首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phosphatidylcholines (PCs) with cyclohexyl fatty acids as acyl chains were synthesized from 11-cyclohexyl and 13-cyclohexyl fatty acids and their physical properties were examined. The thermotropic behavior and barrier function of liposomal membranes formed from these PCs were studied. These PCs showed about 10°C lower gel-to-liquid crystalline phase transition temperatures (Tc) than the corresponding straight-chain PCs. The properties of mixtures of these cyclohexyl acyl PCs with straight-chain PCs were rather different from those observed with mixtures of straight-chain PCs. Cyclohexyl fatty acyl PCs showed barrier functions even above the Tc unlike the corresponding straight-chain PCs. These results indicate significant differences between the overall packing of cyclohexyl fatty acyl PCs and of the corresponding straight-chain PCs both in the gel state and in the liquid crystalline state. The significance of these cyclohexyl acyl chains in polar lipids, which are abundant in the thermophilic acidophilic bacterium, Bacillus acidocaldarius, is discussed.  相似文献   

2.
3.
ω-3多不饱和脂肪酸治疗急性肺损伤的疗效观察   总被引:1,自引:0,他引:1  
目的探讨ω-3多不饱和脂肪酸对急性肺损伤(ALI)疗效。方法选择ALI患者39例,随机分为2组。对照组(19例)予以常规治疗,治疗组20例在常规治疗基础上加用ω-3多不饱和脂肪酸。对比2组治疗有效率及治疗后2、4和8 d的血气分析变化观察氧分压、氧合指数等的变化。结果治疗组有效率为70%,与对照组31.6%相比差异有统计学意义(P0.05);治疗组PaO2、氧合指数高于对照组,同时心率、乳酸水平,下降较对照组明显,差异有统计学意义(P0.05),特别是乳酸(P0.01)。结论ω-3多不饱和脂肪酸应用有助于改善ALI患者的呼吸功能及预后。  相似文献   

4.
Addition to Bacillus acidocaldarius of acids which can act as primers for fatty acid synthesis promote the synthesis of corresponding fatty acids competitively. The effective acids are n?C5 to -?7 (not C4 or C8), iso- and anteiso-C, and ?C, (not C4), and a range of cyclic acids from cyclobutylacetic and cyclopentanecarboxylic to cycloheptylacetic. New non-natural ω-cyclobutyl-, ω-cyclopentyl-, and ω-cycloheptyl-fatty acids are obtainable. The range of acceptable primers and the range of fatty acids produced therefrom indicate, respectively, the substrate specificities of the transacylase which introduces acyl species into fatty acids synthesis and the one which removes them. The specificity of the primer transacylase may be similar to that in some rumen anaerobes.  相似文献   

5.
哺乳动物因为缺乏Δ-12和ω-3脂肪酸脱氢酶,不能自身合成必需的多不饱和脂肪酸.目前,通过转基因技术在哺乳动物体内表达ω-3脂肪酸脱氢酶,能将长链的n-6多不饱和脂肪酸转化成n-3多不饱和脂肪酸,造成体内长链的n-6多不饱和脂肪酸含量显著减低.本研究通过自我剪切2A肽介导Δ-12和ω-3脂肪酸脱氢酶(FAT-2和FAT-1)以及人过氧化氢酶(human catalase,hCAT)在小鼠的肌肉同时表达.结果表明,转基因小鼠肌肉中长链n-3多不饱和脂肪酸含量提高2.6倍,长链n-6多不饱和脂肪酸含量没有显著变化,而n-6/n-3比例显著降低(P < 0.01).同时蛋白质印迹检测到人过氧化氢酶hCAT在小鼠的肌肉组织中表达,且过氧化氢酶活性比野生型小鼠显著提高(P < 0.01).  相似文献   

6.
Enzymatic properties of a purified Penicillium nuclease (designated as nuclease P1) were investigated. The enzyme activities for RNA, heat-denatured DNA, native DNA, 3′-AMP and 2′-AMP showed a great degree of similarity with respect to the following properties: a) Range of stable pH (5~8), b) temperature optima (at around 70°C), c) thermostability (about 50% inactivation at 67°C, pH 6.0 for 15 min, d) effect of metal ions and SH inhibitors, e) requirement of Zn2+, f) protection from the heat-inactivation by albumin and Zn2+, g) inactivation on standing in the cold and reactivation on heating, h) sensitivity to protease, and i) competitive relationship between substrates in the enzyme reaction. Moreover, the ratio of enzyme activities in several mutants of Penicillium citrinum was constant. From these results, together with constant ratio of the specific activities throughout purification, it is concluded that a single enzyme might be responsible for both phosphodiesterase and phosphomonoesterase functions.  相似文献   

