首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The digestion of cellulose by fungus-growing termites involves a complex of different organisms, such as the termites themselves, fungi and bacteria. To further investigate the symbiotic relationships of fungus-growing termites, the microbial communities of the termite gut and fungus combs of Odontotermes yunnanensis were examined. The major fungus species was identified as Termitomyces sp. To compare the micro-organism diversity between the digestive tract of termites and fungus combs, four polymerase chain reaction clone libraries were created (two fungus-targeted internal transcribed spacer [ITS]– ribosomal DNA [rDNA] libraries and two bacteria-targeted 16S rDNA libraries), and one library of each type was produced for the host termite gut and the symbiotic fungus comb. Results of the fungal clone libraries revealed that only Termitomyces sp. was detected on the fungus comb; no non-Termitomyces fungi were detected. Meanwhile, the same fungus was also found in the termite gut. The bacterial clone libraries showed higher numbers and greater diversity of bacteria in the termite gut than in the fungus comb. Both bacterial clone libraries from the insect gut included Firmicutes, Bacteroidetes, Proteobacteria, Spirochaetes, Nitrospira, Deferribacteres, and Fibrobacteres, whereas the bacterial clone libraries from the fungal comb only contained Firmicutes, Bacteroidetes, Proteobacteria, and Acidobacteris.  相似文献   

2.
Fungus-growing termites rely on symbiotic microorganisms to help break down plant material and to obtain nutrients. Their fungal cultivar, Termitomyces, is the main plant degrader and food source for the termites, while gut bacteria complement Termitomyces in the degradation of foodstuffs, fixation of nitrogen, and metabolism of amino acids and sugars. Due to the community complexity and because these typically anaerobic bacteria can rarely be cultured, little is known about the physiological capabilities of individual bacterial members of the gut communities and their associations with the termite host. The bacterium Trabulsiella odontotermitis is associated with fungus-growing termites, but this genus is generally understudied, with only two described species. Taking diverse approaches, we obtained a solid phylogenetic placement of T. odontotermitis among the Enterobacteriaceae, investigated the physiology and enzymatic profiles of T. odontotermitis isolates, determined the localization of the bacterium in the termite gut, compared draft genomes of two T. odontotermitis isolates to those of their close relatives, and examined the expression of genes relevant to host colonization and putative symbiont functions. Our findings support the hypothesis that T. odontotermitis is a facultative symbiont mainly located in the paunch compartment of the gut, with possible roles in carbohydrate metabolism and aflatoxin degradation, while displaying adaptations to association with the termite host, such as expressing genes for a type VI secretion system which has been demonstrated to assist bacterial competition, colonization, and survival within hosts.  相似文献   

3.
The results of biocontrol with entomopathogens in termites have been discouraging because of the strong social hygiene behavior for removing pathogens from termite colonies. However, the mechanism of pathogen detection is still unclear. For the successful application of biopesticides to termites in nature, it would be beneficial to identify substances that could disrupt the termite’s ability to perceive pathogens. We hypothesized that termites can perceive pathogens and this ability plays an important role in effective hygiene behavior. In this study, pathogen-detection in the subterranean termite Coptotermes formosanus was investigated. We performed quantitative assays on conidia removal by grooming behavior using epifluoresence microscopy and Y-maze tests to examine the perception of fungal odor by termites. Three species each of high- and low-virulence entomopathogenic fungi were used in each test. The results demonstrated that termites removed conidia more effectively from a nestmate’s cuticle if its odor elicited stronger aversion. Highly virulent pathogens showed higher attachment rates to termite surfaces and their odors were more strongly avoided than those of low-virulence isolates in the same species. Moreover, termites appeared to groom each other more persistently when they had more conidia on their bodies. In brief, insect perception of pathogen-related odor seems to play a role in the mechanism of their hygiene behavior.  相似文献   

4.
Animal-microbe co-evolution and symbiosis are broadly distributed across the animal kingdom. Insects form a myriad of associations with microbes ranging from vectoring of pathogens to intracellular, mutualistic relationships. Lower termites are key models for insect-microbe symbiosis because of the diversity, complexity and functionality of their unique tripartite symbiosis. This collaboration allows termites to live on a diet of nitrogen-poor lignocellulose. Recent functional investigations of lignocellulose digestion in lower termites have primarily focused on the contributions of the eukaryotic members of the termite holobiont (termite and protist). Here, using multiple antimicrobial treatments, we induced differing degrees of dysbiosis in the termite gut, leading to variably altered symbiont abundance and diversity, and lignocellulolytic capacity. Although protists are clearly affected by antimicrobial treatments, our findings provide novel evidence that the removal of distinct groups of bacteria partially reduces, but does not abolish, the saccharolytic potential of the termite gut holobiont. This is specifically manifested by reductions of 23–47% and 30–52% in glucose and xylose yields respectively from complex lignocellulose. Thus, all members of the lower termite holobiont (termite, protist and prokaryotes) are involved in the process of efficient, sustained lignocellulase activity. This unprecedented quantification of the relative importance of prokaryotes in this system emphasizes the collaborative nature of the termite holobiont, and the relevance of lower termites as models for inter-domain symbioses.  相似文献   

