首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
2.
We previously reported that microRNA-30 (miR-30) expression was initiated by radiation-induced proinflammatory factor IL-1β and NFkB activation in mouse and human hematopoietic cells. However, the downstream effectors of miR-30 and its specific role in radiation-induced cell death are not well understood. In the present study, we evaluated effects of radiation on miR-30 expression and activation of intrinsic apoptotic pathway Bcl-2 family factors in in vivo mouse and in vitro human hematopoietic cells. CD2F1 mice and human CD34+ cells were exposed to different doses of gamma-radiation. In addition to survival studies, mouse blood, bone marrow (BM) and spleen cells and human CD34+ cells were collected at 4 h, and 1, 3 and 4 days after irradiation to determine apoptotic and stress response signals. Our results showed that mouse serum miR-30, DNA damage marker γ-H2AX in BM, and Bim, Bax and Bak expression, cytochrome c release, and caspase-3 and -7 activation in BM and/or spleen cells were upregulated in a radiation dose-dependent manner. Antiapoptotic factor Mcl-1 was significantly downregulated, whereas Bcl-2 was less changed or unaltered in the irradiated mouse cells and human CD34+ cells. Furthermore, a putative miR-30 binding site was found in the 3′ UTR of Mcl-1 mRNA. miR-30 directly inhibits the expression of Mcl-1 through binding to its target sequence, which was demonstrated by a luciferase reporter assay, and the finding that Mcl-1 was uninhibited by irradiation in miR-30 knockdown CD34+ cells. Bcl-2 expression was not affected by miR-30. Our data suggest miR-30 plays a key role in radiation-induced apoptosis through directly targeting Mcl-1in hematopoietic cells.  相似文献   

3.
4.
Several clinical studies have reported increased placental miR-210 expression in women with PE compared to normotensive women, but whether miR-210 plays a role in the etiology of PE is unknown. We reported that activation of TLR3 produces the PE-like symptoms of hypertension, endothelial dysfunction, and proteinuria in mice only when pregnant, but whether TLR3 activation in pregnant mice and human cytotrophoblasts (CTBs) increases miR-210 and modulates its targets related to inflammation are unknown. Placental miR-210 levels were increased significantly in pregnant mice treated with the TLR3 agonist poly I:C (P-PIC). Both HIF-1α and NF-κBp50, known to bind the miR-210 promoter and induce its expression, were also increased significantly in placentas of P-PIC mice. Target identification algorithms and gene ontology predicted STAT6 as an inflammation-related target of miR-210 and STAT6 was decreased significantly in placentas of P-PIC mice. IL-4, which is regulated by STAT6 and increases during normotensive pregnancy, failed to increase in serum of P-PIC mice. P-PIC TLR3 KO mice did not develop hypertension and placental HIF-1α, NF-κBp50, miR-210, STAT6, and IL-4 levels were unchanged. To determine the placental etiology, treatment of human CTBs with poly I:C significantly increased HIF-1α, NF-κBp50, and miR-210 levels and decreased STAT6 and IL-4 levels. Overexpression of miR-210 in CTBs decreased STAT6 and IL-4 while inhibition of miR-210 increased STAT6 and IL-4. These findings demonstrate that TLR3 activation induces placental miR-210 via HIF-1α and NF-κBp50 leading to decreased STAT6 and IL-4 levels and this may contribute to the development of PE.  相似文献   

