首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PE and PPE protein family are unique to mycobacteria. Though the complete genome sequences for over 500 M. tuberculosis strains and mycobacterial species are available, few PE and PPE proteins have been structurally and functionally characterized. We have therefore used bioinformatics tools to characterize the structure and function of these proteins. We selected representative members of the PE and PPE protein family by phylogeny analysis and using structure-based sequence annotation identified ten well-characterized protein domains of known function. Some of these domains were observed to be common to all mycobacterial species and some were species specific.  相似文献   

2.
Exploration of unexplored habitats for novel actinobacteria with high bioactivity potential holds great promise in the search for novel entities. During the course of isolation of actinobacteria from desert soils, four actinobacteria, designated as 5K548T, 7K502T, 16K309T and 16K404T, were isolated from the Karakum Desert and their bioactivity potential as well as taxonomic provenances were revealed by comprehensive genome analyses. Pairwise sequence analyses of the 16S rRNA genes indicated that the four strains are representatives of putatively novel taxa within the prolific actinobacterial genus Saccharopolyspora. The strains have typical chemotaxonomic characteristics of the genus Saccharopolyspora by having meso-diaminopimelic acid as diagnostic diaminoacid, arabinose, galactose and ribose as whole-cell sugars. Consistent with this assignment, all of the isolates contained phosphatidylcholine in their polar lipid profiles and MK-9(H4) as the predominant menaquinone. The sizes of the genomes of the isolates ranged from 6.0 to 10.2 Mb and the associated G + C contents from 69.6 to 69.7 %. Polyphasic characterizations including determination of overall genome relatedness indices revealed that the strains are representatives of four novel species in the genus Saccharopolyspora. Consequently, isolates 5K548T, 7K502T, 16K404T and 16K309T are proposed as novel Saccharopolyspora species for which the names of Saccharopolyspora karakumensis sp. nov., Saccharopolyspora elongata sp. nov., Saccharopolyspora aridisoli sp. nov. and Saccharopolyspora terrae sp. nov. are proposed, respectively. Comprehensive genome analysis for biosynthetic gene clusters showed that the strains have high potential for novel secondary metabolites. Moreover, the strains harbour many antimicrobial resistance genes providing more evidence for their potentiality for bioactive metabolites.  相似文献   

3.
Recently, we introduced a distinct Mycobacterium intracellulare INT-5 genotype, distantly related to other genotypes of M. intracellulare (INT-1 to -4). The aim of this study is to determine the exact taxonomic status of the M. intracellulare INT-5 genotype via genome-based phylogenetic analysis. To this end, genome sequences of the two INT-5 strains, MOTT-H4Y and MOTT-36Y were compared with M. intracellulare ATCC 13950T and Mycobacterium yongonense DSM 45126T. Our phylogenetic analysis based on complete genome sequences, multi-locus sequence typing (MLST) of 35 target genes, and single nucleotide polymorphism (SNP) analysis indicated that the two INT-5 strains were more closely related to M. yongonense DSM 45126T than the M. intracellulare strains. These results suggest their taxonomic transfer from M. intracellulare into M. yongonense. Finally, we selected 5 target genes (argH, dnaA, deaD, hsp65, and recF) and used SNPs for the identification of M. yongonese strains from other M. avium complex (MAC) strains. The application of the SNP analysis to 14 MAC clinical isolates enabled the selective identification of 4 M. yongonense clinical isolates from the other MACs. In conclusion, our genome-based phylogenetic analysis showed that the taxonomic status of two INT-5 strains, MOTT-H4Y and MOTT-36Y should be revised into M. yongonense. Our results also suggest that M. yongonense could be divided into 2 distinct genotypes (the Type I genotype with the M. parascrofulaceum rpoB gene and the Type II genotype with the M. intracellulare rpoB gene) depending on the presence of the lateral gene transfer of rpoB from M. parascrofulaceum.  相似文献   

