首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Boar taint is an offensive urine or faecal-like odour, affecting the smell and taste of cooked pork from some mature non-castrated male pigs. Androstenone and skatole in fat are the molecules responsible. In most pig production systems, males, which are not required for breeding, are castrated shortly after birth to reduce the risk of boar taint. There is evidence for genetic variation in the predisposition to boar taint.A genome-wide association study (GWAS) was performed to identify loci with effects on boar taint. Five hundred Danish Landrace boars with high levels of skatole in fat (>0.3 μg/g), were each matched with a litter mate with low levels of skatole and measured for androstenone. DNA from these 1,000 non-castrated boars was genotyped using the Illumina PorcineSNP60 Beadchip. After quality control, tests for SNPs associated with boar taint were performed on 938 phenotyped individuals and 44,648 SNPs. Empirical significance thresholds were set by permutation (100,000). For androstenone, a ‘regional heritability approach’ combining information from multiple SNPs was used to estimate the genetic variation attributable to individual autosomes.

Results

A highly significant association was found between variation in skatole levels and SNPs within the CYP2E1 gene on chromosome 14 (SSC14), which encodes an enzyme involved in degradation of skatole. Nominal significance was found for effects on skatole associated with 4 other SNPs including a region of SSC6 reported previously. Genome-wide significance was found for an association between SNPs on SSC5 and androstenone levels and nominal significance for associations with SNPs on SSC13 and SSC17. The regional analyses confirmed large effects on SSC5 for androstenone and suggest that SSC5 explains 23% of the genetic variation in androstenone. The autosomal heritability analyses also suggest that there is a large effect associated with androstenone on SSC2, not detected using GWAS.

Conclusions

Significant SNP associations were found for skatole on SSC14 and for androstenone on SSC5 in Landrace pigs. The study agrees with evidence that the CYP2E1 gene has effects on skatole breakdown in the liver. Autosomal heritability estimates can uncover clusters of smaller genetic effects that individually do not exceed the threshold for GWAS significance.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-424) contains supplementary material, which is available to authorized users.  相似文献   

2.
The concentrations of the boar taint compounds androstenone and skatole in plasma and fat, together with those of testosterone in plasma, were investigated in pubertal purebred Duroc and Landrace boars following stimulation with human chorionic gonadotrophin (hCG). Higher initial levels of androstenone and testosterone were found in Duroc than Landrace boars. Duroc boars, which were approximately ten days older than the Landrace boars, also showed a more advanced stage of spermatogenesis than Landrace boars. While Landrace boars had the highest skatole levels. Following stimulation with hCG the relative increases in testosterone, androstenone, and skatole concentrations were highest in Landrace boars. The level of androstenone in fat three days after hCG stimulation exceeded 1 μg/g fat in all stimulated boars. The decreases in plasma levels of androstenone and testosterone on Days 2 and 3 after hCG stimulation were more pronounced in Landrace than Duroc boars. However, unlike the plasma androstenone and testosterone levels, the plasma concentrations of skatole did not decrease on Days 2 and 3 following stimulation, but remained elevated on Day 3. These results indicate that the lower levels of testicular steroids in Landrace boars compared with Duroc boars was not due to a lower production capacity, but more likely to a faster dissapearance of steroids in Landrace boars. In the present study, age, live weight, and testicular development did not significantly contribute to the variation in fat androstenone. The present data and previous reports on candidate genes related to androstenone biosynthesis and metabolism suggests that future selection against factors associated with boar taint remains a possible solution for the problem of boar taint in the swine industry.  相似文献   

