首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis was that supplementation during the late prepartum period will differentially affect reproductive and productive variables according to parity. Primiparous (n=22) and multiparous (n=22) pregnant autumn calving Holstein cows were stratified in two groups according to parity (primiparous or multiparous) and within each group were randomly assigned to two treatments: (a) low supplemented (LS) or (b) high supplemented (HS) prepartum diet. The LS group was offered 5.2 kg/cow/day (DM basis) of wheat silage, and the HS group 4.7 kg cow/day (DM basis)/of corn silage and 3.6 kg (DM basis) of wheat bran+12 g of urea. Both groups grazed on natural pastures. After calving, all cows received the same diet. The experimental period was from 3 weeks before calving to 7 weeks postpartum (PP); body condition score (BCS) and blood samples for hormonal analyses were obtained weekly and ovarian ultrasonography was conducted three times per week. The loss in BCS around calving was less pronounced in HS cows, but only multiparous supplemented cows maintained BCS throughout the study. Non-esterified fatty acids (NEFA) increased during the prepartum period in the LS but not in the HS cows, with peak values occurring on day 14 PP in all groups. During the remainder of the experiment NEFA was greater in LS than in HS cows. Prepartum treatment did not affect the proportion of cows that had ovulations from the first dominant follicle postpartum, but decreased the interval to first ovulation in multiparous cows (22.9 compared with 38.2 days; P<0.05). This was associated with greater plasma IGF-I concentrations at the time the dominant follicle of the first follicular wave reached its maximum diameter (8.0 compared with 3.6 nmol/L; P<0.05). However, prepartum treatment had no effect on onset of ovarian activity in primiparous cows. Supplementation had no effect on milk production or milk protein percentage but increased milk fat percentage. We conclude that feeding a high-supplemented prepartum diet to multiparous cows allowed them to maintain BCS around calving, and this was associated with greater concentrations of IGF-I and an earlier onset of estrous cycles after calving.  相似文献   

2.
Stearoyl-CoA desaturase (SCD) is a multifunctional complex enzyme important in the cellular biosynthesis of fatty acids. The present study was to investigate the association of the SCD gene with milk production traits in dairy cattle. Two single nucleotide polymorphisms (SNPs) (g.6926A>G and g.8646A>G) in introns 3 and 4, and three SNPs (g.10153A>G, g.10213T>C and g.10329C>T) in exon 5 were identified with pooled DNA sequencing and genotyped using matrix-assisted laser desorption/ionization time of flight mass spectrometry assay in 752 Chinese Holstein cows. Polymorphism g.10329C>T was predicted to result in an amino acid replacement from alanine to valine in the SCD protein. With a mixed animal model, the significant associations of the five SNPs with 305-day milk, fat and protein yields and protein percentage were determined. We further demonstrated cows with heterozygous genotypes (A/G or C/T) had highest 305 day milk yield, fat yield, protein yield and lowest protein percentage. Heterozygous cows with genotype AG at the g.6926A>G locus showed the greatest milk yield (P < 0.0001), fat yield (P < 0.0001) and protein yield (P < 0.0001) among other heterozygous genotypes at any of the loci. Dominance effects of all identified SNPs on milk, fat and protein yields and protein percentage were significant. Moreover, significant allele substitution effects at g.6926A>G locus on milk yield and at g.10213T>C on protein yield were observed. Five-locus haplotypes and strong linkage disequilibrium (D' > 0.9) between the five SNPs were also observed. The results suggest that identified polymorphisms could be potential genetic markers to improve the production performance of Chinese Holstein.  相似文献   

3.
Skin collagen metabolism abnormalities induced by ultraviolet (UV) radiation are the major causes of skin photoaging. It has been shown that the one-time exposure of UV irradiation decreases procollagen mRNA expression in dermis and that chronic UV irradiation decreases collagen amounts and induces wrinkle formation. Amino acids are generally known to regulate protein metabolism. Therefore, we investigated the effects of UV irradiation and various orally administered amino acids on skin collagen synthesis rates. Groups of 4-5 male, 8-week-old HR-1 hairless mice were irradiated with UVB (66 mJ/cm2) twice every other day, then fasted for 16 h. The fractional synthesis rate (FSR; %/h) of skin tropocollagen was evaluated by incorporating L-[ring-2H5]-phenylalanine. We confirmed that the FSR of dermal tropocollagen decreased after UVB irradiation. The FSR of dermal tropocollagen was measured 30 min after a single oral administration of amino acids (1 g/kg) to groups of 5-16 UVB-irradiated mice. Branched-chain amino acids (BCAA, 1.34±0.32), arginine (Arg, 1.66±0.39), glutamine (Gln, 1.75±0.60), and proline (Pro, 1.48±0.26) did not increase the FSR of skin tropocollagen compared with distilled water, which was used as a control (1.56±0.30). However, essential amino acids mixtures (BCAA+Arg+Gln, BCAA+Gln, and BCAA+Pro) significantly increased the FSR (2.07±0.58, 2.04±0.54, 2.01±0.50 and 2.07±0.59, respectively). This result suggests that combinations of BCAA and glutamine or proline are important for restoring dermal collagen protein synthesis impaired by UV irradiation.  相似文献   

