首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Short-chain fatty acids (SCFAs), the end products of fermentation of dietary fibers by the anaerobic intestinal microbiota, have been shown to exert multiple beneficial effects on mammalian energy metabolism. The mechanisms underlying these effects are the subject of intensive research and encompass the complex interplay between diet, gut microbiota, and host energy metabolism. This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism. There are interesting leads on the underlying molecular mechanisms, but there are also many apparently contradictory results. A coherent understanding of the multilevel network in which SCFAs exert their effects is hampered by the lack of quantitative data on actual fluxes of SCFAs and metabolic processes regulated by SCFAs. In this review we address questions that, when answered, will bring us a great step forward in elucidating the role of SCFAs in mammalian energy metabolism.  相似文献   

3.
Three ruminally cannulated and multicatheterised lactating dairy cows were used to investigate the effect of different supplement strategies to fresh clover grass on urea and short-chain fatty acid (SCFA) metabolism in a zero-grazing experiment with 24-h blood and ruminal samplings. Fresh clover grass was cut every morning and offered from 0800 to 1500 h. Maize silage was fed at 1530 h. The three treatments, arranged in a Latin square, differed by timing of feeding rolled barley and soya-bean hulls relative to fresh clover grass. All diets had the same overall composition. Treatments were soya-bean hulls fed at 0700 h and barley fed at 1530 h (SAM), barley fed at 0700 h and soya-bean hulls fed at 1530 h (BAM), and both soya-bean hulls and barley fed at 1530 h (SBPM). The grass had an unexpectedly low content of crude protein (12.7%) and the cows were severely undersupplied with rumen degradable protein. The treatment effects were numerically small; greater arterial ammonia concentration, net portal flux of ammonia and net hepatic flux of urea during part of the day were observed when no supplementary carbohydrate was fed before grass feeding. A marked diurnal variation in ruminal fermentation was observed and grass feeding increased ruminal concentrations of propionate and butyrate. The net portal fluxes of propionate, butyrate, isovalerate and valerate as well as the net hepatic uptake of propionate, butyrate, valerate and caproate increased after feeding at 0700 h. The hepatic extraction of butyrate showed a relatively large depression with grass feeding with nadir at 1200 to 1330 h. The increased net portal absorption and the decreased hepatic extraction resulted in an approximately six-fold increase in the arterial blood concentration of butyrate. The gut entry rate of urea accounted for 70 ± 10% of the net hepatic production of urea. Saliva contributed to 14% of the total amount of urea recycled to the gut. Urea recycling to the gut was equivalent to 58% of the dietary nitrogen intake. Despite the severe undersupply of rumen degradable protein, the portal-drained viscera did not extract more than 4.3% of the urea supplied with arterial blood. This value is in line with the literature values for cows fed diets only moderately deficient in rumen degradable protein and indicates that cows maximise urea transfer across gut epithelia even when the diet is moderately deficient in rumen degradable protein.  相似文献   

4.
ABSTRACT

Short and medium-chain fatty acids (SCFA and MCFA, respectively) are commonly used as feed additives in piglets to promote health and prevent post-weaning diarrhoea. Considering that the mechanism and site of action of these fatty acids can differ, a combined supplementation could result in a synergistic action. Considering this, it was aimed to assess the potential of two new in-feed additives based on butyrate or heptanoate, protected with sodium salts of MCFA from coconut distillates, against enterotoxigenic Escherichia coli (ETEC) F4+ using an experimental disease model. Two independent trials were performed in 48 early-weaned piglets fed a control diet (CTR) or a diet supplemented with MCFA-protected sodium butyrate (BUT+; Trial 1) or sodium heptanoate (HPT+; Trial 2). After 1 week of adaptation, piglets were challenged with a single oral inoculum of ETEC F4+ (minimum 1.4 · 109 cfu). One animal per pen was euthanised on days 4 and 8 post-inoculation (PI) and the following variables assessed: growth performance, clinical signs, gut fermentation, intestinal morphology, inflammatory mediators, pathogen excretion and colon microbiota. None of the additives recovered growth performance or reduced diarrhoea when compared to the respective negative controls. However, both elicited different responses against ETEC F4+. The BUT+ additive did not lead to reduce E. coli F4 colonisation but enterobacterial counts and goblet cell numbers in the ileum were increased on day 8 PI and this followed higher serum TNF-α concentrations on day 4 PI. The Firmicutes:Bacteroidetes ratio was nevertheless increased. Findings in the HPT+ treatment trial included fewer animals featuring E. coli F4 in the colon and reduced Enterobacteriaceae (determined by 16S RNA sequencing) on day 4 PI. In addition, while goblet cell numbers were lower on day 8 PI, total SCFA levels were reduced in the colon. Results indicate the efficacy of MCFA-protected heptanoate against ETEC F4+ and emphasise the potential trophic effect of MCFA-protected butyrate on the intestinal epithelium likely reinforcing the gut barrier.  相似文献   

