首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine whether altered maternal energy supply during mid-gestation results in differences in muscle histology or genes regulating fetal adipose and muscle development. In total, 22 Angus cross-bred heifers (BW=527.73±8.3 kg) were assigned randomly to the three dietary treatments providing 146% (HIGH; n=7), 87% (INT; n=7) or 72% (LOW; n=8) of the energy requirements for heifers from day 85 to day 180 of gestation. Fetuses were removed via cesarean section at day 180 of gestation and longissimus muscle (LM) and subcutaneous fat were collected and prepared for analysis of gene expression. Samples from the LM and semitendinosus (ST) were evaluated for muscle fiber diameter, area and number. The right hind limb was dissected and analyzed to determine compositional analysis. Fetal growth and muscle histology characteristics of the LM and ST were similar among treatments. Preadipocyte factor-1 expression was up-regulated in fetal LM (P<0.05) of HIGH fetuses as compared with INT, whereas LOW fetuses showed increased CCAAT/enhancer-binding protein-β (C/EBP-β) expression in LM as compared with INT (P<0.05). Peroxisome proliferator-activated receptor γand C/EBP-α did not differ as a result of dietary treatment in LM or subcutaneous fat samples. There was a tendency for increased expression of fatty acid synthase in LM of LOW fetuses as compared with INT (P<0.10). Myogenin was more highly expressed (P<0.05) in LM of the LOW fetuses, whereas μ-calpain expression was increased in the HIGH treatment compared with INT. A tendency for increased expression of IGF-II was observed for both LOW and HIGH fetuses compared with INT (P<0.10). Expression of stearoyl-CoA desaturase, myoblast determination protein 1, myogenic factor 5, myogenic regulatory factor-4, m-calpain, calpastatin, IGF-I and myostatin was similar between treatments. Collectively, these results suggest that fetal growth characteristics are not affected by the level of maternal nutritional manipulation imposed in this study during mid-gestation. However, differences in expression of fetal genes regulating adipose and muscle tissue growth and development could lead to differences in postnatal composition and warrants further investigation.  相似文献   

2.
This study was conducted to investigate the effects of konjac flour (KF) inclusion in gestation diets of sows on nutrients digestibility, lactation feed intake, reproductive performance of sows and preweaning performance of piglets. Two isoenergetic and isonitrogenous gestation diets were formulated: a control diet and a 2.1% KF-supplemented diet (KF diet). Both diets had the same NDF and insoluble fiber (ISF) levels, but the KF diet had higher soluble fiber (SF) level. The day after breeding, 96 multiparous sows were assigned to the two dietary treatments. Restrict-fed during gestation, in contrast, all sows were offered the same lactation diet ad libitum. Response criteria included sow BW, backfat depth, lactation feed intake, weaning-to-estrus interval, litter size and piglet’s weight at parturition and day 21 of lactation. On day 60 of gestation, 20 sows were used to measure nutrient digestibility. Results showed that the digestibility of dry matter, gross energy, crude fiber and ADF were not affected by the dietary treatments. The inclusion of KF in gestation diets increased NDF digestibility (P<0.05) and tended to increase the digestibility of CP (P=0.05) compared with the control diet group. In addition, dietary treatment during gestation did not affect litter size, BW and backfat gain during gestation, lactation weight, backfat loss or weaning-to-estrus interval of sows. However, sows fed the KF diet consumed more (P<0.05) lactation diet per day than sows in the control group. Accordingly, sows fed the KF diet showed greater average piglet weights on day 21 of lactation (P=0.09), and the litter weight of sows fed the KF diet on day 21 of lactation increased by 3.95 kg compared with sows fed the control diet (not significant). In conclusion, the inclusion of KF in gestation diets increased lactation feed intake of sows and tended to improve litter performance.  相似文献   