5.
The mutualism between fungus-growing termites (Macrotermitinae) and their mutualistic fungi (Termitomyces) began in Africa. The fungus-growing termites have secondarily colonized Madagascar and only a subset of the genera found in Africa is found on this isolated island. Successful long-distance colonization may have been severely constrained by the obligate interaction of the termites with fungal symbionts and the need to acquire these symbionts secondarily from the environment for most species (horizontal symbiont transmission). Consistent with this hypothesis, we show that all extant species of fungus-growing termites of Madagascar are the result of a single colonization event of termites belonging to one of the only two groups with vertical symbiont transmission, and we date this event at approximately 13 Mya (Middle/Upper Miocene). Vertical symbiont transmission may therefore have facilitated long-distance dispersal since both partners disperse together. In contrast to their termite hosts, the fungal symbionts have colonized Madagascar multiple times, suggesting that the presence of fungus-growing termites may have facilitated secondary colonizations of the symbiont. Our findings indicate that the absence of the right symbionts in a new environment can prevent long-distance dispersal of symbioses relying on horizontal symbiont acquisition.  相似文献   

6.
A unique lineage of bacteria belonging to the order Bacteroidales was identified as an intracellular endosymbiont of the protist Pseudotrichonympha grassii (Parabasalia, Hypermastigea) in the gut of the termite Coptotermes formosanus. We identified the 16S rRNA, gyrB, elongation factor Tu, and groEL gene sequences in the endosymbiont and detected a very low level of sequence divergence (<0.9% of the nucleotides) in the endosymbiont population within and among protist cells. The Bacteroidales endosymbiont sequence was affiliated with a cluster comprising only sequences from termite gut bacteria and was not closely related to sequences identified for members of the Bacteroidales attached to the cell surfaces of other gut protists. Transmission electron microscopy showed that there were numerous rod-shaped bacteria in the cytoplasm of the host protist, and we detected the endosymbiont by fluorescence in situ hybridization (FISH) with an oligonucleotide probe specific for the 16S rRNA gene identified. Quantification of the abundance of the Bacteroidales endosymbiont by sequence-specific cleavage of rRNA with RNase H and FISH cell counting revealed, surprisingly, that the endosymbiont accounted for 82% of the total bacterial rRNA and 71% of the total bacterial cells in the gut community. The genetically nearly homogeneous endosymbionts of Pseudotrichonympha were very abundant in the gut symbiotic community of the termite.  相似文献   

7.
8.
Approximately 30 million years ago (MYA), the subfamily of higher termites Macrotermitinae domesticated a fungus, Termitomyces, as the main plant decomposer and food source for the termite host. The origin of fungiculture shifted the composition of the termite gut microbiota, and some of the functional implications of this shift have recently been established. I review reports on the composition of the Macrotermitinae gut microbiota, evidence for a subfamily core gut microbiota, and the first insight into functional complementarity between fungal and gut symbionts. In addition, I argue that we need to explore the capacities of all members of the symbiotic communities, including better solidifying Termitomyces role(s) in order to understand putative complementary gut bacterial contributions. Approaches that integrate natural history and sequencing data to elucidate symbiont functions will be powerful, particularly if executed in comparative analyses across the well‐established congruent termite–fungus phylogenies. This will allow for testing if gut communities have evolved in parallel with their hosts, with implications for our general understanding of the evolution of gut symbiont communities with hosts.  相似文献   

9.
Social insects nesting in soil environments are in constant contact with entomopathogens but have evolved a range of defence mechanisms, resulting in both individual and social immunity that reduce the chance for epizootics in the colony, as in the case of subterranean termites. Coptotermes formosanus uses its faeces as building material for its nest structure that result into a ‘carton material’, and here, we report that the faecal nest supports the growth of Actinobacteria which provide another level of protection to the social group against entomopathogens. A Streptomyces species with in vivo antimicrobial activity against fungal entomopathogens was isolated from the nest material of multiple termite colonies. Termite groups were exposed to Metarhizium anisopliae, a fungal entomopathogen, during their foraging activity and the presence of Streptomyces within the nest structure provided a significant survival benefit to the termites. Therefore, this report describes a non-nutritional exosymbiosis in a termite, in the form of a defensive mutualism which has emerged from the use of faecal material in the nesting structure of Coptotermes. The association with an Actinobacteria community in the termite faecal material provides an extended disease resistance to the termite group as another level of defence, in addition to their individual and social immunity.  相似文献   