4.
Unexpected differences were found between the genome of strain JS623, used in bioremediation studies, and the genome of strain mc2155, a model organism for investigating basic biology of mycobacteria. Both strains are currently assigned in the databases to the species Mycobacterium smegmatis and, consequently, the environmental isolate JS623 is increasingly included as a representative of that species in comparative genome‐based approaches aiming at identifying distinctive traits of the different members of the genus Mycobacterium. We applied traditional molecular taxonomic procedures – inference of single and concatenated gene trees – to re‐evaluate the membership of both strains to the same species, adopting the latest accepted cut‐off values for species delimitation. Additionally, modern whole genome‐based in silico methods where performed in a comprehensive molecular phylogenetic analysis of JS623 and other members of the genus Mycobacterium. These analyses showed that all relevant genome parameters of JS623 clearly separate this strain from M. smegmatis. The strain JS623 should be corrected as Mycobacterium sp. not only in the literature but, even more importantly, in the database entries, as inclusion of the genome wrongly attributed to the M. smegmatis species in comparative studies will result in misleading conclusions.  相似文献   

5.
Three strains, YP416T, YP421T, and Y422, were isolated from soil samples in Pocheon City, Gyeonggi province, South Korea. The strains belong to two novel yeast species in the genus Mrakia. Molecular phylogenetic analysis showed that the strain YP416T was closely related to Mrakia niccombsii. Still, it differed by 9 nucleotide substitutions with no gap (1.51%) in the D1/D2 domain of the LSU rRNA gene and 14 nucleotide substitutions with 7 gaps (2.36%) in the ITS region. The strain YP421T differed from the type strain of the most closely related species, Mrakia aquatica, by 5 nucleotide substitutions with no gap (0.81%) in the D1/D2 domain of the LSU rRNA gene and 9 nucleotide substitutions with one gap (1.43%) in the ITS region. The names Mrakia terrae sp. nov. and Mrakia soli sp. nov. are proposed, with type strains YP416T (KCTC 27886T) and YP421T (KCTC 27890T), respectively. MycoBank numbers of the strains YP416T and YP421T are MB 836844 and MB 836847, respectively.  相似文献   

6.
In Japan, a Mycobacterium marinum‐like mycobacterium was isolated from the yellowtail, Seriola quinqueradiata. The species was identified as M. marinum by a commercial mycobacterial DNA‐DNA hybridization kit. Nevertheless, PCR restriction analysis of the DNA of its RNA polymerase β‐subunit gene definitively showed that this Mycobacterium sp. was M. ulcerans. PCR analysis revealed the genotypic characteristics of M. ulcerans in the Mycobacterium sp., only the mup053 gene sequence being absent, as has been found previously in other piscine mycobacteria such as M. marinum strains DL240490 and DL045 and M. pseudoshottsii. With one exception, this Mycobacterium sp. and M. pseudoshottsii had identical 16S rRNA gene sequences, which is also probably true of M. marinum strains DL240490 and DL045. Similarly, according to comparisons of the 16S rRNA gene, ITS region, and hsp65 gene sequences, this Mycobacterium sp. is more closely related to M. pseudoshottsii than to M. ulcerans or M. marinum. A PCR product of approximately 2000 bp was amplified from region of difference 9 in the Mycobacterium sp. The nucleotide sequence revealed insertion of IS2404, the sequence of which is 1366 bp long. The novel single nucleotide polymorphisms identified in this region distinguished this Mycobacterium sp. from M. marinum strain DL240490 and M. pseudoshottsii. The present findings raise the possibility that these species have a common ancestor. Further studies are required to improve our understanding of the relationship between their geographical origin and genetic diversity.  相似文献   

7.
Mycobacterium brisbanense is a member of Mycobacterium fortuitum third biovariant complex, which includes rapidly growing Mycobacterium spp. that normally inhabit soil, dust and water, and can sometimes cause respiratory tract infections in humans. We present the first whole-genome analysis of M. brisbanense UM_WWY which was isolated from a 70-year-old Malaysian patient. Molecular phylogenetic analyses confirmed the identification of this strain as M. brisbanense and showed that it has an unusually large genome compared with related mycobacteria. The large genome size of M. brisbanense UM_WWY (~7.7Mbp) is consistent with further findings that this strain has a highly variable genome structure that contains many putative horizontally transferred genomic islands and prophage. Comparative analysis showed that M. brisbanense UM_WWY is the only Mycobacterium species that possesses a complete set of genes encoding enzymes involved in the urea cycle, suggesting that this soil bacterium is able to synthesize urea for use as plant fertilizers. It is likely that M. brisbanense UM_WWY is adapted to live in soil as its primary habitat since the genome contains many genes associated with nitrogen metabolism. Nevertheless, a large number of predicted virulence genes were identified in M. brisbanense UM_WWY that are mostly shared with well-studied mycobacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. These findings are consistent with the role of M. brisbanense as an opportunistic pathogen of humans. The whole-genome study of UM_WWY has provided the basis for future work of M. brisbanense.  相似文献   