7.
Cyclooxygenase-2 (COX-2) is important in the progression of epithelial tumors. Evidence indicates that omega-6 PUFAs such as arachidonic acid (AA) promote the growth of tumor cells; however, omega-3 fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] inhibit tumor cell proliferation. We investigated the effects of omega-3 PUFA on the expression and function of COX-2 in 70W, a human melanoma cell line that metastasizes to the brain in nude mice. We show that 1) tumor necrosis factor-alpha upregulates the expression of both COX-2 mRNA and prostaglandin E2 (PGE2) production, and 2) omega-3 and omega-6 PUFA regulate COX-2 mRNA expression and PGE2 production. AA increased COX-2 mRNA expression and prostaglandin production in omega-6-stimulated 70W cells. Conversely, COX-2 mRNA expression decreased in cells incubated with EPA or DHA. AA increased Matrigel invasion 2.4-fold, whereas EPA or DHA did not. Additionally, PGE2 increased in vitro invasion 2.5-fold, whereas exposure to PGE3 significantly decreased invasion. Our results demonstrate that incubation of 70W cells with either AA or PGE2 increased invasiveness, whereas incubation with EPA or DHA downregulated both COX-2 mRNA and protein expression, with a subsequent decrease in Matrigel invasion. Taken together, these results indicate that omega-3 PUFA regulate COX-2-mediated invasion in brain-metastatic melanoma.  相似文献   

8.
Isoprostanes (iPs) are prostaglandin-like molecules derived from autoxidation of polyunsaturated fatty acids (PUFAs). Urinary iP levels have been used as indices of in vivo lipid peroxidation. Thus far, it has only been possible to measure iPs derived from arachidonic acid in urine, because levels of iPs/neuroprostanes (nPs) derived from omega 3-PUFAs have been found to be below detection limits of available assays. Because of the interest in omega3-PUFA dietary supplementation, we developed specific methods to measure nPF4 alpha-VI and iPF3 alpha-VI [derived from 4,7,10,13,16,19-docosahexaenoic acid (DHA) and 5,8,11,14,17-eicosapentaenoic acid (EPA)] using a combination of chemical synthesis, gas chromatography/mass spectrometry (GC/MS), and liquid chromatography tandem mass spectrometry (LC/MS/MS). Although nPF4 alpha-VI was below the detection limit of the assay, we conclusively identified iPF3 alpha-VI in human urine by GC/MS and LC/MS/MS. The mean levels in 26 subjects were approximately 300 pg/mg creatinine. Our failure to detect nPF4 alpha-VI may have been due to its rapid metabolism by beta-oxidation to iPF3 alpha-VI, which we showed to occur in rat liver homogenates. In contrast, iPF3 alpha-VI is highly resistant to beta-oxidation in vitro. Thus iPF3 alpha-VI can be formed by two mechanisms: i) direct autoxidation of EPA, and ii) beta-oxidation of nPF4 alpha-VI, formed by autoxidation of DHA. This iP may therefore serve as an excellent marker for the combined in vivo peroxidation of EPA and DHA.  相似文献   

9.
The experimental criteria, principally GLC behaviour and spectroscopic data, by which ω-cycloalkyl fatty acids (cyclobutyl to cycloheptyl, C14 to C21) can be identified, are described.  相似文献   

10.
[目的]ω-羟基脂肪酸(ω-hydroxyfatty acid,ω-HFAs)是一种绿色安全无毒,具有良好生物相容性的理想生物降解材料,广泛应用于化工、食品、药学等方面,微生物发酵法生产ω-羟基脂肪酸具有重要的研究意义和应用前景.[方法]为了得到高产ω-羟基脂肪酸的代谢工程菌株,通过同源重组技术,连续敲除二倍体热带假丝...  相似文献   

11.
γ-亚麻酸(GLA,C18:3△6,9,12)是由△6-脂肪酸脱氢酶以亚油酸(LA,C18:2△9,12)为底物,在C6位脱氢形成的。由于在人体中,γ-亚麻酸是花生四烯酸、前列腺素类和白三烯类等生理活性物质的前体物,而深黄被孢霉是目前用于微生物发酵生产γ-亚麻酸的主要菌株。本文根据脂肪酸脱氢酶的保守区设计引物,利用反转录聚合酶链式反应从丝状真菌深黄被孢霉中克隆了编码△6-脂肪酸脱氢酶的cDNA,全长为1374个核苷酸,编码457 个氨基酸,但与其他位点的脂肪酸脱氢酶不同的是, △6-脂肪酸脱氢酶在其序列的 N 端特有细胞色素 b5(Cytb5)区。这是国际上对深黄被孢霉△6-脂肪酸脱氢酶基因的首次报道。  相似文献   

