首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: Although numerous studies have examined habitat use by raccoons (Procyon lotor), information regarding seasonal habitat selection related to resource availability in agricultural landscapes is lacking for this species. Additionally, few studies using radiotelemetry have investigated habitat selection at multiple spatial scales or core-use areas by raccoons. We examined seasonal habitat selection of 55 (31 M, 24 F) adult raccoons at 3 hierarchical orders defined by the movement behavior of this species (second-order home range, second-order core-use area, and third-order home range) in northern Indiana, USA, from May 2003 to June 2005. Using compositional analysis, we assessed whether habitat selection differed from random and ranked habitat types in order of selection during the crop growing period (season 1) and corn maturation period (season 2), which represented substantial shifts in resource availability to raccoons. Habitat rankings differed across hierarchical orders, between seasons within hierarchical orders, and between sexes within seasons; however, seasonal and intersexual patterns of habitat selection were not consistent across hierarchical orders of spatial scale. When nonrandom utilization was detected, both sexes consistently selected forest cover over other available habitats. Seasonal differences in habitat selection were most evident at the core-area scale, where raccoon selection of agricultural lands was highest during the maturation season when corn was available as a direct food source. Habitat use did not differ from availability for either sex in either season at the third-order scale. The selection of forest cover across both seasons and all spatial orders suggested that raccoon distribution and abundance in fragmented landscapes is likely dependent on the availability and distribution of forest cover, or habitats associated with forest (i.e., water), within the landscape. The lack of consistency in habitat selection across hierarchical scales further exemplifies the need to examine multiple biological scales in habitat-selection studies.  相似文献   

2.
The main objective was to discover extent of interference and/or exploitative competition between the native red fox (Vulpes vulpes) and the introduced, invasive raccoon dog (Nyctereues proconoides) in the intensively used, agricultural landscape of northeast Germany (Mecklenburg-Western Pomerania) using very high frequency (VHF) radio telemetry. We recorded location data for 12 foxes and 16 raccoon dogs between July 2004 and December 2006. Species had similar average home range sizes estimated in each season (K95). Home ranges of adjacent raccoon dogs and foxes overlapped from 0.5 to 74.5 % with a mean of 26.4 %. We found a significantly different home range overlap index between the species showing that raccoon dog ranges shifted between seasons to a greater extent than red fox ranges. The raccoon dog differed significantly from the red fox in its use of habitat types, preferring dense vegetation cover and avoiding open areas. The red fox displayed less preference for or avoidance of specific habitat types. Moreover, an almost neutral inter-specific interaction index ranging from ?0.12 to 0.12 indicates that raccoon dogs and red foxes ignored each other. It is concluded that widespread and available resources and differences in spatial use patterns prevent competition between red foxes and raccoon dogs in the agricultural landscape of northeast Germany.  相似文献   

3.
The impact of landscape and habitat diversity on diets of invasive and native species is an important issue when planning management or conservation of wildlife. The aim of the present study was to examine the impact of the environment on the diets of invasive raccoon dogs Nyctereutes procyonoides and native badgers Meles meles in two spatial scales in southern Finland. We studied the relationship between habitat diversity and diet in several study areas in southern Finland (landscape scale) and the relationship between diet and different habitat patches around latrine sites in one study area (local scale). Diets of both species differed between the study areas. The higher was the diversity of habitats in the landscape, the higher was the diversity of diet. Diversity of diet of omnivorous carnivores may thus be used as an indicator of habitat diversity. Also, the higher was the proportion of gardens, the higher was the diversity of raccoon dog diet. Raccoon dog diet was in all areas more diverse than badger diet. Overlap of diets was the smallest in the most diverse area and highest in a managed area with fields and industrial forests. In local scale, positive relationships between habitat types and raccoon dog diet included those between birds and gardens, small mammals and spruce forest and meadows, and frogs and gardens and deciduous forests. The models for badgers included those between birds and reed beds, frogs and deciduous forests, and cereal and earthworms and fields.  相似文献   