10.
Four esterase genes and general esterase activity were investigated in the gut of the termite Reticulitermes flavipes. Two genes (RfEst1 and RfEst2) share significant translated identity with a number of insect JH esterases. The two remaining genes (RfEst3 and RfEst4) apparently code for much shorter proteins with similarity to fungal phenolic acid esterases involved in hemicellulose solubilization. All four genes showed consistently high midgut expression. This result was further supported by colorimetric activity assays and Native polyacrylamide gel electrophoresis, which showed significant esterase activity and a number of isoforms in the midgut. The greatest esterase activity and isoform composition were detected when α‐naphthyl propionate was used as a substrate. Moreover, esterase activity and diverse isoforms were present in gut mitochondrial, microsomal, and cytosolic sub‐cellular protein fractions, as well as in the hindgut lumen. These findings reveal an agreement between gut esterase gene expression and activity distributions, and support the idea that R. flavipes gut esterase activity is host (not symbiont)‐derived. In addition, these findings support the hypotheses that termite gut esterases may play important roles in lignocellulose digestion and caste differentiation. This study provides important baseline data that will assist ongoing functional‐genomic efforts to identify novel genes with roles in semiochemical, hormone, and lignocellulose processing in the termite gut. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
We investigated the bacterial gut microbiota from 32 colonies of wood-feeding termites, comprising four Microcerotermes species (Termitidae) and four Reticulitermes species (Rhinotermitidae), using terminal restriction fragment length polymorphism analysis and clonal analysis of 16S rRNA. The obtained molecular community profiles were compared statistically between individuals, colonies, locations, and species of termites. Both analyses revealed that the bacterial community structure was remarkably similar within each termite genus, with small but significant differences between sampling sites and/or termite species. In contrast, considerable differences were found between the two termite genera. Only one bacterial phylotype (defined with 97% sequence identity) was shared between the two termite genera, while 18% and 50% of the phylotypes were shared between two congeneric species in the genera Microcerotermes and Reticulitermes, respectively. Nevertheless, a phylogenetic analysis of 228 phylotypes from Microcerotermes spp. and 367 phylotypes from Reticulitermes spp. with other termite gut clones available in public databases demonstrated the monophyly of many phylotypes from distantly related termites. The monophyletic “termite clusters” comprised of phylotypes from more than one termite species were distributed among 15 bacterial phyla, including the novel candidate phyla TG2 and TG3. These termite clusters accounted for 95% of the 960 clones analyzed in this study. Moreover, the clusters in 12 phyla comprised phylotypes from more than one termite (sub)family, accounting for 75% of the analyzed clones. Our results suggest that the majority of gut bacteria are not allochthonous but are specific symbionts that have coevolved with termites and that their community structure is basically consistent within a genus of termites.  相似文献   

12.
Diets shape the animal gut microbiota, although the relationships between diets and the structure of the gut microbial community are not yet well understood. The gut bacterial communities of Reticulitermes flavipes termites fed on four individual plant biomasses with different degrees of recalcitrance to biodegradation were investigated by 16S rRNA pyrosequencing analysis. The termite gut bacterial communities could be differentiated between grassy and woody diets, and among grassy diets (corn stover vs. sorghum). The majority of bacterial taxa were shared across all diets, but each diet significantly enriched some taxa. Interestingly, the diet of corn stover reduced gut bacterial richness and diversity compared to other diets, and this may be related to the lower recalcitrance of this biomass to degradation.  相似文献   

13.
Uricolytic bacteria were present in guts of Reticulitermes flavipes in populations up to 6 × 104 cells per gut. Of 82 strains isolated under strict anaerobic conditions, most were group N Streptococcus sp., Bacteroides termitidis, and Citrobacter sp. All isolates used uric acid (UA) as an energy source anaerobically, but not aerobically, and NH3 was the major nitrogenous product of uricolysis. However, none of the isolates had an absolute requirement for UA. Utilization of heterocyclic compounds other than UA was limited. Fresh termite gut contents also degraded UA anaerobically, as measured by 14CO2 evolution from [2-14C]UA. The magnitude of anaerobic uricolysis [0.67 pmol of UA catabolized/(gut × h)] was entirely consistent with the population density of uricolytic bacteria in situ. Uricolytic gut bacteria may convert UA in situ to products usable by termites for carbon, nitrogen, energy, or all three. This possibility is consistent with the fact that R. flavipes termites from UA, but they do not void the purine in excreta despite the lack of uricase in their tissues.  相似文献   