12.
13.
14.
《Process Biochemistry》2014,49(4):617-622
ω-Hydroxyundec-9-enoic acid and n-heptanoic acid are valuable building blocks for the production of flavors and antifungal agents as well as bioplastics such as polyamides and polyesters. However, a biosynthetic process to allow high productivity and product yield has not been reported. In the present study, we engineered an Escherichia coli-based biocatalytic process to efficiently produce ω-hydroxyundec-9-enoic acid and n-heptanoic acid from a renewable fatty acid (i.e., ricinoleic acid). Expression systems for catalytic enzymes (i.e., an alcohol dehydrogenase of Micrococcus luteus, a Baeyer–Villiger monooxygenase of Pseudomonas putida KT2440, an esterase of Pseudomonas fluorescens SIK WI) and biotransformation conditions were investigated. Biotransformation during stationary growth phase of recombinant E. coli in a bioreactor allowed to produce ω-hydroxyundec-9-enoic acid and n-heptanoic acid at a rate of 3.2 mM/h resulting in a final product concentration of ca. 20 mM. The total amount of ω-hydroxyundec-9-enoic acid and n-heptanoic acid produced reached 6.5 g/L (4.0 g/L of ω-hydroxyundec-9-enoic acid and 2.5 g/L of n-heptanoic acid). These results indicate that the high value carboxylic acids ω-hydroxyundec-9-enoic acid and n-heptanoic acid can be produced from a renewable fatty acid via whole-cell biotransformation.  相似文献   

15.
Long-chain 3-hydroxydicarboxylic acids (3-OHDCAs) are thought to arise via beta-oxidation of the corresponding dicarboxylic acids (DCAs), although long-chain DCAs are neither readily transported into nor beta-oxidized in mitochondria. We thus examined whether omega-hydroxylation of 3-hydroxy fatty acids (3-OHFAs), formed via incomplete mitochondrial oxidation, is a more likely pathway for 3-OHDCA production. NADPH-fortified human liver microsomes converted 3-hydroxystearate and 3-hydroxypalmitate to their omega-hydroxylated metabolites, 3,18-dihydroxystearate and 3,16-dihydroxypalmitate, respectively, as identified by GC-MS. Rates of 3,18-dihydroxystearate and 3,16-dihydroxypalmitate formation were 1.23 +/- 0.5 and 1.46 +/- 0.30 nmol product formed/min/mg protein, respectively (mean +/- SD; n = 13). Polyspecific CYP4F antibodies markedly inhibited microsomal omega-hydroxylation of 3-hydroxystearate (68%) and 3-hydroxypalmitate (99%), whereas CYP4A11 and CYP2E1 antibodies had little effect. Upon reconstitution, CYP4F11 and, to a lesser extent, CYP4F2 catalyzed omega-hydroxylation of 3-hydroxystearate, whereas CYP4F3b, CYP4F12, and CYP4A11 exhibited negligible activity. CYP4F11 was the lone CYP4F/A enzyme that effectively oxidized 3-hydroxypalmitate. Kinetic parameters of microsomal 3-hydroxystearate metabolism were K(m) = 55 microM and V(max) = 8.33 min(-1), whereas those for 3-hydroxypalmitate were K(m) = 56.4 microM and V(max) = 14.2 min(-1). CYP4F11 kinetic values resembled those of native microsomes, with K(m) = 53.5 microM and V(max) = 13.9 min(-1) for 3-hydroxystearate and K(m) = 105.8 microM and V(max) = 70.6 min(-1) for 3-hydroxypalmitate. Our data show that 3-hydroxystearate and 3-hydroxypalmitate are converted to omega-hydroxylated 3-OHDCA precursors in human liver and that CYP4F11 is the predominant catalyst of this reaction. CYP4F11-promoted omega-hydroxylation of 3-OHFAs may modulate the disposition of these compounds in pathological states in which enhanced fatty acid mobilization or impairment of mitochondrial fatty acid beta-oxidation increases circulating 3-OHFA levels.  相似文献   

16.
17.
△6-脂肪酸脱氢酶是一种膜整合蛋白,也是多不饱和脂肪酸合成途径中的限速酶.在前期工作中,通过RT-PCR和RACE技术,从少根根霉NK300037中克隆到一个潜在编码△6-脂肪酸脱氢酶的序列,序列和功能分析结果表明该序列具有一个长度为1377bp、编码由458个氨基酸组成、大小为52kD的新的△6-脂肪酸脱氢酶基因.把少根根霉△6-脂肪酸脱氢酶基因(RAD6)亚克隆到表达载体pPIC3.5K,构建重组表达载体pPICRAD6,并转化到毕赤酵母菌株GS115进行表达.提取酵母细胞总脂肪酸和进行甲酯化,经气相色谱和气相色谱-质谱连用分析表明,目的基因的编码产物能将C16:1、C17:1、C18:1、亚油酸和α-亚麻酸在△6和7位间特异性脱氢而引入一个新的双键,生成更高不饱和的脂肪酸,该催化反应没有链长特异性,只有键位特异性.此外,按Kozak序列特点,改变目的基因转译起始密码子周边序列结构,并把改变后序列导入毕赤酵母GS115中进行功能表达分析,结果表明在毕赤酵母中这种改变同样能提高目的基因的表达水平.综合所有分析结果表明,巴斯德毕赤酵母更适合用来综合分析△6-脂肪酸脱氢酶基因的功能.  相似文献   

