size apo(a) isoforms Lp(a) levels positively correlated (r=0.475, P=0.0007) to IL-6 concentrations, whereas no correlation was found in patients with low apo(a) isoforms. Our present finding may provide a plausible explanation for the contradictory findings about the acute phase protein nature of Lp(a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号