14.
Medium density fiberboard (MDF) production worldwide is increasing due to the development of new manufacturing technologies. As a result, MDF products are increasingly utilized in traditional wood applications that require fungal and insect resistance. This study evaluated the ability of white and brown rot fungi and termites to decompose MDF consisting of different wood species by measuring weight loss. Furnish in the boards was prepared from heart and sapwood portions of pine (Pinus nigra Arnold var. pallasiana), beech (Fagus orientalis Lipsky), and European oak (Quercus robur L.) species. Fungal decay resistance tests were performed according to ASTM D 2017-81 standard method using two brown-rot fungi, Gloeophyllum trabeum (Pers. ex Fr.) Murr. (Mad 617), Postia placenta (Fries) M. Larsen et Lombard (Mad 698), and one white-rot fungus, Trametes versicolor (L. ex Ft.) Pilat (Mad 697). MDF and wood specimens were also bioassayed against the eastern subterranean termite, Reticulitermes flavipes (Kollar) in order to determine termite resistance of the specimens. MDF specimens containing oak and mixed furnish demonstrated increased durability against decay fungi. Only pine, oak, and mixed MDF specimens met the 25% or less weight loss limit to be classified resistant according to ASTM D 2017-81 standard method. Overall, MDF specimens made from oak showed better performance than oak solid wood specimens. Accelerated aging according to ASTM D 1037-96a standard method before fungal bioassay decreased fungal resistance of the specimens. In contrast to the fungal bioassay, MDF specimens made from beech and mixed furnish showed decreased weight losses from termite attack after 4 weeks. However, none of the MDF specimens were resistant to termite attack. In severe conditions, the MDFs may require the incorporation of chemical biocides prior to board production for increasing the resistance of MDF to termite attack.  相似文献   

15.
《Insect Biochemistry》1984,14(2):175-179
Vitamin B12 concentrations were determined by radioassay in the housefly, five species of termites, and 17 other phylogenetically diverse insect species. Vitamin B12 was not detected in the housefly Musca domestica, which apparently cannot interconvert propionate and succinate. In contrast, the termite Zootermopsis angusticollis readily interconverts succinate and methylmalonate, and contains high amounts of vitamin B12 (940 pg/mg dry tissue), as do four other species of termites. Experiments involving selective elimination of either gut tract protozoa or bacteria in Coptotermes formosanus indicate that intestinal bacteria are the major source of vitamin B12 in this termite. The other insect species examined have undetectable to moderate amounts of vitamin B12.  相似文献   

16.
《Insect Biochemistry》1984,14(6):639-643
Extracts of tissues of the lower termites, Reticulitermes flavipes and Coptotermes lacteus, and the higher termite, Nasutitermes exitiosus, possess acetyl-CoA synthetase and all the enzymes of the tricarboxylic acid cycle and are thus able to oxidize acetate to CO2. The specific activities of these enzymes in R. flavipes are sufficient to cope with the rate of acetogenesis by the gut microbiota. The presence of the malic enzyme and malate dehydrogenase, but not pyruvate carboxylase or phosphoenolpyruvate carboxykinase, indicates that they may be important as anaplerotic enzymes for the conversion of pyruvate to oxalacetate. An apparent absence of pyruvate dehydrogenase in all termites suggests that they do not convert pyruvate to acetyl-CoA, but rather convert acetate (transported from the hindgut) to this compound. All the enzymes of glycolysis were present in termite extracts. Thus any glucose absorbed from the midgut, and originating from hydrolysis of cellulose by salivary or midgut enzymes, can be metabolized by termites as an energy source.  相似文献   