4.
Environmental factors at both macro‐ecological and landscape scales are likely to affect (meta) population dynamics and species distributions, through direct or indirect effects on individual phenotypes. Although disentangling these scale effects is of prime importance in evolutionary ecology and conservation biology, most studies dealing with the links between phenotype and the environment have mainly focused on the landscape scale, and none has addressed the interactions between effects at both scales. In ectotherms, movement abilities are strongly dependent upon thermoregulation abilities, and thus likely vary with latitude. Moreover, in such species, movement is also highly dependent upon landscape geometry at the landscape scale. Here, we quantified the combined effects of latitude and habitat fragmentation on movement ability in relation with thermoregulation abilities in the butterfly Pieris brassicae as model for understanding the relative contributions of macro‐ecological and landscape scale effects on species’ mobility. We sampled individuals at an early developmental stage (eggs or caterpillars), in natural populations from 27 sites with different degrees of habitat connectivity, along a latitudinal gradient across France and Belgium. Adult flight and heating rate were measured in laboratory controlled conditions and were used as proxies for movement ability and thermoregulation ability, respectively. We found that flight endurance for both sexes and female heating rate increased with latitude. Habitat connectivity had a sex‐dependent effect on both traits: flight endurance in males increased with decreasing habitat connectivity, while the opposite was found in females. Moreover, heating rate increased with increasing habitat connectivity, the effect being stronger in males. Overall, our results highlight the need to integrate intraspecific variation in movement ability at different spatial scales when studying species’ responses to global environmental change.  相似文献   

5.
Habitat selection is a hierarchical process where the distribution of individuals is constrained by environmental factors acting from the landscape scale to specific microhabitats such as breeding sites. However, interactions between conspecifics might greatly influence bird distribution and habitat use, especially in lekking birds. In the lekking Houbara bustard Chlamydotis undulata undulata , we investigated the respective role of environmental and social constraints on the distribution of nests and display sites. We measured environmental variables around 69 nests and 70 display sites at different spatial scales: the landscape, the breeding range, and the display and nest site scale. The variables were compared to those measured at 50 random plots to determine whether environmental features are actively selected. Social variables were included by studying spatial relationships between displaying male density, nests and female movements throughout the year. At the landscape scale, human presence acted as a limiting factor for the establishment of nest and display sites. At the breeding range scale, habitat requirements differed between sexes. Breeding females used a heterogeneous complex of habitats provided by the network of wadis (water courses) crossing the reg (gravel plain) covered by tall perennial plants. In contrast, display males looked for conspicuousness and courtship ability by selecting the reg with short perennials, and used temporarily flooded areas for feeding. Males aggregated on traditional display site where they experienced the greatest female density. This result supported the hotspot model in the evolution of leks in the Houbara bustard. It underlies an overriding effect of female attraction on male settlement in the individual habitat selection process.  相似文献   

6.
The raccoon dog Nyctereutes procyonoides, an East Asian canid species, was introduced into the European part of the former USSR since 1928. Within 50 years (1935–1984), it colonised a territory of 1.4 million km2 in Europe. A telemetry study took place in Southern Brandenburg in a 60 km2 sized study area with a typical mosaic structured East German agricultural landscape. For catching raccoon dogs, 20 trap boxes were set there in an area of 46 km2, and between February 2001 and July 2004, 15 (5 males, 10 females) adult and 46 (25 males, 21 females) juvenile raccoon dogs were eartagged and adults additionally fitted with radio collars (Biotrack, 150–151 MHz). Data on dispersal behaviour was collected by the relocation points of 11 juveniles (6 males, 5 females). Four juvenile males dispersed even more than 40 km from their trapping places. Additionally, dispersal of two adult males could be documented. This behaviour probably indicates that the German raccoon dog population still is in a process of colonising. This canid’s ability for colonising spacious and distant areas during comparative short periods of time and its preference for habitats with richness of water possibly make this species to be an important vector of fox tapeworm Echinococcus multilocularis—a very dangerous zoonosis.  相似文献   

7.
1. Understanding and accurately predicting the spatial patterns of habitat use by organisms is important for ecological research, biodiversity conservation and ecosystem management. However, this understanding is complicated by the effects of spatial scale, because the scale of analysis affects the quantification of species-environment relationships. 2. We therefore assessed the influence of environmental context (i.e. the characteristics of the landscape surrounding a site), varied over a large range of scales (i.e. ambit radii around focal sites), on the analysis and prediction of habitat selection by African elephants in Kruger National Park, South Africa. 3. We focused on the spatial scaling of the elephants' response to their main resources, forage and water, and found that the quantification of habitat selection strongly depended on the scales at which environmental context was considered. Moreover, the inclusion of environmental context at characteristic scales (i.e. those at which habitat selectivity was maximized) increased the predictive capacity of habitat suitability models. 4. The elephants responded to their environment in a scale-dependent and perhaps hierarchical manner, with forage characteristics driving habitat selection at coarse spatial scales, and surface water at fine spatial scales. 5. Furthermore, the elephants exhibited sexual habitat segregation, mainly in relation to vegetation characteristics. Male elephants preferred areas with high tree cover and low herbaceous biomass, whereas this pattern was reversed for female elephants. 6. We show that the spatial distribution of elephants can be better understood and predicted when scale-dependent species-environment relationships are explicitly considered. This demonstrates the importance of considering the influence of spatial scale on the analysis of spatial patterning in ecological phenomena.  相似文献   