3.
Sainfoin is a protein-rich legume with an ideal amino acid profile and therefore could partly replace soybeans in the diets of growing pigs. However, sainfoin also contains a non-negligible amount of condensed tannins (CTs), which can act as antinutritional factors. Bioactive plant compounds, like hydrolysable tannins, have been suggested to be suitable in entire male (EM) production, as they impair the development of accessory sex glands and, by that, reduce boar taint compound levels without negatively impacting growth. It is unknown whether, similar to hydrolysable tannins, CTs from sainfoin reduce the incidence of boar taint without impacting growth performance, carcass traits, and meat quality. For the experiment, 48 Swiss Large White EM were assigned within litter to one of four grower (25–60 kg BW) and finisher (60–105 kg BW) diets supplemented with 0 (T0), 5 (T5), 10 (T10), and 15% (T15) sainfoin meal, respectively. The four diets were designed to be isocaloric and isoproteic. Increasing the dietary sainfoin level had no negative effect on growth performance or the carcass characteristics. Despite leading to a similar feed intake between the treatment groups, increasing the dietary sainfoin levels tended (P ≤ 0.08) to reduce the number of feeder visits but increased the time spent at the feeder as well as the feed intake per visit during the finisher period. By increasing sainfoin intake, the levels of C18:3n-3 and long-chain homologs linearly increased (P < 0.01) in the backfat and intramuscular fat (IMF), whereas in the backfat, but not the IMF, the 18:2n-6 levels decreased (P < 0.01). The latter triggered a greater (P < 0.01) desaturation rate (C18:1n-9/C18:0) of the saturated fatty acids, resulting in a greater (P < 0.01) proportion of monounsaturated fatty acid. Apart from a linear decrease (P = 0.02) in the androstenone levels in the longissimus thoracis (LT), increasing the sainfoin intake had no effect on the level of boar taint in the LT and backfat. As determined by the elevated correlation coefficient, skatole and indole levels, but not androstenone levels, in the adipose tissue seem to be reliable proxies for their respective levels in LT and, therefore, in pork. In conclusion, sainfoin is a suitable homegrown protein source for grower finisher pigs and can be included at up to 15% in the diet to replace 7% of soybean in a diet without producing any noteworthy effects on growth, whereas the impact of CTs on boar taint was limited.  相似文献   

4.
Production of entire male pigs could be a future strategy for organic pig production. However, production of entire males leads to increased risk of carcasses with elevated boar taint levels. It is hypothesized that skatole levels in pig meat are affected by faecal soiling and that organic housing facilities can increase the risk of pigs being heavily soiled. Therefore, the overall aim of this study was to investigate if increased pig and pen soiling increases skatole concentration in entire male pigs. In five herds, 1174 organic entire male pigs were reared in four batches across two seasons, summer and winter. Measurements of pig and pen soiling, as well as fat skatole and androstenone concentration and human nose sensory tests of fat odour, were performed. Skatole and androstenone concentrations varied greatly within and between herds with a 10% and 90% percentile for the overall population of 0.02 and 2.25 µg/g for skatole and 0.53 and 4.84 µg/g for androstenone. Human nose positive tests averaged 18.3% with great variation between herds and seasons. Pen soiling had significant effects on pig soiling. Moreover, outdoor pen soiling significantly affected skatole concentration in interactions with herd and season (P<0.001 and P=0.003) and affected human nose positive risk in interaction with herd (P=0.005). Soiling on indoor pen areas did not affect skatole levels and no effect on androstenone was found for any pen area. Soiling of pigs affected both skatole and androstenone levels, with the size of the head and abdomen body areas covered in manure showing significant positive effects on skatole concentration. No effect of density of the manure layer was found on either boar taint measure. Herd significantly affected both skatole and androstenone in fat as well as the human nose positive risk. The human nose test revealed no effect from pig soiling. A large variation in the different boar taint measures was found for both high and low scores of pen and pig soiling, and only a small difference in skatole and androstenone concentrations between the high and low soiling categories was found. Therefore, while increasing the hygiene management could be a strategy for reducing boar taint in production of organic entire male pigs, it should be emphasized that other factors would also need to be considered.  相似文献   

5.
Genetically reducing boar taint using low-taint lines is considered the most sustainable and economic long-term alternative to surgical castration of male pigs. Owing to the high heritability of the main boar taint components (androstenone, skatole and indole), breeding is an excellent tool for reducing the number of tainted carcasses. To incorporate boar taint into breeding programmes, standardized performance testing is required. The objective of this study was to develop and formally present a performance test for the main boar taint compounds on live breeding candidates. First, a standardized performance test for boar taint was established. A biopsy device was developed to extract small tissue samples (200 to 300 mg) from breeding candidates. Quantification of boar taint components from these small samples using specialized chemical extraction methods proved accurate and repeatable (r = 0.938). Following establishment of the method, biopsy samples of 516 live boars (100 to 130 kg live weight) were collected in the second step. Various mixed linear models were tested for each boar taint compound; models were ranked in terms of their information content. Pedigree information of 2245 ancestors of biopsied animals was included, and genetic parameters were estimated using univariate and multivariate models. Androstenone (in μg/g liquid fat (LF): mean = 0.578, σ = 0.527), skatole (in μg/g LF: mean = 0.033, σ = 0.002) and indole (in μg/g LF: mean = 0.032, σ = 0.002) levels obtained by biopsy were plausible. Heritability estimates for androstenone calculated with univariate (0.453) and multivariate (0.452) analyses were comparable to those in the literature. Heritabilities for skatole (0.495) and indole (0.550) were higher than that for androstenone. Genetic and phenotypic correlations were similar to those published previously. Our results show that data on boar taint compounds from small adipose samples obtained by biopsy provide similar genetic parameters as that described in the literature for larger samples and are therefore a reliable performance test for boar taint in live breeding candidates.  相似文献   