4.
Milk yield response of dairy cows fed fat along with protein   总被引:1,自引:0,他引:1  
The influence of a fat-coated protein on milk production of Holstein dairy cows was determined using a 4×4 Latin square experiment. Twelve cows were fed a control diet or test diets supplemented with fat, fat plus ruminally undegraded protein (RUP), or a fat-coated protein (Duets™). Cows fed test diets received 0.55 kg of more fat per day than cows in the control treatment. Daily intakes of feed, energy, and protein were the same in all treatments. Cows produced 36.5, 37.3, 37.9, and 39.3 kg of energy-corrected milk per day in control, fat, fat plus RUP, and fat-coated protein treatments, respectively. Cows fed fat-supplemented diets produced an average 1.7 kg more milk daily compared with cows in the control treatment. Feeding RUP along with fat or fat-coated protein provided no further improvement in milk yield compared with fat alone, but partially alleviated the depression in protein content caused by supplemental fat and increased the daily yield of milk protein. In the present experiment, cows fed fat-coated protein produced daily an average 60 g of milk protein more than cows fed fat alone. Since, there was no advantage in milk yield, the decision to include fat-coated protein in dairy rations should be based on its price compared to fat alone and the return in terms of milk protein yield.  相似文献   

5.
Several processes have been suggested to protect lipids from bioactivity of the rumen microorganisms. The majority of experiments with conjugated linoleic acid (CLA) were conducted using calcium salts of CLA. The objectives of this study were to determine the effects of encapsulated CLA (E-CLA) that was supplemented during days 21 to 100 post partum (PP), on milk fat depression, recovery rate and performance parameters. Forty-two multiparous Israeli-Holstein cows were divided at day 21 PP into two treatment groups: (i) control - supplemented with 43 g/day per cow of calcium salts of fatty acids (FAs). (ii) E-CLA - supplemented with 50 g/day per cow of encapsulated lipid supplement providing 4.7 g/day per cow of trans-10, cis-12 CLA. Post-treatment cows were followed for recovery rate until 140 days PP. Dry matter intake (DMI) during the treatment period was reduced by 2.5%, and milk yield was enhanced by 4.5% in the E-CLA cows. Milk fat percentage and yield were reduced by 13% and 9%, respectively, in the E-CLA treatment as compared with the control. The energy-corrected milk output was 3.6% higher in the control group than in the E-CLA group. Yields of trans-10, cis-12 CLA isomer in milk was 2.13-fold higher in the E-CLA cows than in the controls. Full recovery to milk fat percentage of the control group occurred 4 to 5 weeks after cessation of the E-CLA supplementation. No differences between groups were observed in any fertility parameter that was tested. In conclusion, the E-CLA supplement decreased DMI, enhanced milk yield, and decreased energy output in milk, and was effective in depressing milk fat. Full recovery to the milk fat content, but not yield, of the control group in the E-CLA group was relatively slow and occurred 4 to 5 weeks after termination of the supplementation.  相似文献   