5.
Sulfo-N-succinimidyl esters of LCFAs are a powerful tool to investigate the functional significance of plasmalemmal proteins in the LCFA uptake process. This notion is based on the following observations. First, sulfo-N-succinimidyl oleate (SSO) was found to inhibit the bulk of LCFA uptake into various cell types, i.e. rat adipocytes, type II pneumocytes and cardiac myocytes. Second, using cardiac giant membrane vesicles, in which LCFA uptake can be investigated in the absence of mitochondrial -oxidation, SSO retained the ability to largely inhibit LCFA uptake, indicating that inhibition of LCFA transsarcolemmal transport is its primary action. Third, SSO has no inhibitory effect on glucose and octanoate uptake into giant membrane vesicles derived from heart and skeletal muscle, indicating that its action is specific for LCFA uptake. Finally, SSO specifically binds to the 88 kDa plasmalemmal fatty acid transporter FAT, a rat homologue of human CD36, resulting in an arrest of the transport function of this protein.In addition to its inhibitory action at the plasma membrane level, evidence is presented for the lack of a direct inhibitory effect on subsequent LCFA metabolism. First, the relative contribution of oxidation and esterification to LCFA uptake is not altered in the presence of SSO. Second, isoproterenol-mediated channeling of LCFAs into oxidative pathways is not affected by sulfo-N-succinimidyl palmitate (SSP). As an example of its application we used SSP to study the role of FAT/CD36 in contraction- and insulin-stimulated LCFA uptake by cardiac myocytes , showing that this transporter is a primary site of regulation of cellular LCFA utilization.  相似文献   

6.
Abstract Type strains of Rhodocyclus purpureus, R. gelatinosus and R. tenuis along with three local isolates of R. gelatinosus were tested for growth in the light on n -fatty acids ranging in chain length from C5 (valerate) to C22 (docosanoate).
R. purpureus , the type species of the genus, was anomalous in its limited ability to grow on n -fatty acids; no fatty acids of chain length greater than C9 (nonanoate) were utilized. R. gelatinosus and R. tenuis , on the other hand, utilized all fatty acids in the range C5 to C18 inclusive. R. gelatinosus showed some restricted ability to use C20 (eicosanoate) and C22 (docosanoate) fatty acids.  相似文献   

7.
Branched-chain fatty acids (such as phytanic and pristanic acid) are ligands for the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARalpha) in vitro. To investigate the effects of these physiological compounds in vivo, wild-type and PPARalpha-deficient (PPARalpha-/-) mice were fed a phytol-enriched diet. This resulted in increased plasma and liver levels of the phytol metabolites phytanic and pristanic acid. In wild-type mice, plasma fatty acid levels decreased after phytol feeding, whereas in PPARalpha-/- mice, the already elevated fatty acid levels increased. In addition, PPARalpha-/- mice were found to be carnitine deficient in both plasma and liver. Dietary phytol increased liver free carnitine in wild-type animals but not in PPARalpha-/- mice. Investigation of carnitine biosynthesis revealed that PPARalpha is likely involved in the regulation of carnitine homeostasis. Furthermore, phytol feeding resulted in a PPARalpha-dependent induction of various peroxisomal and mitochondrial beta-oxidation enzymes. In addition, a PPARalpha-independent induction of catalase, phytanoyl-CoA hydroxylase, carnitine octanoyltransferase, peroxisomal 3-ketoacyl-CoA thiolase, and straight-chain acyl-CoA oxidase was observed. In conclusion, branched-chain fatty acids are physiologically relevant ligands of PPARalpha in mice. These findings are especially relevant for disorders in which branched-chain fatty acids accumulate, such as Refsum disease and peroxisome biogenesis disorders.  相似文献   

8.
Fatty acid synthase (FASN) is known as a crucial enzyme of cellular de novo fatty acid synthesis in mammary gland which has been proved as the main source of short and medium-chain fatty acids of milk. However, the regulatory role of FASN in goat-specific milk fatty acids composition remains unclear. We cloned and analyzed the full-length of FASN gene from the mammary gland of Capra hircus (Xinong Saanen dairy goat) (DQ 915966). Comparative gene expression analysis suggested that FASN is predominantly expressed in fat, small intestine and mammary gland tissues, and expresses higher level at lactation period. Inhibition of FASN activity by different concentrations (0, 5, 15, 25 and 35 μM) of orlistat, a natural inhibitor of FASN, resulted in decreased expression of acetyl-CoA carboxylase α (ACCα), lipoprotein lipase and heart-type fatty acid binding protein (H-FABP) in a concentration-dependent manner in goat mammary gland epithelial cells (GMEC). Similar results were also obtained by silencing of FASN. Additionally, reduction of FASN expression also led to apparent decline of the relative content of decanoic acid (C10:0) and lauric acid (C12:0) in GMEC. Our study provides a direct evidence for inhibition of FASN reduces cellular medium-chain fatty acids synthesis in GMEC.  相似文献   