8.
The Merodon aureus group is characterized by high endemism and the presence of morphologically cryptic species. Within one of its subgroups, M. bessarabicus, seven species and four more species complexes have been described to date. One of these complexes, the M. luteomaculatus, comprises new taxa that are the subject of the present study. Its members have allopatric ranges restricted to the Balkan Peninsula and Aegean islands. This complex exhibits morphological variability that could not be characterized using a traditional morphological approach. Thus, we used integrative taxonomy with independent character sets (molecular, geometric morphometric, distributional) to delimit species boundaries. Data on three molecular markers (COI, 28S rRNA, and ISSR) and geometric morphometry of the wing and male genitalia, together with distributional data, enabled recognition of six cryptic species within the complex: M. andriotes sp. n., M. euri sp. n., M. erymanthius sp. n., M. luteomaculatus sp. n., M. naxius sp. n., and M. peloponnesius sp. n. We discuss the possible influence of Aegean paleogeographical history on the speciation of this complex.  相似文献   

9.
Screening live mycobacterial vaccine candidates is the important strategy to develop new vaccines against adult tuberculosis (TB). In this study, the immunogenicity and protective efficacy of several avirulent mycobacterial strains including Mycobacterium smegmatis, M. vaccae, M. terrae, M. phlei, M. trivial, and M. tuberculosis H37Ra were compared with M. bovis BCG in BALB/c mice. Our results demonstrated that differential immune responses were induced in different mycobacterial species vaccinated mice. As BCG-vaccinated mice did, M. terrae immunization resulted in Th1-type responses in the lung, as well as splenocytes secreting IFN-γ against a highly conserved mycobacterial antigen Ag85A. M. smegmatis also induced the same splenocytes secreting IFN-γ as BCG and M. terrae did. In addition, M. terrae and M. smegmatis-immunized mice predominantly increased expression of IL-10 and TGF-β in the lung. Most importantly, mice vaccinated with H37Ra and M. vaccae could provide the same protection in the lung against virulent M. tuberculosis challenge as BCG. The result may have important implications in developing adult TB vaccine.  相似文献   

10.
Mulberry, belonging to the order Rosales, family Moraceae, and genus Morus, has received attention because of both its economic and medicinal value, as well as for its important ecological function. The genus Morus has a worldwide distribution, however, its taxonomy remains complex and disputed. Many studies have attempted to classify Morus species, resulting in varied numbers of designated Morus spp. To address this issue, we used information from internal transcribed spacer (ITS) genetic sequences to study the taxonomy of all the members of generally accepted genus Morus. We found that intraspecific 5.8S rRNA sequences were identical but that interspecific 5.8S sequences were diverse. M. alba and M. notabilis showed the shortest (215 bp) and the longest (233 bp) ITS1 sequence length, respectively. With the completion of the mulberry genome, we could identify single nucleotide polymorphisms within the ITS locus in the M. notabilis genome. From reconstruction of a phylogenetic tree based on the complete ITS data, we propose that the Morus genus should be classified into eight species, including M. alba, M. nigra, M. notabilis, M. serrata, M. celtidifolia, M. insignis, M. rubra, and M. mesozygia. Furthermore, the classification of the ITS sequences of known interspecific hybrid clones into both paternal and maternal clades indicated that ITS variation was sufficient to distinguish interspecific hybrids in the genus Morus.  相似文献   