6.
The objectives of this study were to compare the effects of post-ruminal and intravenous infusions of wheat starch or glucose (CHO) or a mixture of amino acids (AA) on milk protein yield, nitrogen utilisation, plasma metabolites and mammary extraction rate of dairy cows in early lactation. Eight cow, ruminally fistulated, was assigned to two 4 × 4 Latin squares during 14-day periods, where the last 7 days were for infusions. Infusions were: (1) starch in the abomasum (SP), (2) glucose in the blood (GB), (3) AA in the abomasum (AP), and (4) AA in the blood (AB). The experiment started 54 ± 4 days (mean ± s.e.) post partum (milk yield 33.4 ± 1.7 kg). Daily amounts of nutrients infused were 378, 365, 341, and 333 g for SP, GB, AP and AB, respectively. The cows were fed a basal diet consisting of a concentrate mixture and grass silage (55:45 on dry-matter (DM) basis), and DM intake was 17.2 kg/day. Milk production was affected by site of infusion within substrate, whereas infusion substrates within infusion site (CHO or AA) were of minor importance. Compared with SP infusion, GB infusion increased ( P < 0.05) milk protein yield and concentration by 55 g and 1 g/kg. The AB infusion tended to ( P < 0.10) increase milk yield and ECM and increased ( P < 0.05) protein yield and concentration by 1.8 and 2.2 kg, 83 g and 1.1 g/kg compared with AP infusion, respectively. Nitrogen balance data indicated higher losses of metabolic faecal nitrogen (MFN) by abomasal than by intravenous infusions, and an increased ( P < 0.05) catabolism for AP and AB infusions compared with SP and GB infusions. GB infusion did not increase ( P>0.10) plasma glucose or insulin concentrations above that of SP infusion. Compared with the SP infusion, the GB infusion had minor effect on plasma AA. AP infusion increased ( P < 0.05) plasma non-essential AA (NEAA) concentration compared with AB infusion, whereas infusion site of AA had no effect ( P>0.05) on essential AA (EAA) or branched-chain AA (BCAA). Although a higher milk protein synthesis was observed for AB infusion, the mammary extraction rate was not higher ( P>0.05) than for AP infusion. Across infusion site, AP and AB infusions increased plasma concentration of EAA and BCAA, but compared with GB infusion, the mammary extraction rates tended ( P < 0.10) to be lower. It is concluded that abomasal nutrient infusion increases loss of MFN and that the gastrointestinal metabolism influences the nutrients available for milk synthesis. Our conclusion is that when glucose was infused, AA limited a further milk protein synthesis, but when AA was infused, glucose or energy substrate might have been the limiting factor. Our results verify that glucogenic substrates are limiting when cows are in negative energy balance.  相似文献   

7.
Improving reproductive performance is one of the most important factors affecting the profitability of dairy herds. This study investigated the effect of feeding a high starch (HS) diet and body condition score (BCS) at calving on blood metabolites, fertility and ovarian function and milk production in Holstein dairy cows. One hundred seventy-four multiparous cows were fed common close-up and early lactation diets during the first 15 days in milk (DIM). Cows were randomly assigned to 1 of 2 experimental diets from 16 until 50 DIM (n = 87 per group); normal starch (228 g/kg diet DM; NS) or HS (270 g/kg diet DM; HS) diets. Each treatment group was further subdivided based on BCS at calving as normal BCS (BCS ⩽ 3.5; normal BCS (NBCS); n = 45) or high BCS (HBCS) (BCS ⩾ 3.75; HBCS; n = 42). A significant difference was detected for increased milk production (47.24 v. 44.55 kg/day) and decreased milk fat (33.93 v. 36.33 g/kg) in cows fed HS or NS, respectively. Plasma glucose and insulin concentrations were significantly higher in cows fed the HS compared to the NS diet. Diets significantly affected DIM at first artificial insemination (AI, 79.51 ± 3.83 v. 90.40 ± 3.83 days for cows fed HS and NS diets, respectively). High BCS groups had greater milk fat content and elevated plasma nonesterified fatty acids (NEFA), β hydroxybutyrate (BHB) and bilirubin concentrations. In general, feeding higher starch diets to normal BCS cows during the first 50 DIM improved productive and reproductive performance of early-lactating dairy cows.  相似文献   

8.
The aim of this paper was to evaluate the effects of three different feeding management (FM) schedules on physiological markers of heat stress (HS), metabolic conditions, milk yield and quality during the hot season in dairy cows. The study involved 27 mid-lactating cows, subdivided in three homogeneous groups differing in feeding time and frequency: total mixed ration (TMR) delivered once daily in the morning (M); twice daily, half in the morning and half in the evening (ME); once daily in the evening (E). During the trial, blood samples were collected in the morning (a.m.) and in the evening (p.m.), breathing rate (BR), rectal temperature (RT), and milk yield were recorded and individual milk samples were collected. Microclimate data indicated that cows were subjected to mild-moderate HS. During the hotter days, cows receiving M treatment showed higher values of RT (38.97 °C vs 38.68 °C and 38.62 °C, in ME and E) and BR (71.44 vs 66.52 and 65.26 breaths min?1, in ME and E), a.m. plasma glucose was lower in M (3.69 vs 3.83 and 3.83 mmol?L?1, in ME and E) and a.m. plasma urea was lower in E (4.82 vs 5.48 and 5.35 mmol?L?1, in M and ME). Milk yield was unaffected by FM, as well as milk composition and cheese-making properties. Only milk protein content and yield were higher in M (3.42 vs 3.36 and 3.27 g 100 mL?1; and 1.11 vs 1.08 and 1.02 kg day?1, for ME and E). Our results on cow physiology indicate that M seems a less suitable FM to match cow welfare during the summer season.  相似文献   