8.
We quantitatively evaluated the effects of landscape factors on the distribution of symptomatic raccoon dogs with sarcoptic mange along an urban gradient. We used 246 camera traps (182 traps from April 2005 to December 2006; 64 traps from September 2009 to October 2010) to record the occurrence of asymptomatic and symptomatic raccoon dogs at 21 survey sites along an urban–rural gradient in the Tama Hills area of Tokyo. Each occurrence was explained in terms of the surrounding forest, agricultural, and grassland areas and additional factors (i.e., seasonal variations and survey methods) at various spatial scales using a generalized additive mixed model (GAMM). In our analysis, a 1000-m radius was identified as the important spatial scale for asymptomatic and symptomatic raccoon dog occurrence. The peak of the predicted occurrence probability of asymptomatic raccoon dogs appeared in the intermediate forest landscape as opposed to non-forest and forest landscapes. However, a high occurrence probability of symptomatic raccoon dogs was detected in non-forest and intermediate forest landscapes (i.e., urban and suburban) as opposed to a forest landscape, presumably because of animals occurring at much higher densities in more urbanized areas. Therefore, our results suggest that human-modified landscapes play an important role in the high occurrence of sarcoptic mange in raccoon dogs.  相似文献   

9.
Despite a marked increase in the focus toward biodiversity conservation in fragmented landscapes, studies that confirm species breeding success are scarce and limited. In this paper, we asked whether local (area of forest patches) and landscape (amount of suitable habitat surrounding of focal patches) factors affect the breeding success of raccoon dogs (Nyctereutes procyonoides) in Tokyo, Central Japan. The breeding success of raccoon dogs is easy to judge as adults travel with pups during the breeding season. We selected 21 forest patches (3.3–797.8 ha) as study sites. In each forest patch, we used infra-red-triggered cameras for a total of 60 camera days per site. We inspected each photo to determine whether it was of an adult or a pup. Although we found adult raccoon dogs in all 21 forest patches, pups were found only in 13 patches. To estimate probability of occurrence and detection for raccoon in 21 forest fragments, we used single season site occupancy models in PRESENCE program. Model selection based on AIC and model averaging showed that the occupancy probability of pups was positively affected by patch area. This result suggests that large forests improve breeding success of raccoon dogs. A major reason for the low habitat value of small, isolated patches may be the low availability of food sources and the high risk of being killed on the roads in such areas. Understanding the effects of local and landscape parameters on species breeding success may help us to devise and implement effective long-term conservation and management plans.  相似文献   

10.
Species distribution models (SDMs) are popular in conservation and management of a wide array of taxa. Often parameterized with coarse GIS-based environmental maps, they perform well in macro-ecological settings but it is debated if the models can predict distribution within broadly suitable “known” habitats of interest to local managers. We parameterized SDMs with GIS-derived environmental variables and location data from 82 GPS-collared female red deer (Cervus elaphus) from two study areas in Norway. Candidate GLM models were fitted to address the effect of spatial scale (landscape vs. home range), sample size, and transferability between study areas, with respect to predictability (AUC) and explained variance (Generalized R 2 and deviance). The landscape level SDM captured variation in deer distribution well and performed best on all diagnostic measures of model quality, caused mainly by a trivial effect of avoidance of non-habitat (barren mountains). The home range level SDMs were far less predictable and explained comparatively little variation in space use. Landscape scale models stabilized at the low sample size of 5–10 individuals and were highly transferrable between study areas implying a low degree of individual variation in habitat selection at this scale. It is important to have realistic expectations of SDMs derived from digital elevation models and coarse habitat maps. They do perform well in highlighting potential habitat on a landscape scale, but often miss nuances necessary to predict more fine-scaled distribution of wildlife populations. Currently, there seems to be a trade-off between model quality and usefulness in local management.  相似文献   

