首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Muc4/sialomucin complex (SMC) is a high molecular mass heterodimeric membrane mucin, encoded by a single gene, and originally discovered in a highly metastatic ascites rat mammary adenocarcinoma. Subsequent studies have shown that it is a prominent component of many accessible and vulnerable epithelia, including the gastrointestinal tract. Immunoblot and immunofluorescence analyses demonstrated that Muc4/SMC expression in the rat small intestine increases from proximal to distal regions and is located predominantly in cells at the base of the crypts. These cells were postulated to be Paneth cells, based on their location, morphology, and secretory granule content. Immunohistochemistry indicated the presence of Muc4/SMC in these granules. Muc4/SMC expression was higher in the rat colon than small intestine and was abundantly present in colonic goblet cells, but not in goblet cells in the small intestine. Immunohistochemistry also suggested the presence of MUC4 in human colonic goblet cells. Biochemical analyses indicated that rat colonic Muc4/SMC is primarily the soluble form of the membrane mucin. Analyses of Muc4/SMC during development of the rat gastrointestinal tract showed its appearance at embryonic day 14 of the esophagus and at day 15 at the surface of the undifferentiated stratified epithelium at the gastroduodenal junction, then later at cell surfaces in the more distal regions of the differentiated epithelium of the small intestine, culminating in expression as an intracellular form in the crypts of the small intestine at about day 21. Limited expression in the colon was observed during development before birth at cell surfaces, with expression as an intracellular form in the goblet cells arising during the second week after birth. These results suggest that membrane mucin Muc4/SMC serves different functions during development of the intestine in the rat, but is primarily a secreted product in the adult animal.  相似文献   

4.
Mucins play an essential role in the protection and repair of gastrointestinal mucosa. We recently showed that luminal leptin strongly stimulated mucin secretion in vivo in rat colon. In the present study, we challenged the hypothesis that leptin may act directly on goblet cells to induce mucin expression in rat and human intestinal mucin-producing cells (DHE and HT29-MTX). The endoluminal effect of leptin was also studied in vivo in rat perfused colon model. The presence of leptin receptors was demonstrated in the two cell lines by Western blot and RT-PCR. In rat DHE cells, leptin (0.01-10 nmol/l, 60 min) dose dependently increased the secretion of mucins (210 +/- 3% of controls) and the expression of Muc2, Muc3, and Muc4 (twofold basal level) but not of Muc1 and Muc5AC. Luminal perfusion of leptin (60 min, 0.1-100 nmol/l) in rat colon also increased the mRNA level of Muc2, Muc3, and Muc4 but not of Muc1. In human HT29-MTX cells, leptin (0.01-10 nmol/l, 60 min) dose dependently enhanced MUC2, MUC5AC, and MUC4 mRNA levels. These effects were prevented by pretreatment of cells with the leptin mutein L39A/D40A/F41A, which acts as a receptor antagonist. Finally, pathway inhibition experiments suggest that leptin increased mucin expression by activating PKC-, phosphatidyl inositol 3-kinase-, and MAPK-dependent pathways but not the JAK/STAT pathway. In conclusion, leptin may contribute significantly to membrane-associated and secreted mucin production via a direct stimulation of colonic epithelial cells and the activation of leptin receptors. These data are consistent with a role for leptin in regulation of the intestinal barrier function.  相似文献   

5.
Using genomic cosmid and BAC clones and genome shotgun supercontigs available in GenBank, we determined the complete gene structure of the four mouse secreted gel-forming mucin genes Muc2, Muc5ac, Muc5b and Muc6 and the organization of the genomic locus harboring these genes. The mouse secreted gel-forming mucin gene is 215 kb on distal chromosome 7 to 69.0 cM from the centromere and organized as: Muc6-Muc2-Muc5ac-Muc5b with Muc2, Muc5ac and Muc5b arranged in the same orientation and Muc6 in opposite. Mouse mucin genes have highly similar genomic organization to each other and to their respective human homologues indicating that they have been well conserved through evolution. Deduced peptides showed striking sequence similarities in their N- and C-terminal regions whereas the threonine/serine/proline-rich central region is specific for each other and for species. Expression studies also showed that they have expression patterns similar to human mucin genes with Muc2 expressed in small and large intestines, Muc5ac and Muc6 in stomach, and Muc5b in laryngo-tracheal tract. These data constitute an important initial step for investigation of mucin gene regulation and mucin function through the use of animal models.  相似文献   