9.
This study evaluated the effects of supplemental low- and high-purity glycerine on silage intake, milk yield and composition, plasma metabolites and body condition score (BCS) in dairy cows. A total of 42 cows of the Swedish Red Breed, housed in individual tie stalls, were fed 0.25 kg of low- or high-purity glycerine on top of concentrate, twice daily, during the first 4 weeks of lactation. One-third of the cows acted as controls, receiving no glycerine. Silage was fed for ad libitum intake and concentrate was fed at restricted level of intake, about 6 kg/day for primiparous cows and 7 kg/day for multiparous cows. Feed refusals were weighed daily. Cows were milked twice daily, milk yield was recorded on four occasions per week and milk samples were collected simultaneously. Blood samples were drawn from the coccygeal vessel once a week. Low- and high-purity glycerine had no effect on silage or total dry matter intake (P = 0.38 and P = 0.75, respectively) or on BCS (P = 0.45). Cows fed high-purity glycerine tended to have higher milk yield than control cows (P = 0.06). Milk composition tended to differ among treatments. No main effects of treatment on concentration of glycerine (P = 0.44), glucose (P = 0.78), insulin (P = 0.33), non-esterified fatty acids (P = 0.33) and β-hydroxybutyrate (P = 0.15) in plasma. These data indicate that high-purity glycerine has the potential to increase milk yield, as well as enhance the milk protein concentration and milk fat + protein yield.  相似文献   

10.
We studied the efficiency of nitrogen utilisation by dairy cows, using three diets differing in the crude protein (CP) level but with similar deficits (10 g x kg(-1) dry matter, DM) in ruminal fermentable nitrogen. There was no difference in milk yield from the cows offered the three diets (130, 145 and 160 g CP x kg(-1) DM). The milk protein content differed between the two most extreme diets (28.9 vs. 29.9 g x kg(-1), P < 0.05), resulting in higher protein yields for the highest CP treatment (P < 0.01). The efficiency of nitrogen utilisation, calculated as the proportion of ingested nitrogen recovered in the milk, was significantly higher for the 130 g CP x kg(-1) DM diet than for the other two diets (0.37 vs. 0.33 and 0.32 respectively. P < 0.01). The different diets also resulted in different levels of nitrogen excretion into the environment (237, 270 and 330 g N x d(-1), P < 0.01). Hepatic deamination of the amino acids may have generated additional energy to enable the animal to make use of the additional nitrogen in the diet, resulting in an increase in plasma urea concentration.  相似文献   

11.
In light of increasing global protein prices and with the need to reduce environmental impact of contemporary systems of milk production, the current review seeks to assess the feasibility of reducing levels of dietary CP in dairy cow diets. At CP levels between 140 and 220 g/kg DM there is a strong positive relationship between CP concentration and dry matter intake (DMI). However, such effects are modest and reductions in DMI when dietary CP is below 180 g/kg DM can be at least partially offset by improving the digestibility and amino acid profile of the undegradable protein (UDP) component of the diet or by increasing rumen fermentable energy. Level and balance of intestinally absorbable amino acids, in particular methionine and lysine, may become limiting at lower CP concentrations. In general the amino acid composition of microbial protein is superior to that of UDP, so that dietary strategies that aim to promote microbial protein synthesis in the rumen may go some way to correcting for amino acid imbalances in low CP diets. For example, reducing the level of NDF, while increasing the proportion of starch, can lead to improvements in nitrogen (N) utilisation as great as that achieved by reducing dietary CP to below 150 g/kg. A systematic review and meta-analysis of responses to rumen protected forms of methionine and lysine was conducted for early/mid lactation cows fed diets containing ⩽150 g CP/kg DM. This analysis revealed a small but significant (P=0.002) increase in milk protein yield when cows were supplemented with these rumen protected amino acids. Variation in milk and milk protein yield responses between studies was not random but due to differences in diet composition between studies. Cows fed low CP diets can respond to supplemental methionine and lysine so long as DMI is not limiting, metabolisable protein (MP) is not grossly deficient and other amino acids such as histidine and leucine do not become rate limiting. Whereas excess dietary protein can impair reproduction and can contribute to lameness, there is no evidence to indicate that reducing dietary CP levels to around 140 to 150 g CP/kg DM will have any detrimental effect on either cow fertility or health. Contemporary models that estimate MP requirements of dairy cows may require refinement and further validation in order to predict responses with low CP diets.  相似文献   