11.
Foraging behaviour and habitat selection occur as hierarchical processes. Understanding the factors that govern foraging and habitat selection thus requires investigation of those processes over the scales at which they occur. We investigated patterns of habitat use by African elephants (Loxodonta africana) in relation to vegetation greenness to investigate the scale at which that landscape attribute was most closely related to distribution of elephant locations. We analysed Global Positioning System radio-collar locations for 15 individuals, using the Normalized Difference Vegetation Index as a representation of vegetation greenness in a Geographic Information Systems framework. We compared the importance of vegetation greenness at three spatial scales: the total home range, the seasonal home range and the 16-day home range. During the wet season, seasonal home ranges for both sexes were associated with intermediate greenness within the total home range; there was no evidence of selection based on greenness at finer scales. During the dry season, the strongest associations were within the 16-day home range: individual locations for males tended to be in areas of intermediate greenness, and those for females were in areas of intermediate and high greenness. Our findings suggest that the role of vegetation greenness varies with the scale of analysis, likely reflecting the hierarchical processes involved in habitat selection by elephants.  相似文献   

12.
Habitat selection can be considered as a hierarchical process in which animals satisfy their habitat requirements at different ecological scales. Theory predicts that spatial and temporal scales should co‐vary in most ecological processes and that the most limiting factors should drive habitat selection at coarse ecological scales, but be less influential at finer scales. Using detailed location data on roe deer Capreolus capreolus inhabiting the Bavarian Forest National Park, Germany, we investigated habitat selection at several spatial and temporal scales. We tested 1) whether time‐varying patterns were governed by factors reported as having the largest effects on fitness, 2) whether the trade‐off between forage and predation risks differed among spatial and temporal scales and 3) if spatial and temporal scales are positively associated. We analysed the variation in habitat selection within the landscape and within home ranges at monthly intervals, with respect to land‐cover type and proxys of food and cover over seasonal and diurnal temporal scales. The fine‐scale temporal variation follows a nycthemeral cycle linked to diurnal variation in human disturbance. The large‐scale variation matches seasonal plant phenology, suggesting food resources being a greater limiting factor than lynx predation risk. The trade‐off between selection for food and cover was similar on seasonal and diurnal scale. Habitat selection at the different scales may be the consequence of the temporal variation and predictability of the limiting factors as much as its association with fitness. The landscape of fear might have less importance at the studied scale of habitat selection than generally accepted because of the predator hunting strategy. Finally, seasonal variation in habitat selection was similar at the large and small spatial scales, which may arise because of the marked philopatry of roe deer. The difference is supposed to be greater for wider ranging herbivores.  相似文献   

13.
Functional connectivity among fragmented populations depends on the landscape matrix between occupied habitat patches and its effect on the frequency of animal movement and gene flow. The quantification of landscape effects on gene flow should therefore be scale‐dependent. Here, we explored the impact of different spatial scales in a landscape genetic analysis of the European tree frog Hyla arborea in a fragmented landscape in Switzerland. We examined the effects of landscape elements and geographic distance on genetic differentiation at three distance classes reflecting varying frequencies of tree frog movement. We calculated pairwise FST‐values and assembled 16 landscape elements within 1 km wide corridors between all pairs of tree frog breeding sites. Per distance class, we computed a multiple regression model with stepwise backward elimination and permutation testing. At distances of<2 km, only a larger river acted as a barrier to gene flow. At distances>2 km, geographic distance had a negative effect on gene flow as had landscape elements such as forests and roads. In general, hedgerows and various structure‐rich landscape elements positively affected gene flow. As we found distinct scale‐dependent landscape effects on gene flow, future landscape genetic studies should analyse the effects of landscape variables at different spatial dimensions relevant for the movement and dispersal of the study organisms. Corresponding studies should also carefully consider relevant correlations among the landscape elements tested and should preferentially replicate their analysis at the landscape‐level in order to avoid idiosyncratic results owing to the particular scale and landscape studied.  相似文献   