6.
To investigate the extent to which the level of androstenone and skatole decreases with a decrease in live weight and/or age at slaughter of entire male pigs produced under organic standards, 1174 entire male pigs were raised in parallel in five organic herds, distributed across four batches in summer and winter. The median androstenone level was high for organic entire male pigs (1.9 µg/g), but varied greatly both within and between herds. Median skatole level was 0.05 µg/g, also with a wide range both within and between herds. Decreasing live weight over the range of 110±15.6 kg s.d. was found to decrease androstenone as well as skatole concentration, however, with different patterns of association. Age did not have significant direct effect on either androstenone or skatole levels. Androstenone levels were higher during winter than summer (P<0.0001), but no difference in skatole was found between seasons. The study concludes that decreasing live weight at slaughter could be an applicable management tool to reduce risk of boar taint and the level of tainted carcasses for a future production of entire male pigs within the organic pig production system, although further studies are needed as great variation in boar taint was found also for low weight animals.  相似文献   

7.
Societal pressure to ban surgical castration of male piglets is rising due to animal welfare concerns, thus other methods to prevent boar taint need to be explored. Genetic selection against boar taint appears to be a long-term sustainable alternative. However, as boar taint is linked to reproductive hormones, it is important to consider possible negative side effects such as delayed sexual maturity or changes in behaviour. We reported earlier that the melanocortin-4 receptor (MC4R) marker can be used to reduce boar taint levels in fat of boars. The objective of this study was to evaluate whether MC4R marker-assisted selection for lower boar taint prevalence affects plasma levels of boar taint compounds and testosterone; sexual maturity; behaviour; skin lesions; and lameness in boars and gilts. Using an intervention study with a 2×2 design, 264 boars and gilts differing on position 893 of the MC4R gene (AA v. GG) were compared. The MC4R polymorphism did not affect the plasma concentration of either androstenone or testosterone at different time points, whereas the concentration of skatole was significantly lower (P=0.003) and the concentration of indole tended to be lower (P=0.074) in GG compared with AA boars. A higher percentage of gilts of the GG genotype were in puberty at slaughter age compared with AA gilts (P<0.001). The age of the boars at sexual maturity (as indicated by the first positive preputial smear test) did not differ between AA and GG boars. In contrast, weight of GG boars at sexual maturity tended to be lower (P=0.065). During the period from 6 weeks of age to slaughter, boars and gilts of the GG genotype showed more playing behaviour (P=0.015) and less passive and feeding behaviour (P=0.003). They showed more skin lesions on their back and caudal area (P=0.022), and tended to show more skin lesions on their head and anterior area (P=0.093) compared with AA animals. In conclusion, the polymorphism in the MC4R gene can be used as a marker without negative effects on reproduction characteristics in boars and gilts. Genetic selection towards a lower prevalence of boar taint will lead to more active pigs with more skin lesions. Management strategies may therefore be necessary to reduce skin lesions in the selected animals.  相似文献   

8.
9.
Boar taint is mainly caused by two components; skatole (3-methylindole) and androstenone. By castrating the male pigs, boar taint will be avoided. In Norway, castration of pigs will no longer be permitted after 2009. This represents a substantial cost for the Norwegian swine production. Other Norwegian studies have shown that a large proportion of pigs are above the consumer detection limits for these two chemical components. The obvious question for the geneticist arises: Is it possible to select against skatole and androstenone in a breeding programme? Skatole is produced in the gut by bacteria. It is then absorbed in the blood stream. Skatole is either metabolised in the liver or transported and stored in fatty tissue. Androstenone is produced in the testis, and its biochemical pathway is related to the pathway of testosterone. In this study, fatty tissue was collected from the carcasses of Norwegian Landrace and Duroc boars, and analysed for androstenone and skatole. The length of glandula bulbourethralis was measured on the same animals, as this is regarded as a good indicator of sexual maturation. Heritabilities of androstenone and skatole were substantial. The two components were genetically correlated. Sexual maturation was also highly heritable. However, correlations to both androstenone and skatole were significantly unfavourable.  相似文献   