5.
The influence of ultraviolet B (UVB) radiation on transglutaminase 1 (TGase 1), a major factor that regulates skin keratinization, has not been sufficiently characterized especially at the gene or protein level. Thus, we determined whether UVB affects the expression of TGase 1 in human keratinocytes and clarified the intracellular stress signaling mechanism(s) involved. Exposure of human keratinocytes to UVB significantly up-regulated the expression of TGase 1 at the gene and protein levels. Treatment with inhibitors of p38, MEK, JNK or NFκB significantly abolished the UVB-stimulated protein expression of TGase 1. Treatment with astaxanthin immediately after UVB irradiation did not attenuate the increased phosphorylation of Ser536/Ser468NFκBp65, c-Jun, ATK-2 and CK2, and did not abrogate the increased or diminished protein levels of c-Jun/c-Fos or I-κBα, respectively. However, the same treatment with astaxanthin significantly abolished the UVB-stimulated expression of TGase 1 protein, which was accompanied by the attenuated phosphorylation of Thr565/Ser376/Ser360MSK1, Ser276NFκBp65 and Ser133CREB. The MSK1 inhibitor H89 significantly down-regulated the increased protein expression of TGase 1 in UVB-exposed human keratinocytes, which was accompanied by an abrogating effect on the increased phosphorylation of Ser276NFκBp65 and Ser133CREB but not Thr565/Ser376/Ser360MSK1. Transfection of human keratinocytes with MSK1 siRNA suppressed the UVB-stimulated protein expression of TGase 1. These findings suggest that the UVB-stimulated expression of TGase 1 is mediated predominantly via the NFκB pathway and can be attenuated through a specific interruption of the p38/MSK1/NFκBp65Ser276 axis.  相似文献   

6.

Background

Dysfunctional CFTR in the airways is associated with elevated levels of NFκB mediated IL-8 signaling leading to neutrophil chemotaxis and chronic lung inflammation in cystic fibrosis. The mechanism(s) by which CFTR mediates inflammatory signaling is under debate.

Methodology/Principal Findings

We tested the hypothesis that wt-CFTR down-regulates NFκB mediated IL-8 secretion. We transiently co-expressed wt-CFTR and IL-8 or NFκB promoters driving luciferase expression in HEK293 cells. Wt-CFTR expression in HEK293 cells suppresses both basal and IL1β induced IL-8, and NFκB promoter activities as compared to the control cells transfected with empty vector (p<0.05). We also confirmed these results using CFBE41o- cells and observed that cells stably transduced with wt-CFTR secrete significantly lower amounts of IL-8 chemokine as compared to non-transfected control cells. To test the hypothesis that CFTR must be localized to cell surface lipid rafts in polarized airway epithelial cells in order to mediate the inflammatory response, we treated CFBE41o- cells that had been stably transduced with wt-CFTR with methyl-β-cyclodextrin (CD). At baseline, CD significantly (p<0.05) induced IL-8 and NFκB reporter activities as compared to control cells suggesting a negative regulation of NFκB mediated IL-8 signaling by CFTR in cholesterol-rich lipid rafts. Untreated cells exposed to the CFTR channel blocker CFTR-172 inhibitor developed a similar increase in IL-8 and NFκB reporter activities suggesting that not only must CFTR be present on the cell surface but it must be functional. We verified these results in vivo by comparing survival, body weight and pro-inflammatory cytokine response to P. aeruginosa LPS in CFTR knock out (CFKO) mice as compared to wild type controls. There was a significant (p<0.05) decrease in survival and body weight, an elevation in IL-1β in whole lung extract (p<0.01), as well as a significant increase in phosphorylated IκB, an inducer of NFκB mediated signaling in the CFKO mice.

Conclusions/Significance

Our data suggest that CFTR is a negative regulator of NFκB mediated innate immune response and its localization to lipid rafts is involved in control of inflammation.  相似文献   

7.
The gingival epithelium is becoming known as a regulator of the oral innate immune responses to a variety of insults such as bacteria and chemicals, including those chemicals found in cigarette smoke. We investigated the effects of whole cigarette smoke on cell-surface-expressed Toll-like receptors (TLR)-2, −4 and −6, human β-defensin (HBD) and proinflammatory cytokine expression and production in primary human gingival epithelial cells. Whole cigarette smoke was shown to increase TLR2, TLR4 and TLR6 expression. Cigarette smoke led to ERK1/2, p38 and JNK phosphorylation in conjunction with nuclear factor-κB (NFκB) translocation into the nucleus. TLR expression following cigarette smoke exposure was down regulated by the use of ERK1/2, p38, JNK MAP kinases, and NFκB inhibitors, suggesting the involvement of these signaling pathways in the cellular response against cigarette smoke. Cigarette smoke also promoted HBD2, HBD3, IL-1β, and IL-6 expression through the ERK1/2 and NFκB pathways. Interestingly, the modulation of TLR, HBD, and cytokine expression was maintained long after the gingival epithelial cells were exposed to smoke. By promoting TLR, HBDs, and proinflammatory cytokine expression and production, cigarette smoke may contribute to innate immunity dysregulation, which may have a negative effect on human health.  相似文献   