3.
4.
Liu XD  Wu X  Yin YL  Liu YQ  Geng MM  Yang HS  Blachier F  Wu GY 《Amino acids》2012,42(6):2111-2119
Placental vascular formation and blood flow are crucial for fetal survival, growth and development, and arginine regulates vascular development and function. This study determined the effects of dietary arginine or N-carbamylglutamate (NCG) supplementation during late gestation of sows on the microRNAs, vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS) expression in umbilical vein. Twenty-seven landrace?×?large white sows at day (d) 90 of gestation were assigned randomly to three groups and fed the following diets: a control diet and the control diet supplemented with 1.0% l-arginine or 0.10% NCG. Umbilical vein of fetuses with body weight around 2.0?kg (oversized), 1.5?kg (normal) and 0.6?kg (intrauterine growth restriction, IUGR) were obtained immediately after farrowing for miR-15b, miR-16, miR-221, miR-222, VEGFA and eNOS real-time PCR analysis. Compared with the control diets, dietary Arg or NCG supplementation enhanced the reproductive performance of sows, significantly increased (P?<?0.05) plasma arginine and decreased plasma VEGF and eNOS (P?<?0.05). The miR-15b expression in the umbilical vein was higher (P?<?0.05) in the NCG-supplemented group than in the control group. There was a trend in that the miR-222 expression in the umbilical vein of the oversized fetuses was higher (0.05?<?P?<?0.1) than in the normal and IUGR fetuses. The expression of eNOS in both Arg-supplemented and NCG-supplemented group were lower (P?<?0.05) than in the control group. The expression of VEGFA was higher (P?<?0.05) in the NCG-supplemented group than in the Arg-supplemented and the control group. Meanwhile, the expression of VEGFA of the oversized fetuses was higher (P?<?0.05) than the normal and IUGR fetuses. In conclusion, this study demonstrated that dietary Arg or NCG supplementation may affect microRNAs (miR-15b, miR-222) targeting VEGFA and eNOS gene expressions in umbilical vein, so as to regulate the function and volume of the umbilical vein, provide more nutrients and oxygen from the maternal to the fetus tissue for fetal development and survival, and enhance the reproductive performance of sows.  相似文献   

5.
The effects of soluble fiber inclusion in gestation diets with varying fermentation characteristics (fermentation kinetics and short-chain fatty acids (SCFA)-profile) on lactational feed intake of sows and their piglet growth over two parities were investigated using an in vitroin vivo methodology. After breeding, 90 multiparous Landrace sows were randomized to one of three experimental diets: the control (CON) diet, konjac flour (KF) diet or sugar beet pulp (SBP) diet. All diets had similar levels of net energy, CP, insoluble fiber and NDF, but KF and SBP diets had higher soluble fiber levels than the CON diet. During gestation, the sows were restrictively fed with three different diets, but during lactation, all the sows were similarly fed ad libitum. The three gestation diets were enzymatically hydrolyzed using pepsin and pancreatin, and enzymolyzed residues were used in in vitro fermentation. Gas and SCFA production were monitored during fermentation. After fermentation, enzymolyzed residues of KF or SBP diets resulted in higher final asymptotic gas volume than those of the CON diet. The enzymolyzed residues of KF diet were mainly part of rapidly fermented fractions, whereas those of SBP diet were mainly part of slowly fermented fractions. In addition, the acetic acid, butyric acid and total SCFA concentrations of enzymolyzed residues of KF diet were higher (P<0.01) than the control and SBP diets. In the in vivo studies, on day 90 of gestation, the KF diet sows had higher plasma SCFA concentration (P<0.05) at 4 h after feeding than the CON diet sows. Furthermore, the KF diet sows had lower plasma free fatty acid (FFA) concentration (P<0.01) at 4 h after feeding, and a lower value of homeostasis model assessment (HOMA)-insulin resistance (P<0.05), but a higher value of HOMA-insulin sensitivity (P<0.01). The KF diet sows also consumed more feed during lactation (P<0.01) and weaned significantly heavier pigs (P<0.01) than the CON diet sows. The overall results showed that the high fermentation capacity KF diet contributed to an increased lactational feed intake and improved performance of piglets in the second reproductive cycle.  相似文献   

6.
A commercial pig spends nearly half of its life in utero and its nutrition during this time can influence birth weight and postnatal growth. We hypothesised that postnatal growth is increased in pigs raised by sows with a high backfat depth and high level of energy intake during gestation compared with sows with a low backfat depth and low level of energy intake during gestation. This was tested in a 2×3 factorial design experiment with 2 factors for gilt backfat depth (Thin and Fat) and 3 factors for gestation feed allowance (Restricted, Control and High). Between d 25 and d 90 of gestation, Thin gilts (n=68; 12±0.6 mm P2 backfat) and Fat gilts (n=72; 19±0.6 mm P2 backfat) were randomly allocated, as individuals, to a gestation diet (6.19 g/kg lysine, 13.0 MJ DE/kg) at the following feed allowances: 1.8 kg/day (Restricted); 2.5 kg/day (Control) and 3.5 kg/day (High). For the remainder of gestation and during lactation all gilts were treated similarly. At weaning (day 28), 155 piglets were sacrificed and 272 were individually housed and followed through to slaughter (day 158). At day 80 of gestation, fasted Thin Restricted gilts had lower serum IGF-1 concentrations than Thin High or Thin Control fed gilts (P<0.001). Pigs born from Fat gilts had greater backfat depths (P<0.05), a lower lean meat yield (P<0.05) and were heavier (P<0.05) at slaughter than pigs born from Thin gilts. Gilt gestation feed allowance had only transitory effects on average daily gain and feed conversion efficiency and had no effect on pig weight at slaughter (P>0.05) or lean meat yield (P>0.05). In conclusion, gilts with a backfat depth of ~19 mm at insemination produced pigs that were heavier and fatter at ~158 days of age than those born from gilts with ~12 mm backfat depth at insemination. Maternal body condition during gestation had a more predominant influence on growth parameters of the offspring, such as weight at slaughter and backfat depth, than did feed level during gestation.  相似文献   