12.
Beet pulp contains high amounts of pectins that can reduce the risk of rumen disorders compared to using feedstuffs high in starch. The objective was to study the effects of inclusion of ensiled pressed beet pulp in total mixed rations (TMR) for high-yielding dairy cows. Two TMR containing no or about 20% (on dry matter (DM) basis) beet pulp silage were used. The beet pulp silage mainly replaced maize silage and corn cob silage. The TMR were intentionally equal in the concentrations of energy and utilisable crude protein (CP) at the duodenum. TMR were fed to 39 and 40 dairy cows, respectively, for 118 days. The average daily milk yield was about 43 kg/day. No significant differences in milk yield and milk fat or milk protein content were detected. DM intake of cows was significantly reduced by the inclusion of beet pulp silage (23.0 v. 24.5 kg/day). However, a digestibility study, separately conducted with sheep, showed a significantly higher organic matter digestibility and metabolisable energy concentration for the TMR that contained beet pulp silage. In vitro gas production kinetics indicated that the intensity of fermentation was lower in the TMR that contained beet pulp silage. In vitro production of short-chain fatty acids, studied using a Rusitec, did not differ between the TMR. However, the inclusion of beet pulp silage in the ration caused a significant reduction in the efficiency of microbial CP synthesis in vitro. The amino acid profile of microbial protein remained unchanged. It was concluded that beet pulp silage has specific effects on ruminal fermentation that may depress feed intake of cows but improve digestibility. An inclusion of beet pulp silage of up to 20% of DM in rations for high-yielding dairy cows is possible without significant effects on milk yield and milk protein or milk fat.  相似文献   

13.
The objectives of this study were to compare the effects of post-ruminal and intravenous infusions of wheat starch or glucose (CHO) or a mixture of amino acids (AA) on milk protein yield, nitrogen (N) utilisation, plasma metabolites and mammary extraction rate of dairy cows in late lactation. Eight cow, ruminally fistulated, was assigned to two 4 × 4 Latin squares during 14-day periods, where the last 7 days were for infusions. Infusions were: (1) starch in the abomasum (SP), (2) glucose in the blood (GB), (3) AA in the abomasum (AP), and (4) AA in the blood (AB). The experiment started 165 ± 4 days (mean ± s.e.) post partum (milk yield 22.5 ± 1.1 kg) Daily amounts of nutrients infused were 257, 283, 233, and 260 g for SP, GB, AP and AB, respectively. The cows were fed a basal diet consisting of a concentrate mixture and grass silage (55:45 on a dry-matter (DM) basis), where total dry-matter intake (DMI) was 13.3 kg/day. Milk production was affected by site of infusion within substrate, whereas infusion substrates within infusion site (CHO or AA) were of minor importance. Responses to intravenous infusions (GB or AB) were similar to those in early lactation, but more pronounced. Compared with SP infusion, GB infusion increased ( P < 0.05) milk yield, energy-corrected milk (ECM), protein and lactose yield by 1.4 and 0.9 kg, 38 and 59 g, respectively. The AB infusion had 1.4 and 1.3 kg, 51, 52 and 50 g higher ( P < 0.05) milk yield, ECM, protein, fat and lactose yields than the AP infusion, respectively. N balance data indicated higher losses of metabolic faecal nitrogen (MFN) by abomasal than by intravenous infusions, but the catabolism of AA was lower than in early lactation indicated by no difference ( P < 0.05) in urinary N excretion between treatments. Intravenous AA infusion increased plasma glucose and insulin above that of intravenous glucose infusion. The treatment effects on plasma insulin concentrations were higher in late than in early lactation, suggesting a higher sensitivity in late lactation even at similar negative energy balance. Compared with the SP infusion, GB infusion showed lower ( P < 0.05) concentrations of essential AA (EAA) and branched-chain AA (BCAA) resulting in a higher AA utilisation because of a higher milk protein production. AP infusion increased ( P < 0.05) plasma non-essential AA concentration compared with AB infusion, but infusion site of AA had no effect ( P>0.05) on plasma EAA or BCAA. It is concluded that it is the nutrient supply and not the lactation stage per se that is important for the response in milk production. Nevertheless, stage of lactation affects the N metabolism and the response in plasma hormone concentrations even when cows are in negative energy balance in both lactation stages.  相似文献   