9.
肠道菌群紊乱可导致宿主病理性骨质流失,其通过产生的代谢物从肠道扩散到体循环对骨代谢发挥重要的调控作用。短链脂肪酸(Short Chain Fatty Acids,SCFAs)是肠道细菌产生的代谢物家族中最受关注的代谢产物,近年来研究表明,SCFAs在骨代谢相关疾病的发生发展中具有重要调节作用。本文就其在骨骼系统中的作用、调节骨组织中细胞的机制及作为靶点防治骨代谢疾病骨质疏松的研究进行综述,并为此新兴且具有前景的研究领域在未来的基础研究和转化研究提供展望。  相似文献   

10.
Hydroxy long-chain fatty acids occur widely in animals and plants and have important physiological activities in these eukaryotes. There are indications that these compounds are also common and important in fungi. The occurrence of hydroxy-polyunsaturated fatty acids (hydroxy-PUFAs) is of biotechnological importance, because these compounds are potentially high-value lipid products with medical applications. This review pays particular attention to the production of hydroxy-PUFAs by yeasts and other fungi. Hydroxy-PUFAs derived from lipoxygenase activity appear to be present in most fungi, while hydroxy-PUFAs from cyclooxygenase activity (i.e. prostaglandins) have mainly been implicated in the Oomycota and in yeasts from the genus Dipodascopsis. The occurrence of other hydroxy long-chain fatty acids in fungi is also discussed briefly; these include hydroxy fatty acids that are generally associated with cytochrome P-450 monooxygenase activity (i.e. terminal and sub-terminal hydroxy acids and diols derived from the corresponding epoxides) as well as 2-hydroxy-fatty acids and 3-hydroxy-fatty acids.The authors are with the Department of Microbiology and Biochemistry, University of the Orange Free State, P.O. Box 339, Bloemfontein, 9300, South Africa  相似文献   

11.
Exposure to ethanol at 0 days of development induced changes in total membrane fatty acid composition at 18 days of development. When exposed to ethanol concentrations ranging from 0–743.27μm/kg egg wt, decreased levels of long-chain, unsaturated membrane fatty acids and increased levels of short-chain, saturated membrane fatty acids were observed in embryonic chick brains at 18 days of development. The ratios of unsaturated membrane/saturated membrane fatty acids correlated with an ethanol-induced reduction in neuron densities within the cerebral hemispheres and three different regions of the optic lobes with correlation coefficients (r) ranging from 0.44 [F = (1, 32) 7.84; P ≤ 0.009] to 0.59 [F = (1, 32) 17.38; P ≤ 0.0002]. The ratios of long-chain/short-chain membrane fatty acids also correlated with an ethanol-induced reduction in neuron densities within the cerebral hemispheres and three different regions of the optic lobes with correlation coefficients (r) ranging from 0.51 [F = (1, 32) 11.27; P≤ 0.002] to 0.66 [F = (1, 32) 24.40; P ≤ 0.0001]. Cell fractionation studies indicated that the ethanol-induced changes in brain membrane fatty acid composition were restricted to microsomal membranes.  相似文献   

12.
Sphingolipids from rodent testis and spermatozoa are known to contain non-hydroxylated (N-) and 2-hydroxylated (2-OH) very-long-chain polyunsaturated fatty acids (VLCPUFA). In this study, the contribution of species with each type of fatty acids to the total ceramides (Cer) and sphingomyelins (SM) was investigated in rat and mouse testis and in rat spermatozoa. The major VLCPUFA in both lipids of testis were N- and 2-OH versions of 28:4n−6, 30:5n−6 and 32:5n−6 in the rat, and predominantly of 30:5n−6 in the mouse. Absent altogether from rat pre-puberal testes, SM and Cer with N-VLCPUFA appeared 10 days earlier than those with 2-OH VLCPUFA in postnatal development, in association with germ cell differentiation. Conversely, in adult fertile rats that were gradually deprived of germ cells in vivo after treatment with doxorubicin, SM and Cer with N-VLCPUFA decreased earlier than their 2-OH counterparts, and neither was present in aspermatogenic testes. In rat epididymal spermatozoa, the content of Cer prevailed over that of SM and 2-OH VLCPUFA prevailed over N-VLCPUFA in both lipids. In mature gametes, the acrosomal reaction resulted in an almost complete hydrolysis of the species of SM that contain both types of VLCPUFA to produce the corresponding Cer. Ceramides are biosynthetic precursors of SM in the testis, but themselves final products in spermatozoa. VLCPUFA-rich SM and Cer are thus produced in germ cells with the teleological objective of fulfilling their ultimate physiological role in spermatozoa that are apt and ready to fertilize an oocyte.  相似文献   