7.
A total of 200 (Large White × Landrace) sows were used in a 39-day study to evaluate the effects of feeding a non-starch polysaccharide (NSP)-hydrolysing enzyme multicomplex (Rovabio® Excel) in conjunction with a high- or reduced nutrient-density diet during lactation on sow body condition, feed intake and progeny performance. Eight sows were selected each week for 25 weeks, blocked by parity and BW into groups of four, and within the block randomly assigned to one of the four treatments (n = 50/treatment). Treatments were: (1) LND: low energy (13.14 MJ of DE/kg), low CP (15%) diet; (2) LND + RE: LND with 50 mg/kg NSP-hydrolysing enzyme; (3) HND: high energy (14.5 MJ of DE/kg), high CP (16.5%) diet; and (4) HND + RE: HND with 50 mg/kg NSP-hydrolysing enzyme. Sows were fed treatment diets from day 109 of gestation until the day of subsequent service. Between weaning and re-service, Rovabio® Excel addition to LND diets resulted in an increase in energy intake; however, a reduction was observed when supplemented to the HND diet (P < 0.05). The inclusion of Rovabio® Excel increased feed and energy intake during week 3 (days 15 to 21) of lactation (P < 0.05). Sows fed diets supplemented with Rovabio® Excel had greater back-fat depth at weaning and service (P < 0.05); however, the magnitude of change in back-fat depth during lactation and from farrowing to service was not different between treatments. Feeding the HND diet increased energy intake before farrowing, throughout lactation and during the weaning to service interval (P < 0.01); however, overall, average daily feed intake tended to be reduced (P < 0.10). At service, sows fed the HND diet were heavier than sows fed the LND diet (P < 0.05); however, the magnitude of change in BW between treatments was not different. Feeding the HND diet to sows resulted in a tendency for heavier piglets at birth (P = 0.10) that tended to grow at a faster rate and be heavier at weaning than piglets from sows fed the LND diet (P = 0.06). These results indicate that NSP-degrading enzymes offer minimal benefit to sows and their progeny when fed before and during lactation; however, increasing energy intake of sows during lactation may beneficially affect progeny.  相似文献   

8.
The objective of this study was to determine the effects of supplemental chromium as chromium picolinate (CrPic) on productive performance, chromium (Cr) concentration, serum parameters, and colostrum composition in sows. Thirty Yorkshire sows were bred with semen from a pool of Landrace boars. The sows were equally grouped and treated with either a diet containing 0 (control) or 400 ppb dietary Cr supplementation throughout gestation. The sows received the same basal diet based on corn-DDGS meal. Supplemental CrPic increased (P?<?0.05) the sow body mass gain from the insemination to the day 110 of gestation in sows. No differences (P?>?0.50) were observed in the gestation interval, sow mass, and backfat at insemination, after farrowing, at weaning and lactation loss. The number of piglets born alive, piglets per litter at weaning, and litter weaned mass were increased (P?<?0.05) for those supplemented with CrPic compared with the control. However, the total number of piglets born, total born litter mass, average piglet birth body mass, born alive litter mass, and average born alive piglet mass did not differ among the treatments (P?>?0.05). The placental masses of sows were similar among treatments (P?>?0.05). Dietary supplementation with CrPic throughout gestation in sows showed increased (P?<?0.01) concentration of Cr in the colostrum or serum at days 70 and 110. Compared with the control group, dietary supplementation with CrPic throughout gestation in sows decreased (P?<?0.05) the serum insulin concentration, the glucose or serum urea nitrogen concentration at days 70 and 110. However, no differences (P?>?0.05) were observed in total protein concentration among treatments. No differences (P?>?0.05) were observed in total solids, protein, fat or lactose among sows fed the diets supplemented with CrPic compared with the control. This exciting finding provides evidence for an increase in mass gain and live-born piglets in sows supplemented with CrPic throughout gestation.  相似文献   