14.
The objective of the present study was to determine the effects of rumen-protected choline (RPC) supplementation on body condition, milk production and milk choline content during the periparturient period. Thirty-two Holstein cows were allocated into two groups (RPC group - with RPC supplementation, and control group - without RPC supplementation) 28 days before the expected calving. Cows were fed the experimental diet from 21 days before expected calving until 60 days of lactation. The daily diet of the RPC group contained 100 g of RPC from 21 days before calving until calving and 200 g RPC after calving for 60 days of lactation, which provided 25 g and 50 g per day choline, respectively. Body condition was scored on days -21, 7, 35 and 60 relative to calving. Milk production was measured at every milking; milk fat, protein and choline content were determined on days 7, 35 and 60 of lactation. Body condition was not affected by RPC supplementation. Milk yield was 4.4 kg higher for the group of cows receiving supplementary choline during the 60 days experimental period and 4% fat-corrected milk production was also increased by 2.5 kg/day. Milk fat content was not altered by treatment, but fat yield was increased by 0.10 kg/day as a consequence of higher milk yield in the RPC-treated group. Milk protein content tended to increase by RPC supplementation and a 0.18 kg/day significant improvement of protein yield was detected. Milk choline content increased in both groups after calving as the lactating period advanced. However, milk choline content and choline yield were significantly higher in the RPC group than in the control group. The improved milk choline and choline yield provide evidence that some of the applied RPC escaped ruminal degradation, was absorbed from the small intestine and improved the choline supply of the cows and contributed to the changes of production variables.  相似文献   

15.
The objective was to determine performance and milk fatty acid changes of high producing dairy cows in early lactation, under summer heat, by adding a supplemental rumen inert fat in the form of a saturated free fatty acid (856 g/kg C16:0/kg of total fatty acids) to the total mixed ration (TMR). Early lactation multiparous Holstein cows in two similar pens of 99 and 115 cows were used in a 2 × 2 Latin Square design experiment with 35 d periods during a period when daily high and low temperatures averaged 34.3 and 15.9 °C, the relative humidity averaged 51% and there were no rain events. The TMR was the same for both groups, consisting of approximately 435 g/kg forage and 565 g/kg concentrate, except that the vitamin/mineral premix had no added fat (control, C) or added fat (C16:0) at a level designed to deliver approximately 450 g/cow/d of supplemental fat if cows consumed 26.5 kg/d of dry matter (DM). The two TMR averaged 905 g/kg organic matter (OM), 318 g/kg neutral detergent fiber (aNDF), and 186 g/kg crude protein (CP). The ‘C’ TMR had 58 g/kg total fatty acids with an estimated net energy for lactation (NEl) of 7.3 MJ/kg (DM), while the C16:0 TMR had 72 g/kg total fatty acids and 7.5 MJ/kg NEl (DM). Whole tract digestibility of DM, OM, aNDF and CP tended (P<0.10) to increase, and that of fatty acids increased substantially (P<0.01), with C16:0 feeding, whereas, DM intake was not affected. Milk fat content decreased (P<0.01) with C16:0 feeding (37.5 versus 36.0 g/kg), whereas, true protein content tended (P=0.09) to increase. There was a tendency (P=0.07) for increased milk yield (36.69 versus 38.04 kg/d), while milk protein yield increased (P=0.03) with C16:0 supplementation (1.08 versus 1.13 kg/d). Milk fat yield was unaffected by treatment. Concentrations of short and medium chain milk fatty acids (C6:0–C15:0), decreased, or tended to decrease, with C16:0 addition (C13:0 and C15:0, P<0.10; all others, P≤0.05). The concentration of C16:0 increased (P<0.001) in milk triglycerides from cows fed C16:0 (27.10 versus 31.57 g/kg), the longer chain saturated fatty acids C17:0 and C18:0 decreased (P≤0.05) and other long chain unsaturated fatty acids were unaffected. Benefits of C16:0 feeding on cow productivity must be balanced against negative effects on the nutritive value of the milk (i.e., increased C16:0 in milk fatty acids) produced for human consumption. However, relatively low amounts of supplemental C16:0 (27.10 versus 31.57 g/kg in milk triglycerides for C and C16:0 supplemented cows, respectively) were actually secreted in milk, in spite of them being essentially fully digested in the digestive tract. Strategies to divide cows into production groups based on milk yield and/or milk fat proportions could further limit C16:0 secretion in milk. Supplemental dietary C16:0 may have positive effects on milk production that outweigh the negative health effects of the increased C16:0 content in the milk fat.  相似文献   