6.
Before cholesterol and fatty acid molecules in the small intestinal lumen can interact with their possible transporters for uptake and absorption, they must pass through a diffusion barrier, which may modify the kinetics of nutrient assimilation. This barrier includes an unstirred water layer and a surface mucous coat, which is located at the intestinal lumen-membrane interface. In the present study, we investigated whether disruption of the mucin gene (Muc)1 may influence intestinal uptake and absorption of cholesterol and fatty acid in male Muc1(-/-) mice. The wild-type mice displayed relatively high levels of Muc1, Muc2, Muc3, and Muc4 mRNAs and relatively low levels of Muc5ac and Muc5b mRNAs in the small intestine. The absence of Muc1 mRNA and protein in the small intestines of Muc1(-/-) mice confirmed complete knockout of the Muc1 gene, but the mRNA expression for other mucin genes remained unchanged. Intestinal uptake and absorption of cholesterol but not palmitic acid were significantly reduced in Muc1(-/-) mice compared with the wild-type mice. However, knockout of the Muc1 gene did not impair either expression levels of the genes that encode intestinal sterol efflux transporters Abcg5 and Abcg8 and fatty acid transporter Fatp4 or small intestinal transit rates. We conclude that physiological levels of the epithelial mucin produced by the Muc1 gene are necessary for normal intestinal uptake and absorption of cholesterol in mice. Our study implies that because cholesterol absorption efficiency is reduced by approximately 50% in Muc1-deficient mice, there may be one or more additional pathways for cholesterol absorption.  相似文献   

7.
Mucus hypersecretion associated with airway inflammation is reduced by glucocorticoids. Two mechanisms of glucocorticoid-mediated inhibition of mucus production have been proposed, direct inhibition of mucus production by airway epithelial cells and indirectly through inhibition of proinflammatory mediators that stimulate mucus production. In this study, we examined the effect of dexamethasone (DEX) on mRNA expression and synthesis of MUC5AC by A549 human lung adenocarcinoma cells as well as Muc5ac and total high-molecular-weight (HMW) mucins by primary rat tracheal surface epithelial (RTSE) cells. Our results showed that in primary RTSE cells, DEX 1) dose dependently suppressed Muc5ac mRNA levels, but the levels of cellular Muc5ac protein and HMW mucins were unaffected; 2) did not affect constitutive or UTP-stimulated mucin secretion; 3) enhanced the translation of Muc5ac; and 4) increased the stability of intracellular Muc5ac protein by a mechanism other than the inhibition of the proteasomal degradation. In A549 cells, however, DEX suppressed both MUC5AC mRNA levels and MUC5AC protein secretion in a dose-dependent manner. We conclude that whereas DEX inhibits the levels of Muc5ac mRNA in primary RTSE cells, the levels of Muc5ac protein remain unchanged as a consequence of increases in both translation and protein stability. Interestingly, some of the effects of DEX were opposite in a cell line.  相似文献   

8.
Mucus accumulation is a feature of inflammatory airway disease in the horse and has been associated with reduced performance in racehorses. In this study, we have analysed the two major airways gel-forming mucins Muc5b and Muc5ac in respect of their site of synthesis, their biochemical properties, and their amounts in mucus from healthy horses and from horses with signs of airway mucus accumulation. Polyclonal antisera directed against equine Muc5b and Muc5ac were raised and characterised. Immunohistochemical staining of normal equine trachea showed that Muc5ac and Muc5b are produced by cells in the submucosal glands, as well as surface epithelial goblet cells. Western blotting after agarose gel electrophoresis of airway mucus from healthy horses, and horses with mucus accumulation, was used to determine the amounts of these two mucins in tracheal wash samples. The results showed that in healthy horses Muc5b was the predominant mucin with small amounts of Muc5ac. The amounts of Muc5b and Muc5ac were both dramatically increased in samples collected from horses with high mucus scores as determined visually at the time of endoscopy and that this increase also correlated with increase number of bacteria present in the sample. The change in amount of Muc5b and Muc5ac indicates that Muc5b remains the most abundant mucin in mucus. In summary, we have developed mucin specific polyclonal antibodies, which have allowed us to show that there is a significant increase in Muc5b and Muc5ac in mucus accumulated in equine airways and these increases correlated with the numbers of bacteria.  相似文献   