9.
The profitability of pig production is constrained by high incidences of peri-parturient and pre-weaning piglet mortality. Supplementing sows with either progesterone or caffeine during the last week of gestation can reduce stillbirths and improve piglet performance. However, the consequences of combining these two substances has not been investigated. The aim of the current study was to determine the effect of oral supplementation of sows with progesterone (regumate) and caffeine at the end of gestation on the timing and progression of farrowing, as well as piglet survival and growth to weaning. From days 111 to 113 of gestation, 20 Large White pregnant sows (parity 3.0±0.45) received 5 ml of Regumate Porcine (0.4 w/v oral solution; MSD Animal Health) daily on top of their morning ration. Sows were stratified according to parity and predicted farrowing date, and allocated at random to receive a diet supplemented with either 0 g caffeine/kg diet (CONT) or 2.4 g of caffeine/kg diet (CAFF) from day 113 of gestation until parturition (n=10 sows/treatment). Treatment did not affect total litter size; however, CONT sows gave birth to more live and fewer dead piglets compared with CAFF sows; 14.5±0.73 v. 11.7±1.03 and 0.7±0.20 v. 3.2±0.77; P<0.05). Mean, minimum and maximum piglet birthweight were unaffected by treatment. Compared with the control, caffeine increased the proportion of piglets with a birthweight <1 kg (0.16±0.05 v. 0.05±0.02; P=0.072) and decreased the proportion of live born piglets surviving to day 5 postpartum (0.77±0.06 v. 0.90±0.02; P<0.05) and to weaning (0.74±0.06 v. 0.90±0.02; P<0.05). Overall, the current data provided the first evidence that caffeine supplementation of sows receiving progesterone to prevent premature farrowing impaired piglet survival during, and shortly after parturition. This negative outcome may be linked to extended farrowing durations and an increase in the proportion of very light piglets at birth. These data provide compelling, albeit preliminary, evidence that caffeine and progesterone should not be used together at the end of gestation.  相似文献   

10.
Intrauterine variations in nutrient allowance can alter body composition and tissue features of the porcine offspring around birth. This study aimed to determine the effects of fetal weight variations between littermates and of maternal dietary regimen during gestation on fetal muscle traits just before birth. Fourteen pregnant gilts were reared under a conventional (control, CTL; n=7) or an experimental (treatment, TRT; n=7) dietary regimen during gestation. The dietary treatment provided 70% of the protein and digestible energy contents of the CTL diet during the first 70 days of gestation and then, 115% of the protein and digestible energy contents up to farrowing. At 110 days of gestation, sows were sacrificed and one fetus having a low (824±140 g) and one having a normal (1218±192 g) BW per litter were sampled. Irrespective of maternal dietary regimen, the longissimus muscle of the small fetuses exhibited higher expression levels of DLK1/Pref1 and NCAM1/CD56, two genes known to be downregulated during normal skeletal muscle development. Expression levels of the embryonic isoform of the myosin heavy chain (MyHC), both at the mRNA and at the protein levels, were also higher in small fetuses. In addition, the ratios of perinatal to embryonic and of adult fast to developmental MyHC isoforms were generally lower in light fetuses compared with their medium-weight littermates. These modifications suggest a delayed myofiber development in spontaneous growth-retarded fetuses. Finally, GLUT1 was expressed to a lesser extent in the muscle of small v. normal fetuses, suggesting decreased ability for glucose uptake in muscle. Initial feed restriction and subsequent overfeeding of sows during gestation led to a lower expression of the myogenic factor MYOD1, a prerequisite for myogenic initiation in skeletal muscle. This maternal strategy was also associated with a lower expression level of insulin-like growth factor 1 receptor (IGFR) but an upregulation of IGF2. This suggests an altered susceptibility of muscle cells to IGFs’ signal in fetuses from treated sows. Altogether, intrauterine growth restriction impaired fetal muscle development, and restricted feeding followed by overfeeding of gestating sows did not allow small fetuses to recover normal contractile and metabolic characteristics.  相似文献   