16.
The objective of this study was to evaluate in lactating cows the effect of either chopping or ensiling of wheat roughage on: intake, digestibility, lactation performance and animal behavior. Three groups of 14 lactating cows each, were fed total mixed rations (TMRs) based on either long wheat hay (HL), short wheat hay (HS) or wheat silage (SI), as the sole roughage source (30% of TMR dry matter (DM)). Parameters examined: sorting behavior, DM intake, milk yield and composition, rumination, recumbence, average daily rumen pH, digesta passage rate, and in-vivo digestibility. Performance data was summarized by day and analyzed using a proc-mixed model. The content of physically effective neutral detergent fiber (peNDF) was similar in the HL and SI and lower in the HS, resulting in similar differences among the three corresponding TMRs. In vitro DM digestibility of wheat silage was higher than that of the two hays (65.6% v. 62.8%) resulting in higher in vitro DM digestibility of the SI-TMR compared with the hay-based TMRs (79.3 v. 77.0%). HS-TMR was better than HL- or SI-TMRs at preventing feed sorting by cows after 12 or 24 h eating of the diets. Cows fed HS-TMR consumed more DM and NDF but less peNDF than the other two groups. Average daily rumen pH was similar in the three groups, but daily rumination time was highest in the cows fed HS-TMR. Rumen retention time was longest in cows fed HL-TMR. DM digestibility in cows fed SI-TMR was higher than that of HS and HL groups (65.2%, 61.8% and 62.4%, respectively), but NDF digestibility was similar in the three treatments. The highest intake of digestible DM was observed in cows fed SI-TMR, HS cows were intermediate and HL cows were the lowest. Consequently, cows fed SI-TMR had higher yields of milk, 4% fat corrected milk and energy-corrected milk (47.1, 42.9 and 43.2 kg/day, respectively) than cows fed HS-TMR (45.7, 41.0 and 41.0 kg/day, respectively) or HL-TMR (44.1, 40.3 and 40.3 kg/day, respectively). Net energy production (NEL+M+gain) per kg DM intake was highest in the SI-TMR, lowest in the HS-TMR and intermediate in the HL-TMR (1.52, 1.40 and 1.45, respectively). Animal welfare, as expressed in daily recumbence time and BW gain was similar in the SI and HS groups and higher than the HL cows.  相似文献   

17.
Paratuberculosis impairs productivity of infected dairy cows because of reduced milk production and fertility and enhanced risk of culling. The magnitude of the milk yield depression in individual cows is influenced by factors such as parity, the stage of the disease and the choice of test used. The objectives of this case–control study were to substantiate the influence of the different levels of the within-herd prevalence (WHP) on individual milk yield of fecal culture (FC)-positive cows (FC+) compared with FC-negative herd-mates (FC−), and to estimate the magnitude of the deviation of the milk yield, milk components and somatic cell count (SCC) in an FC-based study. Of a total of 31 420 cows from 26 Thuringian dairy herds tested for paratuberculosis by FC, a subset of 1382 FC+ and 3245 FC− with milk recording data were selected as cases and controls, respectively. The FC− cows were matched for the same number and stage of lactation (±10 days in milk) as one FC+ from the same herd. Within a mixed model analysis using the fixed effects of Mycobacterium avium ssp. paratuberculosis (MAP) status, lactation number, days in milk, prevalence class of farm and the random effect of farm on milk yield per day (kg), the amount of fat and protein (mg/dl) and lactose (mg/dl) as well as the SCC (1000/ml) were measured. On the basis of least square means, FC+ cows had a lower test-day milk yield (27.7±0.6 kg) compared with FC− (29.0±0.6 kg), as well as a lower milk protein content and a slightly diminished lactose concentration. FC status was not associated with milk fat percentage or milk SCC. In FC+ cows, reduction in milk yield increased with increasing WHP. An interaction of FC status and farm was found for the test-day milk yield, and milk protein percentage, respectively. We conclude that the reduction in milk yield of FC+ cows compared with FC− herd-mates is significantly influenced by farm effects and depends on WHP class. Owners of MAP-positive dairy herds may benefit from the reduction in WHP not only by reducing number of infected individuals but also by diminishing the individual losses in milk production per infected cow, and therefore should establish control measures.  相似文献   

18.
Dietary influence on protein level in milk and milk yield in dairy cows   总被引:1,自引:0,他引:1  
Diet can influence the yield of milk protein more than it can influence milk protein content. Providing sufficient dietary crude protein in forms that will maximize amounts of amino acids required for milk protein synthesis to the gastrointestinal tract, in forms that can be digested and absorbed, will provide for optimal milk protein yield and content. Maximizing ruminal microbial protein synthesis is an important part of this strategy. The rest of the strategy involves providing sufficient amounts of the remaining required amino acids as ruminally protected proteins, or amino acids in forms that can be digested in the gastrointestinal tract. A diet deficient in protein will reduce milk protein content 1 to 2 g kg−1 and may substantially reduce yields of milk and milk protein. A diet containing high amounts of readily fermentable carbohydrates may increase milk protein content 1 to 2 g kg−1, and may increase yields of milk and protein, but may also result in digestive and metabolic upsets. Diets containing supplemental fat will increase yield of milk protein, but not as extensively as the increase in yield of milk, because milk protein content is usually reduced 1 to 2 g kg−1. The increased efficiency of milk fat and lactose synthesis is likely to be the reason for this depression in milk protein content. A means of overcoming this problem is a continuing research challenge.  相似文献   