18.
Fatty acid (FA) transfer proteins extract FA from membranes and sequester them to facilitate their movement through the cytosol. Detailed structural information is available for these soluble protein–FA complexes, but the structure of the protein conformation responsible for FA exchange at the membrane is unknown. Staphylococcus aureus FakB1 is a prototypical bacterial FA transfer protein that binds palmitate within a narrow, buried tunnel. Here, we define the conformational change from a “closed” FakB1 state to an “open” state that associates with the membrane and provides a path for entry and egress of the FA. Using NMR spectroscopy, we identified a conformationally flexible dynamic region in FakB1, and X-ray crystallography of FakB1 mutants captured the conformation of the open state. In addition, molecular dynamics simulations show that the new amphipathic α-helix formed in the open state inserts below the phosphate plane of the bilayer to create a diffusion channel for the hydrophobic FA tail to access the hydrocarbon core and place the carboxyl group at the phosphate layer. The membrane binding and catalytic properties of site-directed mutants were consistent with the proposed membrane docked structure predicted by our molecular dynamics simulations. Finally, the structure of the bilayer-associated conformation of FakB1 has local similarities with mammalian FA binding proteins and provides a conceptual framework for how these proteins interact with the membrane to create a diffusion channel from the FA location in the bilayer to the protein interior.  相似文献   

19.
The establishment of renewable biofuel and chemical production is desirable because of global warming and the exhaustion of petroleum reserves. Sebacic acid (decanedioic acid), the material of 6,10-nylon, is produced from ricinoleic acid, a carbon-neutral material, but the process is not eco-friendly because of its energy requirements. Laccase-catalyzing oxidative cleavage of fatty acid was applied to the production of dicarboxylic acids using hydroxy and oxo fatty acids involved in the saturation metabolism of unsaturated fatty acids in Lactobacillus plantarum as substrates. Hydroxy or oxo fatty acids with a functional group near the carbon–carbon double bond were cleaved at the carbon–carbon double bond, hydroxy group, or carbonyl group by laccase and transformed into dicarboxylic acids. After 8 h, 0.58 mM of sebacic acid was produced from 1.6 mM of 10-oxo-cis-12,cis-15-octadecadienoic acid (αKetoA) with a conversion rate of 35% (mol/mol). This laccase-catalyzed enzymatic process is a promising method to produce dicarboxylic acids from biomass-derived fatty acids.  相似文献   

20.
MUFAs are unsaturated FAs with one double bond and are derived from endogenous synthesis and dietary intake. Accumulating evidence has suggested that plasma and erythrocyte MUFA levels are associated with cardiometabolic disorders, including CVD, T2D, and metabolic syndrome (MS). Previous genome-wide association studies (GWASs) have identified seven loci for plasma and erythrocyte palmitoleic and oleic acid levels in populations of European origin. To identify additional MUFA-associated loci and the potential functional variant at each locus, we performed ethnic-specific GWAS meta-analyses and trans-ethnic meta-analyses in more than 15,000 participants of Chinese and European ancestry. We identified novel genome-wide significant associations for vaccenic acid at FADS1/2 and PKD2L1 [log10(Bayes factor) ≥ 8.07] and for gondoic acid at FADS1/2 and GCKR [log10(Bayes factor) ≥ 6.22], and also observed improved fine-mapping resolutions at FADS1/2 and GCKR loci. The greatest improvement was observed at GCKR, where the number of variants in the 99% credible set was reduced from 16 (covering 94.8 kb) to 5 (covering 19.6 kb, including a missense variant rs1260326) after trans-ethnic meta-analysis. We also confirmed the previously reported associations of PKD2L1, FADS1/2, GCKR, and HIF1AN with palmitoleic acid and of FADS1/2 and LPCAT3 with oleic acid in the Chinese-specific GWAS and the trans-ethnic meta-analyses. Pathway-based analyses suggested that the identified loci were in unsaturated FA metabolism and signaling pathways. Our findings provide novel insight into the genetic basis relevant to MUFA metabolism and biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号