14.
ABSTRACT The decline of many snake populations is attributable to habitat loss, and knowledge of habitat use is critical to their conservation. Resource characteristics (e.g., relative availability of different habitat types, soils, and slopes) within a landscape are scale-dependent and may not be equal across multiple spatial scales. Thus, it is important to identify the relevant spatial scales at which resource selection occurs. We conducted a radiotelemetry study of eastern hognose snake (Heterodon platirhinos) home range size and resource use at different hierarchical spatial scales. We present the results for 8 snakes radiotracked during a 2-year study at New Boston Air Force Station (NBAFS) in southern New Hampshire, USA, where the species is listed by the state as endangered. Mean home range size (minimum convex polygon) at NBAFS (51.7 ± 14.7 ha) was similar to that reported in other parts of the species’ range. Radiotracked snakes exhibited different patterns of resource use at different spatial scales. At the landscape scale (selection of locations within the landscape), snakes overutilized old-field and forest edge habitats and underutilized forested habitats and wetlands relative to availability. At this scale, snakes also overutilized areas containing sandy loam soils and areas with lower slope (mean slope = 5.2% at snake locations vs. 6.7% at random locations). We failed to detect some of these patterns of resource use at the home range scale (i.e., within the home range). Our ability to detect resource selection by the snakes only at the landscape scale is likely the result of greater heterogeneity in macrohabitat features at the broader landscape scale. From a management perspective, future studies of habitat selection for rare species should include measurement of available habitat at spatial scales larger than the home range. We suggest that the maintenance of open early successional habitats as a component of forested landscapes will be critical for the persistence of eastern hognose snake populations in the northeastern United States.  相似文献   

15.
Although the paca is the most frequently hunted game species throughout the Neotropics, its behavioral and ecological requirements remain poorly understood. Here, we describe ranging behavior, spatio-temporal intraspecific interactions, and cavity use within a mosaic landscape in Central Belize, based on radio-tracking of four males and two females. This study is the first to investigate social interactions and spatial structure within a paca population in unprotected marginal habitat. We detected extensive home range overlap between males and between sexes. Male-male overlap was less extensive within core areas, while female core ranges were almost entirely occupied by one or more males. On average, pacas used at least six cavities within their home range. The majority of cavities were in the core areas and we did not detect simultaneous co-habitation of the same location. On average, females occupied cavities that were closer together, and closer to water bodies, than those of males. Overall, our study suggests a general tolerance during nocturnal foraging activities, but exclusive use of core areas and associated cavities. The larger ranges of males than females and the extensive overlap between conspecifics suggest a polygamous or promiscuous mating system in this landscape.  相似文献   

16.
Dispersal is a fundamental process that influences the response of species to landscape change and habitat fragmentation. In an attempt to better understand dispersal in the Australian bush rat, Rattus fuscipes, we have combined a new multilocus autocorrelation method with hypervariable microsatellite genetic markers to investigate fine-scale (< or = 1 km) patterns of spatial distribution and spatial genetic structure. The study was conducted across eight trapping transects at four sites, with a total of 270 animals sampled. Spatial autocorrelation analysis of bush rat distribution revealed that, in general, animals occurred in groups or clusters of higher density (< or = 200 m across), with intervening gaps or lower density areas. Spatial genetic autocorrelation analysis, based on seven hypervariable microsatellite loci (He = 0.8) with a total of 80 alleles, revealed a consistent pattern of significant positive local genetic structure. This genetic pattern was consistent for all transects, and for adults and sub-adults, males and females. By testing for autocorrelation at multiple scales from 10 to 800 m we found that the extent of detectable positive spatial genetic structure exceeded 500 m. Further analyses detected significantly weaker spatial genetic structure in males compared with females, but no significant differences were detected between adults and sub adults. Results from Mantel tests and hierarchical AMOVA further support the conclusion that the distribution of bush rat genotypes is not random at the scale of our study. Instead, proximate bush rats are more genetically alike than more distant animals. We conclude that in bush rats, gene flow per generation is sufficiently restricted to generate the strong positive signal of local spatial genetic structure. Although our results are consistent with field data on animal movement, including the reported tendency for males to move further than females, we provide the first evidence for restricted gene flow in bush rats. Our study appears to be the first microsatellite-based study of fine-scale genetic variation in small mammals and the first to report consistent positive local genetic structure across sites, age-classes, and sexes. The combination of new forms of autocorrelation analyses, hypervariable genetic markers and fine-scale analysis (< 1 km) may thus offer new evolutionary insights that are overlooked by more traditional larger scaled (> 10 km) population genetic studies.  相似文献   