19.
Twenty crossbred lactating multiparous cows were used in a 28-day study to compare dry matter intake (DMI), milk yield, milk composition and Bacillus thuringiensis (Bt) protein concentrations in plasma when fed diets containing Bollgard II® cottonseed (BGII) or a control non-genetically modified isogenic cottonseed (CON). Bollgard II cottonseed contains the Cry1Ac and Cry2Ab insecticidal proteins that protect cotton plants from feeding damage caused by certain lepidopteran insects. Cows were assigned randomly to the BGII or CON treatments after a 2-week adjustment period. Cows consumed a concentrate containing 40% crushed cottonseed according to milk yield and green maize forage ad libitum. All cows received the same diet but with different crushed cottonseed sources. Cottonseed was included to provide approximately 2.9 kg per cow daily (dry matter basis). The ingredient composition of the concentrate was 40% crushed cottonseed, 15% groundnut cake, 20% corn, 22% wheat bran, 1% salt and 2% mineral mixture. Milk and blood plasma were analyzed for Cry1Ac and Cry2Ab proteins. DMI, BW, milk yield and milk components did not differ between cows on the BGII and CON treatments. Although milk yield and milk fat percentage were not affected by treatment, 4% fat-corrected milk (FCM) production and FCM/kg DMI for cows on the BGII treatment (14.0 kg/cow per day, 1.12 kg/kg) were significantly improved compared with cows on the CON treatment (12.1 kg/cow per day, 0.97 kg/kg). Gossypol contents in BGII cottonseed and conventional cottonseed were similar. Cry1Ac and Cry2Ab2 proteins in Bollgard II cottonseed were 5.53 and 150.8 μg/g, respectively, and were not detected in the milk or plasma samples. The findings suggested that Bollgard II cottonseed can replace conventional cottonseed in dairy cattle diets with no adverse effects on performance and milk composition.  相似文献   

20.
The objective of this study was to investigate the effect of different body condition score (BCS) at 30 days before calving (-30 days) induced by a differential nutritional management from -100 days until -30 days on productive parameters, the interval to first ovulation and blood parameters in primiparous and multiparous Holstein cows under grazing conditions until 60 days post partum. The experimental arrangement was a randomized complete block design, where cows were blocked according to BW and expected calving date and then randomly assigned to different nutritional treatments from -100 to -30 days relative to calving to induce different BCS. As the assignment of cows to treatments was random, cows had to lose, maintain or gain BCS; thus, different planes of nutrition were offered with approximately 7, 14 or 20 kg dry matter per day. The BCS score was assessed every 15 days and animals were reassigned in order to achieve the desired BCS at -30 days. Only animals that responded to nutritional treatment were considered and this was defined as follows: primiparous and multiparous high cows (PH and MH) had to gain 0.5 points of BCS, primiparous low (PL) had to lose 0.5 points of BCS and multiparous low (ML) had to maintain BCS at least in two subsequent observations from -100 to -30 days. From -30 days to calving, primiparous and multiparous cows (P and M cows) were managed separately and cows were offered a diet once a day. From calving to 60 days post partum, cows of different groups grazed in separate plots a second year pasture. Cows were also supplemented individually with whole-plant maize silage and commercial concentrate. Cows had similar BCS at -100 days and differed after the nutritional treatment; however, all groups presented similar BCS at 21 days post partum. The daily milk production and milk yield at 60 days post partum was higher in M than P cows. The percentage of milk fat was higher in PH cows compared with PL cows. Concentrations of non-esterified fatty acids (NEFA) were affected by the BCS at -30 days within parity, and in PH cows the concentration of NEFA was higher than in PL cows. The concentrations of total protein were higher in M cows. A lower probability of cycling was found in PL than in PH cows (P < 0.05) and in ML than in MH cows (P < 0.05). Treatment affected various endocrine/metabolic profiles according to parity, suggesting that the metabolic reserves signal the productive/reproductive axis so as to induce a differential nutrient partitioning in adult v. first-calving cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号