10.
Pig meat quality from entire males   总被引:1,自引:0,他引:1  
This paper constitutes an updated review of the production and meat quality aspects of rearing entire male pigs. Since a major obstacle in rearing entire males is the incidence of boar taint, possible methods for detection are also summarised. Safe and fast methods for detection of boar taint would be valuable in avoiding complaints from consumers. Pig meat quality is determined by many aspects, among which odour and taste are the most important attributes. Odour may be negatively affected by the presence of a pheromonal steroid, androstenone, and a fermentation product of l-tryptophan, skatole. Male pigs are surgically castrated in many countries to minimise the risk of accumulation of high levels of androstenone and skatole. Raising entire male pigs is more profitable because they have superior production characteristics and improved meat quality due to leaner carcasses and higher protein content, as compared to castrated pigs. Furthermore, surgical castration is negative from an animal welfare point of view. In most studies, no differences in sensory quality have been found between lean meat from entire male pigs with low levels of androstenone and skatole and pork from castrates and females. The question that remains is: which substances are responsible for boar taint besides androstenone and skatole and whether they need to be considered? The threshold values used for androstenone and skatole might also be too high for highly sensitive persons. Recent research shows that a human odorant receptor, ORD7D4, is involved in sensitivity to androstenone. If the ORD7D4 genotypes of consumer and expert panels are known, this might facilitate consumer studies in the future. There is still a great need for rapid on/at-line detection methods in abattoirs for identifying carcasses with unacceptable levels of boar taint compounds. Several emerging rapid technologies with a potential for boar taint detection have been investigated. They represent various measurement principles such as chemical sensor arrays (electronic noses), mass-spectrometry fingerprinting, ultra-fast gas chromatography, gas-phase spectrometry and biosensors. An industrial detection method should allow 100% correct classification of both acceptable and not-acceptable samples with regard to boar taint sorting criteria. There are, however, still too high a percentage of false negatives ranging from 5% to 20%. In addition, these methods do not yet seem to fulfil the industrial specifications with regard to cost efficiency, simplicity and analysis time. There is still no dedicated measurement technology available for on/at-line detection of boar-tainted carcasses that measures both androstenone and skatole.  相似文献   

11.
The level of cytochrome b5A ( CYB5A ) in pig testis is correlated with boar taint from androstenone and an AF016388:c.-8G>T polymorphism in CYB5A has been linked with low androstenone levels in the fat of pigs. In this study, we developed a polymerase chain reaction-based assay to genotype 1242 boars from eight lines for the c.-8G>T SNP. The c.-8T allele was found in all eight lines at a frequency ranging from 1.8% to 20.3% with an overall frequency of 8.6%. Significant deviations from Hardy–Weinberg equilibrium were found in the Hampshire, Landrace and Yorkshire breeds. The homozygous mutant c.-8TT occurred infrequently and was not found in some lines, but was consistently associated with low androstenone levels in fat. Both CYB5A mRNA and CYB5A protein levels were decreased in the c.-8TT genotype in a subset of Yorkshire boars, suggesting that low levels of CYB5A protein in the c.-8TT mutant were not due to inefficient translation of CYB5A mRNA. There were significant but modest marker effects on fat androstenone levels in Landrace, Yorkshire and a Large White/Duroc cross and fat skatole in Duroc and Sire Line breeds. There was no effect of CYB5A genotype on bulbourethral gland length, suggesting that this SNP will not affect reproductive traits. We conclude that the c.-8G>T SNP in the CYB5A gene has a significant but modest effect on boar taint in male pigs and could be useful in some breeds as part of a panel of SNP markers in a marker-assisted selection programme to produce low boar taint pigs.  相似文献   