11.
Sow lactation diets often include fat sources without considering the impact on digestion, metabolism and performance. Fiber ingredients may reduce feed intake and are often completely excluded from lactation diets, although locally available ingredients may be cost-efficient alternatives to partly replace cereals in lactation diets. Thus, a standard lactation diet low in dietary fiber, and two high-fiber diets based on sugar beet pulp (SBP) or alfalfa meal (ALF) were formulated. The SBP diet was high in soluble non-starch polysaccharides (NSP), whereas ALF being high in insoluble NSP. Each diet was divided in three portions and combined with 3% soybean oil (SOYO), palm fatty acid distillate (PFAD), or glycerol trioctanoate (C8TG) as the dietary fat source. Equal amounts of metabolizable energy were fed to 36 second parity sows from day 105 of gestation and throughout lactation to study the impact on feed intake, plasma metabolites, milk production and litter performance. Backfat thickness and BW of sows were recorded on days 3, 17 and 28 of lactation; blood was sampled on days 3 and 17; milk samples were obtained on days 3, 10, 17 and 24 of lactation; and piglets were weighed on days 2, 7, 14, 21 and 28 of lactation. Litter gain and milk yield during late lactation were greater in sows fed C8TG or SOYO than in sows fed PFAD (P=0.05), whereas loss of BW (P=0.60) and backfat (P=0.70) was unaffected by fat source. Milk protein on days 3 and 10 of lactation were lower in C8TG and SOYO sows, than in PFAD sows (P<0.05). The lowest concentration of plasma lactate on day 3 (P<0.05) and plasma acetate on day 17 (P<0.05) was observed in C8TG sows. Milk yield was unaffected by fiber treatment (P=0.43), whereas milk protein concentration was lowest in ALF sows (P<0.05). Feed intake tended to be lower (P=0.09), and litter gain during the 3rd week of lactation was decreased (P<0.05) in SBP sows. In conclusion, performance was enhanced in SOYO and C8TG compared with PFAD sows, possibly associated with reduced energy intake in PFAD-fed sows. Furthermore, the SBP diet seemed to impair feed intake and litter gain at peak lactation, suggesting that effects of the dietary fiber fraction on energy intake determines the potential inclusion level of fiber-rich ingredients.  相似文献   

12.
During weaning-to-estrus interval (WEI), the sows are usually fed with high feed level to improve the reproductive performance. However, the WEI has been reduced over the years which may reduce the impact of feed level on performance in the modern genetic lines. The aim of this study was to evaluate the effect of two feeding levels (moderate feeding level (MFL): 2.7 kg/day and high feeding level (HFL): 4.3 kg/day) and two diet types (gestation: 13.67 MJ/kg of metabolizable energy (ME) and 0.62% of standard ileal digestible lysine (SID Lys) and lactation: 14.34 MJ ME/kg and 1.20% of SID Lys) offered during the WEI on reproductive performance. In total, 19.0% of sows were excluded from the analysis due to feed intake below 75% (9.6% and 28.5% in MFL and HFL groups, respectively), remaining 254 primiparous and 806 multiparous sows. Follicular size and change in BW were measured in subsamples of 180 and 227 females, respectively. Data were analyzed considering the sow as the experimental unit. Feeding level, diet type, parity and their interactions were included as fixed effects, whereas the day of weaning was considered as a random effect. The feed intake of MFL and HFL groups averaged 2.5 ± 0.02 and 3.8 ± 0.02 kg/day, respectively. There was an interaction between feeding level and parity for daily feed intake. Within HFL, multiparous sows consumed 181 g/day more than primiparous sows (P < 0.01), but no difference was observed within MFL (P > 0.05). Both primiparous and multiparous sows lost proportionally less weight when fed HFL than MFL gestation diet during WEI. The percentage of weight loss was lower in HFL than in the MFL group in multiparous sows fed the lactation diet. The WEI was not affected by feeding level, diet type or its interaction (P > 0.05), but it was longer in primiparous than in multiparous sows (P = 0.001). There was no effect of feeding level, diet type, parity or their interactions on anestrus and farrowing rates. Multiparous sows showed greater follicular size, and greater numbers of total born and born alive piglets in the subsequent cycle than primiparous sows (P < 0.05). In conclusion, feeding weaned primiparous and multiparous sows with 4.3 kg/day of a gestation (58.78 MJ ME and 26.66 g SID Lys) or a lactation diet (61.66 MJ ME and 51.60 g SID Lys) does not improve follicular size and reproductive performance in the subsequent cycle.  相似文献   