17.
Understanding the mechanisms of habitat selection is fundamental to the construction of proper conservation and management plans for many avian species. Habitat changes caused by human beings increase the landscape complexity and thus the complexity of data available for explaining species distribution. New techniques that assume no linearity and capable to extrapolate the response variables across landscapes are needed for dealing with difficult relationships between habitat variables and distribution data. We used a random forest algorithm to study breeding-site selection of herons and egrets in a human-influenced landscape by analyzing land use around their colonies. We analyzed the importance of each land-use variable for different scales and its relationship to the probability of colony presence. We found that there exist two main spatial scales on which herons and egrets select their colony sites: medium scale (4 km) and large scale (10–15 km). Colonies were attracted to areas with large amounts of evergreen forests at the medium scale, whereas avoidance of high-density urban areas was important at the large scale. Previous studies used attractive factors, mainly foraging areas, to explain bird-colony distributions, but our study is the first to show the major importance of repellent factors at large scales. We believe that the newest non-linear methods, such as random forests, are needed when modelling complex variable interactions when organisms are distributed in complex landscapes. These methods could help to improve the conservation plans of those species threatened by the advance of highly human-influenced landscapes.  相似文献   

18.
Connectivity for large mammals across human-altered landscapes results from movement by individuals that can be described via nested spatial scales as linkages (or zones or areas) with compatible land use types, constrictions that repeatedly funnel movement (as corridors) or impede it (as barriers), and the specific paths (or routes) across completely anthropogenic features (such as highways). Mitigation to facilitate animal movement through such landscapes requires similar attention to spatial scale, particularly when they involve complex topography, diverse types of human land use, and transportation infrastructure. We modeled connectivity for Asian elephant (Elephas maximus) and gaur (Bos gaurus) in the Shencottah Gap, a multiple-use region separating two tiger reserves in the Western Ghats, India. Using 840 km of surveys for animal signs within a region of 621 km2, we modeled landscape linkages via resource selection functions integrated across two spatial resolutions, and then potential dispersal corridors within these linkages using circuit theoretical models. Within these corridors, we further identified potential small-scale movement paths across a busy transportation route via least-cost paths and evaluated their viability. Both elephants and gaur avoided human-dominated habitat, resulting in broken connectivity across the Shencottah Gap. Predicted corridor locations were sensitive to analysis resolution, and corridors derived from scale-integrated habitat models correlated best with habitat quality. Less than 1% of elephant and gaur detections occurred in habitat that was poorer in quality than the lowest-quality component of the movement path across the transportation route, suggesting that connectivity will require habitat improvement. Only 28% of dispersal corridor area and 5% of movement path length overlapped with the upper 50% quantile of the landscape linkage; thus, jointly modeling these three components enabled a more nuanced evaluation of connectivity than any of them in isolation.  相似文献   

19.
In order to devise adequate conservation and management strategies for endangered species, it is important to incorporate a reliable understanding of its spatial population structure, detecting the existence of demographic partitions throughout its geographical range and characterizing the distribution of its genetic diversity. Moreover, in species that occupy fragmented habitats it is essential to know how landscape characteristics may affect the genetic connectivity among populations. In this study we use eight microsatellite markers to analyze population structure and gene flow patterns in the complete geographic range of the endangered rodent Ctenomys porteousi. Also, we use landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. In spite of geographical proximity of the sampling sites (8–27 km between the nearest sites) and the absence of marked barriers to individual movement, strong population structure and low values of gene flow were observed. Genetic differentiation among sampling sites was consistent with a simple model of isolation by distance, where peripheral areas showed higher population differentiation than those sites located in the central area of the species’ distribution. Landscape genetics analysis suggested that habitat fragmentation at regional level has affected the distribution of genetic variation among populations. The distance of sampling sites to areas of the landscape having higher habitat connectivity was the environmental factor most strongly related to population genetic structure. In general, our results indicate strong genetic structure in C. porteousi, even at a small spatial scale, and suggest that habitat fragmentation could increase the population differentiation.  相似文献   

20.
Niche theory in its various forms is based on those environmental factors that permit species persistence, but less work has focused on defining the extent, or size, of a species' environment: the area that explains a species' presence at a point in space. We proposed that this habitat extent is identifiable from a characteristic scale of habitat selection, the spatial scale at which habitat best explains species' occurrence. We hypothesized that this scale is predicted by body size. We tested this hypothesis on 12 sympatric terrestrial mammal species in the Canadian Rocky Mountains. For each species, habitat models varied across the 20 spatial scales tested. For six species, we found a characteristic scale; this scale was explained by species' body mass in a quadratic relationship. Habitat measured at large scales best-predicted habitat selection in both large and small species, and small scales predict habitat extent in medium-sized species. The relationship between body size and habitat selection scale implies evolutionary adaptation to landscape heterogeneity as the driver of scale-dependent habitat selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号