12.
Piétrain (P), Large White (LW) and Belgian Landrace stress negative (BN) boars were slaughtered at 50, 70, 90 or 110 kg live weight to investigate breed differences and the effect of slaughter weight on boar taint prevalence. Boar taint was quantified by four different methodologies: sensory evaluation of neckfat heated with a hot iron in the slaughterhouse, sensory evaluation of meat by consumer panels, sensory evaluation of fat and meat by expert panels and laboratory analysis of indole, skatole and androstenone in backfat. Skatole levels in backfat were significantly higher for LW and BN than for P boars. The androstenone levels and the hot iron method revealed a significant interaction between breed and slaughter weight. On the other hand, experts detected an effect of weight on the androstenone odour perception, which was significantly higher in fat from boars slaughtered at 90 kg compared with 50 kg, and significantly higher in meat from boars slaughtered at 110 kg compared with 50 kg. Consumers did not detect differences in the sensory characteristics among breeds or slaughter weight. These results indicate opportunities to minimise the risk of boar taint in entire male pigs by carefully selecting a combination of breed and slaughter weight. Along with the optimal slaughter weight, the effectiveness of reducing boar taint by lowering slaughter weight appeared to be breed dependent.  相似文献   

13.
Rearing entire pigs may lead to meat quality and welfare problems in relation to pubertal development. A better knowledge of the sources of variation of pubertal development, behaviour and boar taint is needed before generalizing entire male pigs. From 84 days of age, entire male pigs were reared in groups of 10 either in a conventional (C, 1 m²/animal, slatted floor) or an enriched (E, 2.5 m²/animal, straw bedding, outdoor run) housing during spring or autumn and fed ad libitum (n=10/housing/season). Mounting behaviour was observed for 3 h during the third (M3), fourth (M4) and fifth (M5) months of age. The total number of skin lesions was counted on both sides of the pigs 1 day before the behavioural recordings. The time spent in the outdoor run was also recorded during 3 days per month. The animals were slaughtered at 161±1 days of age (122±9 kg live weight). Blood samples were collected at 89 (M3), 119 (M4) and 152 (M5) days of age and at slaughter for the testosterone and oestradiol measurements. The testes were collected at slaughter, freed from the surrounding tissues and weighed. The fat samples were collected for the androstenone and skatole concentration measurement. Plasma testosterone and oestradiol-17β (oestradiol), fat androstenone and skatole and weight of the testes did not differ between the housing systems. Plasma testosterone (8.3 v. 3.9 nmol/l, P<0.05) and oestradiol (12.0 v. 9.2 pmol/l, P<0.1) at M3, fat skatole (0.124 v. 0.043, P<0.03) and weight of the testes (587 v. 512 g, P<0.05) were higher in the autumn than in the spring trial, suggesting that the pubertal development was accelerated. The number of received mounting behaviours was slightly higher in the autumn (P=0.08) trial and was markedly higher in the E than in the C environment (P<0.003). Skin lesions were more numerous in the C than in the E housing at M4 and M5 and in the spring than in the autumn trial at M3 and M4 (P<0.05). Fat androstenone and the number of performed mounting behaviours were significantly correlated between each other and with numerous indicators of the pubertal development (P<0.05). The number of skin lesions was correlated with plasma testosterone and live weight (P<0.05). Overall, this study suggests the effect of season on sexual development, the effect of the housing system on behaviour, and demonstrates the links between sexual hormones, behaviour and boar taint.  相似文献   

14.
Pork odour is to a great extent affected by the presence of malodorous compounds, mainly androstenone and skatole. The present review outlines the current state of knowledge about factors involved in the regulation of androstenone and skatole in entire male pigs. Androstenone is a pheromonal steroid synthesised in the testes and metabolised in the liver. Part of androstenone accumulates in adipose tissue causing a urine-like odour. Skatole is produced in the large intestine by bacterial degradation of tryptophan and metabolised by hepatic cytochrome P450 enzymes and sulphotransferase. The un-metabolised part accumulates in adipose tissue, causing faecal-like odour. Androstenone levels are mostly determined by genetic factors and stage of puberty, whereas skatole levels in addition to genetic background and hormonal status of the pigs are also controlled by nutritional and environmental factors. To reduce the risk of tainted carcasses entering the market, male pigs are surgically castrated in many countries. However, entire males compared to castrates have superior production characteristics: higher growth rate, better feed efficiency and leaner carcasses. Additionally, animal welfare aspects are currently of particular importance in light of increasing consumers' concerns. Nutrition, hormonal status, genetic influence on boar taint compounds and the methods to develop genetic markers are discussed. Boar taint due to high levels of skatole and androstenone is moderately heritable and not all market weight entire males have boar taint; it should thus be possible to select for pigs that do not have boar taint. In these studies, it is critical to assess the steroidogenic potential of the pigs in order to separate late-maturing pigs from those with a low genetic potential for boar taint. A number of candidate genes for boar taint have been identified and work is continuing to develop genetic markers for low boar taint. More research is needed to clarify the factors involved in the development of boar taint and to develop additional methods to prevent the accumulation of high concentrations of skatole and androstenone in fat. This review proposes those areas requiring further research.  相似文献   