13.
The supplementing of sow diets with lipids during pregnancy and lactation has been shown to reduce sow condition loss and improve piglet performance. The aim of this study was to determine the effects of supplemental palm oil (PO) on sow performance, plasma metabolites and hormones, milk profiles and pre-weaning piglet development. A commercial sow ration (C) or an experimental diet supplemented with 10% extra energy in the form of PO, were provided from day 90 of gestation until weaning (24 to 28 days postpartum) in two groups of eight multiparous sows. Gestation length of PO sows increased by 1 day (P<0.05). Maternal BW changes were similar throughout the trial, but loss of backfat during lactation was reduced in PO animals (C: −3.6±0.8 mm; PO: −0.1±0.8 mm; P<0.01). Milk fat was increased by PO supplementation (C day 3: 8.0±0.3% fat; PO day 3: 9.1±0.3% fat; C day 7: 7.8±0.5% fat; PO day 7: 9.9±0.5% fat; P<0.05) and hence milk energy yield of PO sows was also elevated (P<0.05). The proportion of saturated fatty acids was greater in colostrum from PO sows (C: 29.19±0.31 g/100 g of fat; PO: 30.77±0.36 g/100 g of fat; P<0.01). Blood samples taken on 105 days of gestation, within 24 h of farrowing, day 7 of lactation and at weaning (28±3 days post-farrowing) showed there were no differences in plasma concentrations of triacylglycerol, non-esterified fatty acids, insulin or IGF-1 throughout the trial. However, circulating plasma concentrations of both glucose and leptin were elevated during lactation in PO sows (P<0.05 and P<0.005, respectively) and thyroxine was greater at weaning in PO sows (P<0.05). Piglet weight and body composition were similar at birth, as were piglet growth rates throughout the pre-weaning period. A period of 7 days after birth, C piglets contained more body fat, as indicated by their lower fat-free mass per kg (C: 66.4±0.8 arbitrary units/kg; PO: 69.7±0.8 arbitrary unit/kg; P<0.01), but by day 14 of life this situation was reversed (C: 65.8±0.6 arbitrary units/kg; PO: 63.6±0.6 arbitrary units/kg; P<0.05). Following weaning, PO sows exhibited an increased ratio of male to female offspring at their subsequent farrowing (C: 1.0±0.3; PO: 2.2±0.2; P<0.05). We conclude that supplementation of sow diets with PO during late gestation and lactation appears to increase sow milk fat content and hence energy supply to piglets. Furthermore, elevated glucose concentrations in the sow during lactation may be suggestive of impaired glucose homoeostasis.  相似文献   

14.
There are indications that intrauterine crowding may cause intrauterine growth retardation with the possibility of an impaired myofiber hyperplasia. The aim of the study was to confirm this by generating large differences in uterine space using sows that were unilaterally hysterectomized-ovariectomized (HO; crowded) or unilaterally oviduct ligated (OL; non-crowded). In the study, seven HO and seven OL Swiss Large White third parity sows were used. At farrowing, litter size and litter birth weight were determined. Subsequently, within each litter two male and two female progenies each with the respectively lowest (L) and highest (H) birth weight were sacrificed. Internal organs and brain were weighed, and longissimus (LM) and semitendinosus muscle (SM) samples were collected. Histological analyses were performed in both muscles using mATPase staining after preincubation at pH 4.3 and 10.2. Myosin heavy chain (MyHC) polymorphism was determined in the LM by means of SDS-PAGE. The number of piglets born alive was similar in both sow groups, but litter size expressed per uterine horn was lower (P < 0.05) in OL than HO sows. Consequently, OL progeny were markedly heavier (P < 0.01). Regardless of gender, the organs, the brain and the SM were heavier (P < 0.001) in OL and H compared with HO and L offspring, respectively. Compared with HO pigs, the SM of OL offspring tended (P < 0.1) to have more myofibers, which were of larger (P < 0.05) size. However, myofiber density appeared to be lower (P < 0.1) in the SM of OL than HO pigs. The impact of birth weight on myofiber characteristics was limited to the lower (P < 0.05) myofiber density in the SM and the larger (P < 0.01) myofiber size in the light portion of the SM of H than L offspring, whereas myofiber hyperplasia did not differ between birth weight categories. The SM, but not the LM, of male offspring had a greater (P < 0.05) myofiber density. This did not affect total SM myofiber number. The relative abundance of fetal and type I MyHC in the LM was lower (P < 0.05) and that of type II MyHC was greater (P < 0.001) in OL than HO pigs. The current data suggest that regardless of birth weight and gender, in the LM and SM of individuals born from a crowded environment, not only hyperplasia but also hypertrophy of myofibers is impaired and their maturity seems delayed.  相似文献   