11.
Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly affect humans and animals worldwide. The life cycle of mycobacteria is complex and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Recently, comparative genomics analyses have provided new insights into the evolution and adaptation of the MTBC to survive inside the host. However, most of this information has been obtained using M. tuberculosis but not other members of the MTBC such as M. bovis and M. caprae. In this study, the genome of three M. bovis (MB1, MB3, MB4) and one M. caprae (MB2) field isolates with different lesion score, prevalence and host distribution phenotypes were sequenced. Genome sequence information was used for whole-genome and protein-targeted comparative genomics analysis with the aim of finding correlates with phenotypic variation with potential implications for tuberculosis (TB) disease risk assessment and control. At the whole-genome level the results of the first comparative genomics study of field isolates of M. bovis including M. caprae showed that as previously reported for M. tuberculosis, sequential chromosomal nucleotide substitutions were the main driver of the M. bovis genome evolution. The phylogenetic analysis provided a strong support for the M. bovis/M. caprae clade, but supported M. caprae as a separate species. The comparison of the MB1 and MB4 isolates revealed differences in genome sequence, including gene families that are important for bacterial infection and transmission, thus highlighting differences with functional implications between isolates otherwise classified with the same spoligotype. Strategic protein-targeted analysis using the ESX or type VII secretion system, proteins linking stress response with lipid metabolism, host T cell epitopes of mycobacteria, antigens and peptidoglycan assembly protein identified new genetic markers and candidate vaccine antigens that warrant further study to develop tools to evaluate risks for TB disease caused by M. bovis/M.caprae and for TB control in humans and animals.  相似文献   

12.
Members of the Mycobacterium abscessus complex are rapidly growing mycobacteria that are emerging as human pathogens. The M. abscessus complex was previously composed of three species, namely M. abscessus sensu stricto, ‘M. massiliense’, and ‘M. bolletii’. In 2011, ‘M. massiliense’ and ‘M. bolletii’ were united and reclassified as a single subspecies within M. abscessus: M. abscessus subsp. bolletii. However, the placement of ‘M. massiliense’ within the boundary of M. abscessus subsp. bolletii remains highly controversial with regard to clinical aspects. In this study, we revisited the taxonomic status of members of the M. abscessus complex based on comparative analysis of the whole-genome sequences of 53 strains. The genome sequence of the previous type strain of ‘Mycobacterium massiliense’ (CIP 108297) was determined using next-generation sequencing. The genome tree based on average nucleotide identity (ANI) values supported the differentiation of ‘M. bolletii’ and ‘M. massiliense’ at the subspecies level. The genome tree also clearly illustrated that ‘M. bolletii’ and ‘M. massiliense’ form a distinct phylogenetic clade within the radiation of the M. abscessus complex. The genomic distances observed in this study suggest that the current M. abscessus subsp. bolletii taxon should be divided into two subspecies, M. abscessus subsp. massiliense subsp. nov. and M. abscessus subsp. bolletii, to correspondingly accommodate the previously known ‘M. massiliense’ and ‘M. bolletii’ strains.  相似文献   

13.
During 1998–2008, there were 31 strains of Gordonia species isolated from clinical specimens in our laboratory. Our identification of the 31 strains of Gordonia species showed that major pathogenic Gordonia species in Japan were classifiable, respectively into 14 and 13 strains of Gordonia sputi and Gordonia bronchialis. The four remaining strains were identified as three Gordonia species: G. aichiensis (2 strains), and G. terrae (1 strain), and G. otitidis (1 strain). Results of drug susceptibility tests for these 31 strains of Gordonia isolates are reported herein.  相似文献   

14.
Spectra of five isolates (LMG 28358T, LMG 29879T, LMG 29880T, LMG 28359T and R-53705) obtained from gut samples of wild bumblebees of Bombus pascuorum, Bombus lapidarius and Bombus terrestris were grouped into four MALDI-TOF MS clusters. RAPD analysis revealed an identical DNA fingerprint for LMG 28359T and R-53705 which also grouped in the same MALDI-TOF MS cluster, while different DNA fingerprints were obtained for the other isolates.Comparative 16S rRNA gene sequence analysis of the four different strains identified Gilliamella apicola NCIMB 14804T as nearest neighbour species. Average nucleotide identity values of draft genome sequences of the four isolates and of G. apicola NCIMB 14804T were below the 96% threshold value for species delineation and all four strains and G. apicola NCIMB 14804T were phenotypically distinct. Together, the draft genome sequences and phylogenetic and phenotypic data indicate that the four strains represent four novel Gilliamella species for which we propose the names Gilliamella intestini sp. nov., with LMG 28358T as the type strain, Gilliamella bombicola sp. nov., with LMG 28359T as the type strain, Gilliamella bombi sp. nov., with LMG 29879T as the type strain and Gilliamella mensalis sp. nov., with LMG 29880T as the type strain.  相似文献   