9.
10.
During embryonic development, studies on mouse and human embryos have established that Muc1/MUC1 expression coincides with the onset of epithelial sheet and glandular formation. This study aimed therefore at evaluating the temporal and spatial expression of Muc1 at different stages of rat development. In this experiment, 80 animals were included: 64 rat foetuses at 13, 14, 15, 16, 17, 18, 19 and 20 days of gestation from pregnant females (WKAH/Hok), 8 embryos each stage. Standard immunohistochemistry was performed using anti-MUC1 cytoplasmic tail polyclonal antibody (CT33). The reaction was considered positive when more than 5% of the cells were stained; reaction patterns were: L = linear, membrane, C = cytoplasmic and M = mixed; nuclear staining was also recorded. Intensity was graded as negative (-), low (+), moderate (++) and strong (+++). Muc1 expression was observed with a low intensity on 13th day (13 d) in the stomach, lung and kidney; at 14 d, small intestine and pancreas were also reactive; at 16 d, liver and esophagus and at 18 d, trachea and salivary glands. During the development, intensity increased while the pattern of expression changed: at the first days of gestation, it was predominantly linear and apical while during further development an increase in cytoplasmic expression was observed. Trachea, stomach, kidney and lung epithelia were the more reactive tissues. In specimens belonging to neonates and adults, all tissues analyzed showed similar Muc1 expression. The findings of this study assess that Muc1 is highly expressed in the epithelial rat embryonic development.  相似文献   

11.
12.
Gallbladder mucins play a critical role in the pathogenesis of cholesterol gallstones because of their ability to bind biliary lipids and accelerate cholesterol crystallization. Mucin secretion and accumulation in the gallbladder is determined by multiple mucin genes. To study whether mucin gene 1 (Muc1) influences susceptibility to cholesterol cholelithiasis, we investigated male Muc1-deficient (Muc1(-/-)) and wild-type mice fed a lithogenic diet containing 1% cholesterol and 0.5% cholic acid for 56 days. Gene expression of the gallbladder Muc1 and Muc5ac was significantly reduced in Muc1(-/-) mice in response to the lithogenic diet. Muc3 and Muc4 levels were upregulated and were similar between Muc1(-/-) and wild-type mice. Little or no Muc2 and Muc5b mRNAs were detected. Muc1(-/-) mice displayed significant decreases in total mucin secretion and accumulation in the gallbladder as well as retardation of crystallization, growth, and agglomeration of cholesterol monohydrate crystals. At 56 days of feeding, gallstone prevalence was decreased by 40% in Muc1(-/-) mice. However, cholesterol saturation indices of gallbladder bile, hepatic secretion of biliary lipids, and gallbladder size were comparable in Muc1(-/-) and wild-type mice. We conclude that decreased gallstone formation in mice with disrupted Muc1 gene results from reduced mucin secretion and accumulation in the gallbladder.  相似文献   

13.
MUC4 is a heterodimeric membrane mucin, composed of two tightly linked subunits and implicated in the protection of wet-surfaced epithelia. Although human MUC4 and its rat analogue Muc4/sialomucin complex have been extensively studied in the adult human and in the adult and embryonic rat, respectively, there has been little attention paid to date to the human embryo. Based on studies with our monoclonal antibody 1G8 and commercial tissue arrays, we describe some unexpected features of the expression of MUC4 in human embryonic epithelia. In the human small intestine and colon, MUC4 appears at an earlier relative stage of development, compared to gestation time, than in the rat. Interestingly, MUC4 also appears in the embryo in the skin, then disappears late in gestation, consistent with its absence in adult skin. These results are consistent with an important protective role for MUC4 in the human embryo that is different from that in the rat or in the adult human.  相似文献   