15.
Understanding how critical sow live-weight and back-fat depth during gestation are in ensuring optimum sow productivity is important. The objective of this study was to quantify the association between sow parity, live-weight and back-fat depth during gestation with subsequent sow reproductive performance. Records of 1058 sows and 13 827 piglets from 10 trials on two research farms between the years 2005 and 2015 were analysed. Sows ranged from parity 1 to 6 with the number of sows per parity distributed as follows: 232, 277, 180, 131, 132 and 106, respectively. Variables that were analysed included total born (TB), born alive (BA), piglet birth weight (BtWT), pre-weaning mortality (PWM), piglet wean weight (WnWT), number of piglets weaned (Wn), wean to service interval (WSI), piglets born alive in subsequent farrowing and sow lactation feed intake. Calculated variables included the within-litter CV in birth weight (LtV), pre-weaning growth rate per litter (PWG), total litter gain (TLG), lactation efficiency and litter size reared after cross-fostering. Data were analysed using linear mixed models accounting for covariance among records. Third and fourth parity sows had more (P<0.05) TB, BA and heavier BtWT compared with gilts and parity 6 sow contemporaries. Parities 2 and 3 sows weaned more (P<0.05) piglets than older sows. These piglets had heavier (P<0.05) birth weights than those from gilt litters. LtV and PWM were greater (P<0.01) in litters born to parity 5 sows than those born to younger sows. Sow live-weight and back-fat depth at service, days 25 and 50 of gestation were not associated with TB, BA, BtWT, LtV, PWG, WnWT or lactation efficiency (P>0.05). Heavier sow live-weight throughout gestation was associated with an increase in PWM (P<0.01) and reduced Wn and lactation feed intake (P<0.05). Deeper back-fat in late gestation was associated with fewer (P<0.05) BA but heavier (P<0.05) BtWT, whereas deeper back-fat depth throughout gestation was associated with reduced (P<0.01) lactation feed intake. Sow back-fat depth was not associated with LtV, PWG, TLG, WSI or piglets born alive in subsequent farrowing (P>0.05). In conclusion, this study showed that sow parity, live-weight and back-fat depth can be used as indicators of reproductive performance. In addition, this study also provides validation for future development of a benchmarking tool to monitor and improve the productivity of modern sow herd.  相似文献   

16.
For the spring-calving beef herds, late gestation coincides with winter and early spring, when cows are dependent on feed supplements with low quality hay, which is hard to meet their nutrient requirements. However, the effects of deficiencies of metabolizable protein intake during late gestation on offspring beef quality are unclear. Wagyu cattle have excellent marbling, and insemination with Wagyu vs Angus semen is a practical option for beef producers to improve beef quality. To test, Angus cows (621 ± 73 kg) were selected and randomly separated into two groups. Each group was inseminated with either Angus or Wagyu semen. During the last 90 days of gestation, cows in each group were further separated and received either a low protein diet (85% of the NRC metabolizable protein requirement), which was a low quality hay-based diet common in northwestern region of the U.S., or an adequate protein diet (108% NRC requirement). All progeny was managed together and harvested at a final BW of 576.5 ± 16.6 kg. Wagyu-sired offspring had higher marbling scores and quality grades than Angus (P < 0.01). Protein supplementation did not affect Slice Shear Force (SSF) in either breeds (P = 0.60). However, Wagyu-sired cattle had lower SSF than Angus-sired (P < 0.01). In addition, Wagyu-sired cattle had higher intramuscular fat (P < 0.05) and total collagen content (P < 0.05), but Angus-sired had greater mature collagen cross-links, as shown by higher contents of Pyridinoline (P < 0.01) and Ehrlich Chromogen (P < 0.01). Consistently, the mRNA expression of enzymes catalyzing collagen cross-linking was higher in Angus-sired offspring, including Plod 1 (P < 0.05), Plod 2 (P = 0.08), and P4Hα 2 (P < 0.01). In conclusion, Wagyu-sired cattle had greater tenderness and marbling score compared to Angus-sired, which was associated with lower collagen cross-links. Feeding mature grass hay-based diet with relatively low protein content during late gestation had no major effect on beef quality of subsequent cattle.  相似文献   

17.
Farrowing duration is a crucial factor affecting survival of piglets and health of sows, and is highly correlated with the incidence of stillbirth. The present study assessed the metabolic characteristics of sows with short farrowing duration (SFD) or long farrowing duration (LFD). A total of 20 Yorkshire sows were screened from 60 sows and were retrospectively allocated into SFD (211 min on average, n = 10) or LFD (388 min on average, n = 10) group. Parameters associated with energy metabolism and redox status were characterised. Results showed that sows at farrowing had decreased plasma concentrations of glucose, triglyceride, acetate, butyrate and total short-chain fatty acids (P < 0.05), but increased concentrations of lactic acid and propionate (P < 0.05), when compared with sows on day 107 of gestation. The SFD sows had shorter time from last meal until the onset of farrowing (P < 0.05) and tended to have less stillbirths (P = 0.08) and lower stillbirth rate (P = 0.07). For the blood metabolites, SFD sows at farrowing had higher concentration of plasma glucose (P < 0.05), but lower concentration of lactic acid (P < 0.05) than LFD sows. Besides, SFD sows tended to have higher plasma malondialdehyde concentration (P = 0.06) than LFD sows. Correlation analysis showed that farrowing duration was negatively correlated with plasma glucose concentration at onset of farrowing. In conclusion, our study strongly suggests that glucose is a key metabolite for energy metabolism of the uterus during farrowing. The farrowing process could be closely related to uterine energy expenditure, and sows with shorter farrowing duration could be resulting from the shorter time from last meal until the onset of farrowing, associated with a greater proportion of energy from glucose.  相似文献   