15.
A rapid high-performance reversed-phase liquid chromatographic method for the simultaneous quantitative determination of the main boar taint compounds androstenone, skatole (3-methylindole) and indole, in back fat from pigs has been developed. The compounds are extracted by a simple homogenisation of adipose tissue in methanol; interfering lipids are removed by precipitation after cooling and centrifugation. Androstenone is derivatized pre-column with dansylhydrazine (5 min at ambient temperature) using BF3 as catalyst. The compounds are separated on a 60 × 4.6 mm I.D., 3 μm Hypersil ODS column (Hewlett-Packard) using a step-gradient; total time for the separation is 15 min. Fluorescence is used for selective detection. The limit of quantitation for indole and skatole is 30 ng/g and for androstenone 200 ng/g back fat. The results for skatole obtained by the present method were compared with those of a colorimetric method, while androstenone determinations were compared with two GC—MS methods and a RIA method. The correlations observed were in the range of 0.946–0.993. The average contents of androstenone and skatole were 640 ± 700 and 78 ± 113 ng/g (n = 1162 male pigs), respectively.  相似文献   

16.
Boar taint, an off-odor and an off-flavor in the meat from some uncastrated male pigs, is due to high levels of the testicular steroid hormone, androstenone, and the indole, skatole. Thus far, there are no known methods for controlling both androstenone and skatole through dietary means. We tested the adsorbent agents, cholestyramine (CH), activated carbon (AC), tween-60 (Tween), bentonite (BNT) and polyvinylpolypyrrolidone (PVPP) for binding androstenone, estrone (E(1)), estrone sulfate (E(1)S) and skatole from buffer solutions in an in vitro system. The goal was to determine the potential utility of these binding agents as feed additives to control boar taint. Michaelis-Menten analysis was utilized to determine the effectiveness of the adsorbents. At pH 7.4, E(1)S was bound to AC and CH with the highest B(max) (maximum binding), whereas Tween and AC had the greatest B(max) for E(1). The B(max) for skatole at pH 7.4 was highest for AC, CH and PVPP. AC had a higher B(max) for androstenone than CH and Tween. The B(max) values at pH 3.0 with E(1)S for AC and CH were essentially 100%, whereas the binding of Tween to E(1)S at pH 3.0 decreased by 49.5% from binding at pH 7.4 (P < 0.05). The Ad(int) values, which represent efficiency of binding, illustrated that AC bound E(1), androstenone and skatole with greater efficiency than the other binding agents at pH 7.4, whereas AC bound E(1)S as efficiently as CH. We conclude that AC was the most effective adsorbent agent for binding E(1), E(1)S, androstenone and skatole in vitro, followed by CH, Tween, PVPP and lastly BNT. These adsorbent agents may be useful for binding boar taint compounds in in vivo studies to decrease the risk of boar taint.  相似文献   

17.
Male piglets are routinely castrated to eliminate boar taint. However, this treatment is undesirable, and alternative approaches, including genetic strategies to reduce boar taint, are demanded. Androstenone is one of the causative agents of boar taint, and a QTL region affecting this pheromone has previously been reported on SSC5: 22.6–24.8 Mb in Duroc. The QTL region is one of the few reported for androstenone that does not simultaneously affect levels of other sex steroids. The main objective of this study was to fine map this QTL. Whole genome sequence data from 23 Norwegian Duroc boars were analyzed to detect new polymorphisms within the QTL region. A subset of 161 SNPs was genotyped in 834 Duroc sires and analyzed for association with androstenone in adipose tissue and testosterone, estrone sulphate and 17β‐estradiol in blood plasma. Our results revealed 100 SNPs significantly associated with androstenone levels in fat (< 0.001) with 94 of the SNPs being in strong linkage disequilibrium in the region 23.03–24.27 Mb. This haplotype block contains at least four positional candidate genes (HSD17B6, SDR9C7, RDH16 and STAT6) involved in androstenone biosynthesis. No significant associations were found between any of the SNPs and levels of testosterone and estrogens, confirming previous findings. The amount of phenotypic variance explained by single SNPs within the haplotype block was as high as 5.4%. As the SNPs in this region significantly affect levels of androstenone without affecting levels of other sex steroids, they are especially interesting as genetic markers for selection against boar taint.  相似文献   

18.