13.
The limitations of the alkane technique in estimating the diet components of herbivores call for the introduction of new diet composition markers. Recently, long-chain alcohols (alcohols) and long-chain fatty acids (acids) have received the most attention and show great potential, when combined with alkanes, to estimate composition of complex diets. In the current study, faecal recoveries of alcohols and acids were determined in sheep in four different live weight groups fed three herbage species, either Leymus chinensis, L. dasystachys or Elymus sibiricum. Analysis of variance (ANOVA) was used to examine the effects of herbage species and live weight of sheep on faecal recoveries of individual alcohols and acids. Further, an indoor experiment with six sheep fed a diet of equal proportions, on dry matter (DM) basis, of three herbages was performed, allowing to assess the accuracy of alcohols and/or acids in combination with alkanes, to estimate diet composition. A one-sample t-test was carried out to test the accuracy of these estimates. Results of the first experiment indicated that the faecal recoveries of alcohols and acids were significantly affected by herbage species (P < 0.05). While the effects were significant or near significant for the faecal recoveries of some alcohols (C24-ol, C30-ol and C26-ol) (P 0.05), no effect of live weight on faecal recoveries of acids was observed (P > 0.05). Therefore, adjustments based on diet-specific faecal recoveries might improve diet composition estimates. This was illustrated by the results of the second experiment. The diet composition estimated from alcohols or all combinations of alcohols with other marker types, after diet-specific correction of faecal recoveries, did not significantly differ from the actual composition (P > 0.05). However, using acids as additional markers resulted in poorer diet composition estimates. This study confirmed the utility of alcohols, combined with alkanes, as markers to estimate composition of complex diets. Although corrections based on mean faecal recoveries, average over animals and diets, resulted in some accuracy loss, results were still satisfactory and better than without recovery correction.  相似文献   

14.
15.
16.
To investigate the potential use of n-alkanes (alkanes), long-chain alcohols (alcohols) and long-chain fatty acids (acids) for estimating the diet composition of sheep, in a feeding trial. A total of 18 sheep were assigned randomly to three different diets (diet A, diet B and diet C) containing up to eight herbage species (Leymus chinensis, Leymus dasystachys, Elymus sibiricum, Chenopodium album, Puccinellia chinampoensis, Medicago sativa, Saussurea sinuata and Bromus inermis). Faecal recoveries of alkanes, alcohols and acids were determined, and diet compositions were estimated using different combinations of alkanes, alcohols and acids. The faecal concentrations of individual alkanes, alcohols and acids were corrected using the mean recovery of the dietary treatment that the respective animal belonged to (diet recovery), or the mean recovery across all dietary treatments (general recovery). In general, diets did not affect the faecal recovery values for alkanes, alcohols and acids, and no difference in accuracy was found between diet composition estimates based on dietary recovery and general recovery. The accuracy of diet composition estimates declined as the number of dietary components increased from four to eight herbage species (P < 0.001). Better (P < 0.05) estimates of diet composition were obtained with the combinations of two or three marker types instead of alkanes alone. Moreover, results showed that excluding minor diet components from the calculations decreased (P < 0.05) the accuracy of diet composition estimates, whereas including extra non-grazed herbage species did not reduce (P > 0.05) the quality of diet composition estimates. These results confirmed the usefulness of alkanes, alcohols and acids as markers for determining complex diet composition of sheep. However, a negative impact on the accuracy of diet composition estimates, caused by missing minor diet components from the calculation of diet composition, could happen when plant wax markers are used to estimate the diet composition of free-ranging animals.  相似文献   