17.
Gut microbes play a crucial role in decomposing lignocellulose to fuel termite societies, with protists in the lower termites and prokaryotes in the higher termites providing these services. However, a single basal subfamily of the higher termites, the Macrotermitinae, also domesticated a plant biomass‐degrading fungus (Termitomyces), and how this symbiont acquisition has affected the fungus‐growing termite gut microbiota has remained unclear. The objective of our study was to compare the intestinal bacterial communities of five genera (nine species) of fungus‐growing termites to establish whether or not an ancestral core microbiota has been maintained and characterizes extant lineages. Using 454‐pyrosequencing of the 16S rRNA gene, we show that gut communities have representatives of 26 bacterial phyla and are dominated by Firmicutes, Bacteroidetes, Spirochaetes, Proteobacteria and Synergistetes. A set of 42 genus‐level taxa was present in all termite species and accounted for 56–68% of the species‐specific reads. Gut communities of termites from the same genus were more similar than distantly related species, suggesting that phylogenetic ancestry matters, possibly in connection with specific termite genus‐level ecological niches. Finally, we show that gut communities of fungus‐growing termites are similar to cockroaches, both at the bacterial phylum level and in a comparison of the core Macrotermitinae taxa abundances with representative cockroach, lower termite and higher nonfungus‐growing termites. These results suggest that the obligate association with Termitomyces has forced the bacterial gut communities of the fungus‐growing termites towards a relatively uniform composition with higher similarity to their omnivorous relatives than to more closely related termites.  相似文献   

18.
Enterobacter cloacae, one of the indigenous gut bacteria of the Formosan subterranean termite (Coptotermes formosanus), was genetically modified with a transposon Tn5 vector containing genes (tcdA1 and tcdB1) encoding orally insecticidal proteins from the entomopathogenic bacterium Photorhabdus luminescens subsp. laumondii TT01, a symbiont of the entomopathogenic nematode Heterorhabditis bacteriophora, for termite control. In the laboratory, termites were fed filter paper inoculated with the recombinant bacteria. The chromosomal expression of the introduced genes showed that there were insecticidal activities against termite workers and soldiers challenged with the transformed bacteria. After termites were fed recombinant bacteria, the termite mortality was 3.3% at day 5, and it increased from 8.7% at day 9 to 93.3% at day 29. All the dead termites contained the recombinant bacteria in their guts. Transfer of the recombinant bacteria occurred between donor workers (initially fed recombinant bacteria) and recipient workers (not fed). More than 20% of the recipient termites ingested recombinant bacteria within 2 h, and 73.3% of them had ingested recombinant bacteria after 12 h. The method described here provides a useful alternative for sustainable control of the Formosan subterranean termite (C. formosanus) and other social insects, such as the imported red fire ant (Solenopsis invicta).  相似文献   

19.
The fungus-growing termites Macrotermes cultivate the obligate ectosymbiontic fungi, Termitomyces. While their relationship has been extesively studied, little is known about the gut bacterial symbionts, which also presumably play a crucial role for the nutrition of the termite host. In this study, we investigated the bacterial gut microbiota in two colonies of Macrotermes gilvus, and compared the diversity and community structure of bacteria among nine termite morphotypes, differing in caste and/or age, using terminal restriction fragment length polymorphism (T-RFLP) and clonal analysis of 16S rRNA. The obtained molecular community profiles clustered by termite morphotype rather than by colony, and the clustering pattern was clearly more related to a difference in age than to caste. Thus, we suggest that the bacterial gut microbiota change in relation to the food of the termite, which comprises fallen leaves and the fungus nodules of Termitomyces in young workers, and leaves degraded by the fungi, in old workers. Despite these intracolony variations in bacterial gut microbiota, their T-RFLP profiles formed a distinct cluster against those of the fungus garden, adjacent soil and guts of sympatric wood-feeding termites, implying a consistency and uniqueness of gut microbiota in M. gilvus. Since many bacterial phylotypes from M. gilvus formed monophyletic clusters with those from distantly related termite species, we suggest that gut bacteria have co-evolved with the termite host and form a microbiota specific to a termite taxonomic and/or feeding group, and furthermore, to caste and age within a termite species.  相似文献   

20.
Abstract.  1. Fungus-growing termites live in an obligate mutualistic symbiosis with Termitomyces fungi. The functions of the fungal symbiont have been hypothesised to differ between species and to range from highly specific roles of providing plant-degrading enzymes complementary to termite gut enzymes, to non-specific roles of providing protein-rich food to the termites.
2. Termite species with unspecialised fungal symbionts are predicted to be associated with a wider range of symbionts than species with specialised symbionts. Recent DNA data have confirmed this prediction, but evidence for differences in functional specificity has been sparse and indirect.
3. Here the consequences of symbiont interaction specificity are experimentally tested by reciprocally exchanging the fungal symbionts of sympatric colonies of Macrotermes natalensis and Odontotermes badius , which were inferred to have specialised and non-specialised symbionts respectively.
4. As expected, survival of O. badius termites on M. natalensis fungus was not significantly worse than on their own fungus, but survival of M. natalensis termites on O. badius fungus was significantly reduced.
5. This asymmetric result confirms that symbiont roles differ significantly between macrotermitine genera and indicates that symbiont transplantation experiments are a powerful tool for testing the functional details of mutualistic symbioses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号