Background

Previously, in boars with extreme androstenone levels, differential expression of the CYP11A1 gene in the testes has been characterised. CYP11A1 is located in a region where a QTL influencing boar fat androstenone levels has been detected in a Large White pig population. Clarifying the role of CYP11A1 in boar taint is important because it catalyses the initial step of androstenone synthesis and also of steroid synthesis.

Results

A genome-wide association study located CYP11A1 at approximately 1300 kb upstream from SNP H3GA0021967, defining the centre of the region containing the QTL for androstenone variation. In this study, we partially sequenced the CYP11A1 gene and identified several new single nucleotide polymorphisms (SNP) within it. Characterisation of one animal, heterozygous for CYP11A1 testicular expression but homozygous for a haplotype of a large region containing CYP11A1, revealed that variation of CYP11A1 expression is probably regulated by a mutation located downstream from the SNP H3GA0021967. We analysed CYP11A1 expression in LW families according to haplotypes of the QTL region''s centre. Effects of haplotypes on CYP11A1 expression and on androstenone accumulation were not concordant.

Conclusion

This study shows that testicular expression of CYP11A1 is not solely responsible for the QTL influencing boar fat androstenone levels. As a conclusion, we propose to refute the hypothesis that a single mutation located near the centre of the QTL region could control androstenone accumulation in fat by regulating the CYP11A1 expression.  相似文献   

19.
There is a commitment by the European pig sector to ban surgical castration of male piglets in the European Union in 2018. One alternative to castration is to raise entire male pigs, with an increased risk of boar taint. A field study was performed to: (1) evaluate inter- and intra-farm variation in boar taint prevalence, (2) investigate factors measured at slaughter influencing boar taint and (3) evaluate the relationship between sensorial scoring by a trained panel and the concentration of boar taint components. From 34 farms, neck fat samples were collected from all entire male pigs in at least two slaughter batches per farm (78 batches; 9167 animals). In addition to olfactory boar taint analysis, data were also collected on fresh skin lesions (score 0 to 3) at the slaughter line, slaughter weight, lean meat percentage, duration of transport, time spent in lairage, total delivery duration, day length, shortening of days and outdoor mean temperature. Using the hot iron method, neck fat samples were scored (eight-point scale) for boar taint. Average boar taint prevalence (score ≥3) was 5.6±2.5% and the mean difference between the maximum and minimum prevalence per farm was 4.3±3.2%. Androstenone (AND), skatole (SKA) and indole concentrations were measured for a subset (n=254) of the samples. According to binomial univariate mixed models, entire male pigs with a higher skin lesion score had higher odds of having boar taint (P=0.031), as did fatter entire male pigs (P<0.001). In the binomial multivariate mixed model lean meat percentage (P<0.001) and outdoor mean temperature (P=0.005) remained as only significant factors. Based on our results, we can conclude that these statistically significant at least partially influence the prevalence of boar taint. According to the binomial univariate mixed models SKA concentration in liquid fat seems a better predictor for boar taint than AND. There were no significant synergetic effects between boar taint compounds.  相似文献   

20.
Raising intact male pigs would have a significant economic impact on the pork industry. However, the presence of skatole (a major cause of boar taint) in meat from intact male pigs could be highly objectionable to consumer. The excessive accumulation of skatole in fat is a major cause of boar taint, and is associated with defective expression of cytochrome P4502E1 (CYP2E1). In pigs, it has been found that CYP2E1 is negatively correlated with accumulation of skatole. The searching for polymorphism of CYP2E1 and the relevant functional analysis would help develop a genetic marker for the selection of pigs with low skatole levels in fat. The aim of this study was to measure the expression pattern of CYP2E1 mRNA in various tissues of the pig, to identify genetic polymorphisms, and to evaluate the functional relevance of polymorphic sites with respect to the skatole level in fat. We show herein that a substitution of G → A at base 1423 of the CYP2E1 gene in the liver causes a significant decrease in the expressed CYP2E1 level. Our data suggest that the G → A substitute might be at least partially responsible for a high level of skatole in pigs. We believe that this is an important step toward the selection of genetic markers for boar taint by lowering fat levels of skatole in fat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号