15.
Species belonging to the Mycobacterium tuberculosis Complex (MTBC) show more than 99% genetic identity but exhibit distinct host preference and virulence. The molecular genetic changes that underly host specificity and infection phenotype within MTBC members have not been fully elucidated. Here, we analysed RD900 genomic region across MTBC members using whole genome sequences from 60 different MTBC strains so as to determine its role in the context of MTBC evolutionary history. The RD900 region comprises two homologous genes, pknH1 and pknH2, encoding a serine/threonine protein kinase PknH flanking the tbd2 gene. Our analysis revealed that RD900 has been independently lost in different MTBC lineages and different strains, resulting in the generation of a single pknH gene. Importantly, all the analysed M. bovis and M. caprae strains carry a conserved deletion within a proline rich-region of pknH, independent of the presence or absence of RD900. We hypothesized that deletion of pknH proline rich-region in M. bovis may affect PknH function, having a potential role in its virulence and evolutionary adaptation. To explore this hypothesis, we constructed two M. bovis ‘knock-in’ strains containing the M. tuberculosis pknH gene. Evaluation of their virulence phenotype in mice revealed a reduced virulence of both M. bovis knock-in strains compared to the wild type, suggesting that PknH plays an important role in the differential virulence phenotype of M. bovis vs M. tuberculosis.  相似文献   

16.
The latency and reactivation of Mycobacterium tuberculosis infection has been well studied. However, there have been few studies of the latency and reactivation of Mycobacterium avium complex (MAC), the most common etiological non-tuberculous Mycobacterium species next to M. tuberculosis in humans worldwide. We hypothesized that latent MAC infections can be reactivated following immunosuppression after combination chemotherapy with clarithromycin and rifampicin under experimental conditions. To this end, we employed a modified Cornell-like murine model of tuberculosis and investigated six strains consisting of two type strains and four clinical isolates of M. avium and M. intracellulare. After aerosol infection of each MAC strain, five to six mice per group were euthanized at 2, 4, 10, 18, 28 and 35 weeks post-infection, and lungs were sampled to analyze bacterial burden and histopathology. One strain of each species maintained a culture-negative state for 10 weeks after completion of 6 weeks of chemotherapy, but was reactivated after 5 weeks of immunosuppression in the lungs with dexamethasone (three out of six mice in M. avium infection) or sulfasalazine (four out of six mice in both M. avium and M. intracellulare infection). The four remaining MAC strains exhibited decreased bacterial loads in response to chemotherapy; however, they remained at detectable levels and underwent regrowth after immunosuppression. In addition, the exacerbated lung pathology demonstrated a correlation with bacterial burden after reactivation. In conclusion, our results suggest the possibility of MAC reactivation in an experimental mouse model, and experimentally demonstrate that a compromised immune status can induce reactivation and/or regrowth of MAC infection.  相似文献   

17.
BackgroundEumycetoma is a neglected tropical disease most commonly caused by the fungus Madurella mycetomatis. Identification of eumycetoma causative agents can only be reliably performed by molecular identification, most commonly by species-specific PCR. The current M. mycetomatis specific PCR primers were recently discovered to cross-react with Madurella pseudomycetomatis. Here, we used a comparative genome approach to develop a new M. mycetomatis specific PCR for species identification.MethodologyPredicted-protein coding sequences unique to M. mycetomatis were first identified in BLASTCLUST based on E-value, size and presence of orthologues. Primers were then developed for 16 unique sequences and evaluated against 60 M. mycetomatis isolates and other eumycetoma causing agents including the Madurella sibling species. Out of the 16, only one was found to be specific to M. mycetomatis.ConclusionWe have discovered a predicted-protein coding sequence unique to M. mycetomatis and have developed a new species-specific PCR to be used as a novel diagnostic marker for M. mycetomatis.  相似文献   