17.
The larval fatty acid composition of neutral lipids and membrane lipids was determined in three ethanol-tolerant strains ofDrosophila melanogaster. Dietary ethanol promoted a decrease in long-chain fatty acids in neutral lipids along with enhanced alcohol dehydrogenase (EC 1.1.1.1) activity in all of the strains. Dietary ethanol also increased the incorporation of14C-ethanol into fatty acid ethyl esters (FAEE) by two- to threefold and decreased the incorporation of14C-ethanol into free fatty acids (FFA). When cultured on sterile, defined media with stearic acid at 0 to 5 mM, stearic acid decreased ADH activity up to 33%. In strains not selected for superior tolerance to ethanol, dietary ethanol promoted a loss of long-chain fatty acids in membrane lipids. The loss of long-chain fatty acids in membranes was strongly correlated with increased fluidity in hydrophobic domains of mitochondrial membranes as determined by electron spin resonance and correlated with a loss of ethanol tolerance. In the ethanol-tolerant E2 strain, which had been exposed to ethanol for many generations, dietary ethanol failed to promote a loss of long-chain fatty acids in membrane lipids. We are grateful for the support of National Institutes of Health Grant AA06702 (B.W.G.) and National Science Foundation Grant CHE-891987 (R.G.K.).  相似文献   

18.
Short‐chain fatty acids (SCFA), viz. acetate, propionate and butyrate are quantitatively important substrates in ruminant energy metabolism. In the reviewed literature, 16–44% of ME intake was recovered as portal appearance of SCFA. This is considerably lower than expected when related to the estimated intra‐gastric flux of SCFA. The discrepancy is caused by portal drained viscera metabolism of arterially abundant metabolites e.g., acetate and the metabolism of acetate and butyrate to acetoacetate and D‐3‐hydroxybu‐tyrate in the absorptive epithelia. Even though considerable variations between experiments on acetate and propionate appearance are found, there seems to be a great deal of evidence that the proportion of gastroin‐testinally produced acetate and propionate absorbed to the portal blood is 50–75%. The portal recovery of butyrate has been found to be between 10 and 36% dependent on intraruminal infusion rate.

It is concluded that major parts of acetate and propionate are directly absorbed to the portal vein. The true absorption rate of acetate can only be estimated by taking the portal drained viscera metabolism of arterial actetate into account. Butyrate is generally found to have a low recovery in the portal vein, but the production of D‐3‐hydroxybutyrate seems to be underestimated in major parts of the literature. It is therefore necessary to measure portal appearance as well as portal drained viscera metabolism to assess the quantitative as well as the qualitative contribution of SCFA and SCFA metabolites to whole animal metabolism.  相似文献   

19.
As an alternative to pharmacological treatment to diseases, lifestyle interventions, such as dietary changes and physical activities, can help maintain healthy metabolic conditions. Recently, the emerging analyses of volatile organic compounds (VOCs) from breath and short-chain fatty acids (SCFAs) from plasma/feces have been considered as useful tools for the diagnosis and mechanistic understanding of metabolic diseases. Furthermore, diet-induced changes of SCFAs in individuals with diagnosed metabolic abnormalities have been correlated with the composition changes of the gut microbiome. More interestingly, the analysis of exhaled breath (breathomics) has gained attention as a useful technique to measure the human VOC profile altered as a result of dietary interventions. In this mini-review, we examined recent clinical trials that performed promising dietary interventions, SCFAs analysis in plasma/feces, and VOC profile analysis in exhaling breath to understand the relationship between dietary intervention and metabolic health.  相似文献   

20.
Rats depleted in long-chain polyunsaturated omega3 fatty acids (omega3-depleted rats) display several features of the metabolic syndrome including hypertension and cardiac hypertrophy. This coincides with alteration of the cardiac muscle phospholipid and triacylglycerol fatty acid content and/or pattern. In the present study, the latter variables were measured in the cardiac endothelium of normal and omega3-depleted rats. Samples derived from four rats each were obtained from 16 female normal fed rats and three groups of 36-40 female fed omega3-depleted rats each aged 8-9, 15-16 and 22-23 weeks. At comparable mean age, the ratio between the square root of the total fatty acid content of phospholipids and cubic root of the total fatty acid content of triacylglycerols was lower in omega3-depleted rats than in control animals. The total fatty acid content of triacylglycerols was inversely related to their relative content in C20:4omega6. Other differences between omega3-depleted rats and control animals consisted in a lower content of long-chain polyunsaturated omega3 fatty acids in both phospholipids and triacylglycerols, higher content of long-chain polyunsaturated omega6 fatty acids in phospholipids, higher activity of delta9-desaturase (C16:0/C16:1omega7 and C18:0/C18:1omega9 ratios) and elongase [(C16:0 + C16:1omega7)/(C18:0 + C18:1omega9) and C20:4omega6/C22:4omega6 ratios], but impaired generation of C22:6omega3 from C22:5omega3 in the former rats. These findings support the view that cardiovascular perturbations previously documented in the omega3-depleted rats may involve impaired heart endothelial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号