18.
Over the last decades, genetic selection has increased sows’ litter size. Consequently, there is a high proportion of piglets born with low weight which are vulnerable. Their viability may potentially be enhanced through early nutrition. The aim of the current study was to evaluate whether including a fish oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the diets of the sow and piglets was able to increase concentrations of anti-inflammatory molecules in their blood. Thirty-six sows, in four consecutive batches, were randomly assigned to either a control diet with animal fat (15 g/kg in gestation and 30 g/kg in lactation) or an n-3 long-chain fatty acid (n-3 LCFA) diet from insemination until the end of lactation. From day 11 of lactation, piglets were also offered a diet containing 30 g/kg of animal fat or n-3 LCFA. To prepare the n-3 LCFA diet, 15 g/kg or 30 g/kg of animal fat in the control diet were replaced by an equivalent amount of solid fish oil for sows and piglets, respectively. All the sows were sampled for serum and plasma at day 108 of gestation and at weaning. Additionally, only for the first batch of sows, blood samples were also obtained at weaning from the two lightest (>800 g) and the two heaviest birth weight piglets in each litter. Serum fatty acids (FAs) were quantified by gas chromatography, plasma oxylipins by ultra-HPLC-MS and plasma immunoglobulins (Ig) and cytokines by ELISA. The n-3 LCFA diet increased the concentrations of n-3 FAs in gestating and lactating sows and in piglets (P < 0.001, P < 0.001 and P = 0.011, respectively), particularly EPA (P < 0.001, P < 0.001 and P < 0.001, respectively) and DHA (P < 0.001, P < 0.001 and P < 0.001, respectively), and also their oxygenated derivatives. In addition, fish oil increased plasma IgM in gestating and lactating sows (P = 0.014 and P = 0.008, respectively), interleukin (IL) 6 in sows at weaning (P = 0.012), and IL1β in piglets (P = 0.018). Birth BW of piglets, regardless of diet, slightly influenced some of the n-6-derived oxylipins. In conclusion, fish oil addition in diets increased the blood concentrations of n-3 FAs and their oxygenated derivatives, some of which have anti-inflammatory activity, in gestating and lactating sows and piglets, IgM in gestating and lactating sows, IL6 in lactating sows and IL1β in piglets.  相似文献   

19.
20.
The continued growth in biofuel production has led to a search for alternative value-added applications of its main by-product, crude glycerin. The surplus glycerin production and a higher cost of feedstuffs have increased the emphasis on evaluating its nutritive value for animal feeding. The aim of this research was to evaluate the effect of the dietary addition of crude glycerin on sow and litter performance, and to determine the serum concentrations of hormones related to energy metabolism and feed intake in sows during gestation and lactation. A total of 63 sows were assigned randomly to one of three dietary treatments, containing 0, 3 or 6% crude glycerin (G0, G3 and G6, respectively) added to a barley-soybean meal-based diet. During gestation, none of the dietary treatments had an effect on performance, while during lactation, glycerin-fed sows consumed less feed than those fed the control diet (3.8 v. 4.2kg DM/day; P=0.007). Although lactating sows fed the G3 diet had a higher BW loss than those fed the control diet (−20.6 v. −8.7 kg; P=0.002), this difference was not reflected in litter performance. In gestation, the inclusion of glycerin did not affect blood concentrations of insulin or cortisol. However, pregnant sows fed diets supplemented with glycerin showed lower concentrations of acyl-ghrelin and higher concentrations of leptin (−55 and +68%, respectively; P<0.001). In lactating sows, there were no differences between dietary treatments for any of the hormones measured. Pre-prandial acyl-ghrelin concentrations were positively correlated with cortisol concentrations during gestation (r=0.81; P=0.001) and lactation (r=0.61; P=0.015). In conclusion, the inclusion of up to 6% crude glycerin did not affect the performance of sows during the gestation period; however it had a negative effect on the feed intake and weight loss of lactating sows. Moreover, further research is needed to elucidate the potential relationship between glycerin inclusion levels in the diet and the serum concentrations of hormones related to feed intake and energy balance control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号