18.
Megachile Latreille is a conspicuous genus of solitary bees distributed worldwide. However, the biology of tropical species is still little known. We present data on biology of Megachile brasiliensis Data Torre, Megachile sejuncta Cockerell and Megachile stilbonotaspis Moure found in two remnants of eastern Amazonian forest in northeastern Brazil. The study was conducted using the trap-nest methodology in two different areas during four periods. We collected a total of 24 nests of M. brasiliensis, 26 of M. sejuncta and 28 of M. stilbonotaspis. The differential abundance of collected nests may reflect the population size in each sampled place. The nesting activity was concentrated mainly between July and January and species presented a multivoltine pattern, except for M. sejuncta, which was partly univoltine. Assessed pollen use showed a predominant use of Attalea sp. (Arecaceae) and, for M. stilbonotaspis, Tylesia sp. and Lepidaploa sp. (Asteraceae). Babassu is a very common palm in the studied areas and the studied species seem to have a strong link with it. We also reported change of pollen use by M. sejuncta, probably due to competition with M. brasiliensis, which may have influenced the biased sex ratio observed in M. sejuncta toward males. Parasites reported here were also recorded for other Megachile species, such as Coelioxys, Brachymeria, Meloidae and Pyralidae species. Mites were observed in association with M. stilbonotaspis. The data presented here set up a background that encourages new studies on the ecology of these three Amazonian species, providing tools for proper biodiversity management and conservation.  相似文献   

19.
The performance of the BluePoint MycoID plus kit (Bio Concept Corporation, Taichung, Taiwan), which was designed to simultaneously detect Mycobacterium tuberculosis (MTB), rifampin- and isoniazid-resistant MTB, and nontuberculous mycobacteria (NTM) was first evaluated with 950 consecutive positive cultures in Mycobacterium Growth Indicator Tube (MGIT) system (BACTEC, MGIT 960 system, Becton-Dickinson, Sparks) from clinical respiratory specimens. The discrepant results between kit and culture-based identification were finally assessed by 16S rRNA gene sequencing and clinical diagnosis. The accuracy rate of this kit for identification of all Mycobacterium species was 96.3% (905/940). For MTB identification, the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the kit were 99.7%, 99.3%, 99.0% and 99.8%, respectively. For rifampicin-resistant MTB identification, the sensitivity, specificity, PPV, and NPV of the kit were 100.0%, 99.4%, 91.3%, and 100.0%, respectively, while the corresponding values of isoniazid-resistant MTB identification were 82.6%, 99.4%, 95.0%, and 97.6%, respectively. In identifying specific NTM species, the kit correctly identified 99.3% of M. abscessus (147/148) complex, 100% of M. fortuitum (32/32), M. gordonae (38/38), M. avium (39/39), M. intracellulare (90/90), M. kansasii (36/36), and M. avium complex species other than M. avium and M. intracellulare (94/94). In conclusions, the diagnostic value of the BluePoint MycoID plus kit was superior to culture method for recoveries and identification of NTM to species level. In addition, the diagnostic accuracy of BluePoint MycoID plus kit in MTB identification was similar to conventional culture method with high accuracy rate of rifampicin-resistant M. tuberculosis identification.  相似文献   

20.
Due to the wide cultivation of bean (Phaseolus vulgaris L.), rhizobia associated with this plant have been isolated from many different geographical regions. In order to investigate the species diversity of bean rhizobia, comparative genome sequence analysis was performed in the present study for 69 Rhizobium strains mainly isolated from root nodules of bean and clover (Trifolium spp.). Based on genome average nucleotide identity, digital DNA:DNA hybridization, and phylogenetic analysis of 1,458 single-copy core genes, these strains were classified into 28 clusters, consistent with their species definition based on multilocus sequence analysis (MLSA) of atpD, glnII, and recA. The bean rhizobia were found in 16 defined species and nine putative novel species; in addition, 35 strains previously described as Rhizobium etli, Rhizobium phaseoli, Rhizobium vallis, Rhizobium gallicum, Rhizobium leguminosarum and Rhizobium spp. should be renamed. The phylogenetic patterns of symbiotic genes nodC and nifH were highly host-specific and inconsistent with the genomic phylogeny. Multiple symbiovars (sv.) within the Rhizobium species were found as a common feature: sv. phaseoli, sv. trifolii and sv. viciae in Rhizobium anhuiense; sv. phaseoli and sv. mimosae in Rhizobium sophoriradicis/R. etli/Rhizobium sp. III; sv. phaseoli and sv. trifolii in Rhizobium hidalgonense/Rhizobium acidisoli; sv. phaseoli and sv. viciae in R. leguminosarum/Rhizobium sp. IX; sv. trifolii and sv. viciae in Rhizobium laguerreae. Thus, genomic comparison revealed great species diversity in bean rhizobia, corrected the species definition of some previously misnamed strains, and demonstrated the MLSA a valuable and simple method for defining Rhizobium species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号