14.
The polymeric mucin component of the intestinal mucus barrier changes during nematode infection to provide not only physical protection but also to directly affect pathogenic nematodes and aid expulsion. Despite this, the direct interaction of the nematodes with the mucins and the mucus barrier has not previously been addressed. We used the well-established Trichuris muris nematode model to investigate the effect on mucins of the complex mixture of immunogenic proteins secreted by the nematode called excretory/secretory products (ESPs). Different regimes of T. muris infection were used to simulate chronic (low dose) or acute (high dose) infection. Mucus/mucins isolated from mice and from the human intestinal cell line, LS174T, were treated with ESPs. We demonstrate that serine protease(s) secreted by the nematode have the ability to change the properties of the mucus barrier, making it more porous by degrading the mucin component of the mucus gel. Specifically, the serine protease(s) acted on the N-terminal polymerising domain of the major intestinal mucin Muc2, resulting in depolymerisation of Muc2 polymers. Importantly, the respiratory/gastric mucin Muc5ac, which is induced in the intestine and is critical for worm expulsion, was protected from the depolymerising effect exerted by ESPs. Furthermore, serine protease inhibitors (Serpins) which may protect the mucins, in particular Muc2, from depolymerisation, were highly expressed in mice resistant to chronic infection. Thus, we demonstrate that nematodes secrete serine protease(s) to degrade mucins within the mucus barrier, which may modify the niche of the parasite to prevent clearance from the host or facilitate efficient mating and egg laying from the posterior end of the parasite that is in intimate contact with the mucus barrier. However, during a TH2-mediated worm expulsion response, serpins, Muc5ac and increased levels of Muc2 protect the barrier from degradation by the nematode secreted protease(s).  相似文献   

15.
团头鲂黏蛋白基因Muc5b克隆及表达分析   总被引:1,自引:0,他引:1  
摘要:黏液(mucus)在鱼体防御外界病原侵袭、信息传递、调节渗透压等方面具有重要作用。黏蛋白(mucin)作为黏液的基础骨架组分,与其相关的研究正受到广泛的关注。在本研究中,作者克隆获得团头鲂(Megalobrama amblycephala)Muc5b mRNA 的部分序列3895 bp,并通过qRT-PCR分析了Muc5b在团头鲂不同组织的表达分布及其在捕捞应激后在鳃和表皮中的表达变化。序列分析结果显示,团头鲂Muc5b与鲤等脊椎动物的Muc5b有较高的同源性,其N端含有黏液蛋白特异性结构域:三个VWD区域,三个C8区域,二个TIL区。组织表达分析结果表明,Muc5b在鳃和表皮表达量相对较高,在脑、脾、肾中表达水平较低,在肝、肠道几乎不表达。捕捞应激后1 h时鳃中Muc5b显著降低(P < 0.05),24 h时恢复初始水平;表皮中4 h时Muc5b显著上升(P < 0.05),24 h时恢复到初始水平。  相似文献   

16.
Desseyn JL  Laine A 《Genomics》2003,81(4):433-436
Using degenerate primers designed from conserved cysteine-rich domains of gel-forming mucins, we cloned two new mouse mucin cDNAs. Blast searching showed that they belong to the same new gene assigned to chromosome 7 band F5. This gene is clustered with the three secreted large gel-forming mucins Muc2, Muc5ac, and Muc5b in a region that exhibits synteny with human chromosome 11p15. Computer analysis and sequence alignments with mucin genes predict that the new gene is composed of 33 exons and spans 30 kb from the initiation ATG codon to the Stop codon. Sequence similarities, domain organization of the deduced peptide, and expression analysis allow us to conclude that this newly cloned mouse gene is Muc6, i.e., the mouse ortholog of human MUC6. Like those of their human homologs, the genomic order and arrangement of the four mucins within the cluster of mucin genes are conserved.  相似文献   

17.
The mucus layer covering the gut epithelium is pivotal to host defence and is affected by various dietary components. Part of the reported beneficial effect of dietary immunoglobulins (Igs) on gut health may be due to effects on the gut mucus layer. The aim was to determine whether orally administered ovine serum Ig influence goblet cell count, mucin gene expression and digesta mucin protein content in the gut of the growing rat. Fourteen Sprague-Dawley male growing rats were used in a 21-day study and were fed either a casein-based control diet (CON; no Ig) or a similar diet but containing freeze-dried ovine Ig (FDOI). Daily food intake and growth rate were not affected by the dietary treatments. When compared to the rats consuming CON diet, those consuming the FDOI diet had significantly (P < 0.05) more intact and cavitated goblet cells in the intestinal villi. A similar result was found for crypt goblet cells in the small intestine and colon. Ileal Muc2, Muc3, Muc4 and stomach Muc5Ac mRNA expressions for the FDOI animals were higher (P < 0.05) compared to the the CON animals. Mucin protein content was higher (P < 0.05) in the stomach, ileum and colonic digesta of rats fed the FDOI diet. In conclusion, orally administered FDOI influenced gut mucins in the growing rat as evidenced by increased mucin gene expression and digesta mucin protein concentrations as well as an increased goblet cell count.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号