8.
9.
Repressor activator protein 1 (Rap1) is essential for maintaining telomere length and structural integrity, but it also exerts other non-telomeric functions. The present study tested the hypothesis that Rap1 is released into the cytoplasm and induces production of pro-inflammatory cytokines via nuclear factor kappa B (NFκB) signaling in macrophages, a cell type involved in the development and progression of atherosclerotic lesions. Western blotting analysis confirmed that Rap1 was present in the cytoplasm of differentiated human monocytic leukemia cells (THP-1, a macrophage-like cell line). Co-immunoprecipitation assay revealed a direct interaction between Rap1 and I kappa B kinase (IKK). Knockdown of Rap1 suppressed lipopolysaccharide-mediated activation of NFκB, and phosphorylation of inhibitor of kappa B α (IκBα) and p65 in THP-1 macrophages. The reduction of NFκB activity was paralleled by a decreased production of NFκB-dependent pro-inflammatory cytokines and an increased expression of IκBα (native NFκB inhibitor) in various macrophage models with pro-inflammatory phenotype, including THP-1, mouse peritoneal macrophages and bone marrow-derived M1 macrophages. These changes were observed selectively in pro-inflammatory macrophages but not in bone marrow-derived M2 macrophages (with an anti-inflammatory phenotype), mouse lung endothelial cells, human umbilical vein endothelial cells or human aortic smooth muscle cells. Immunostaining revealed that Rap1 was localized mainly in macrophage-rich areas in human atherosclerotic plaques and that the presence of Rap1 was positively correlated with the advancement of the disease process. In pro-inflammatory macrophages, Rap1 promotes cytokine production via NFκB activation favoring a pro-inflammatory environment which may contribute to the development and progression of atherosclerosis.  相似文献   

10.
11.
Purpose: Our previous data indicated that miR-24-3p is involved in the regulation of vascular endothelial cell (EC) proliferation and migration/invasion. However, whether IL-1β affects hypoxic HUVECs by miR-24-3p is still unclear. Therefore, the present study aimed to investigate the role and underlying mechanism of interleukin 1β (IL-1β) in hypoxic HUVECs.Methods: We assessed the mRNA expression levels of miR-24-3p, hypoxia-inducible factor-1α (HIF1A) and NF-κB-activating protein (NKAP) by quantitative real-time polymerase chain reaction (RT-qPCR). ELISA measured the expression level of IL-1β. Cell counting kit-8 (CCK-8) assays evaluated the effect of miR-24-3p or si-NKAP+miR-24 on cell proliferation (with or without IL-1β). Transwell migration and invasion assays were used to examine the effects of miR-24-3p or si-NKAP+miR-24-3p on cell migration and invasion (with or without IL-1β). Luciferase reporter assays were used to identify the target of miR-24-3p.Results: We demonstrated that in acute myocardial infarction (AMI) patient blood samples, the expression of miR-24-3p is down-regulated, the expression of IL-1β or NKAP is up-regulated, and IL-1β or NKAP is negatively correlated with miR-24-3p. Furthermore, IL-1β promotes hypoxic HUVECs proliferation by down-regulating miR-24-3p. In addition, IL-1β also significantly promotes the migration and invasion of hypoxic HUVECs; overexpression of miR-24-3p can partially rescue hypoxic HUVECs migration and invasion. Furthermore, we discovered that NKAP is a novel target of miR-24-3p in hypoxic HUVECs. Moreover, both the overexpression of miR-24-3p and the suppression of NKAP can inhibit the NF-κB/pro-IL-1β signaling pathway. However, IL-1β mediates suppression of miR-24-3p activity, leading to activation of the NKAP/NF-κB pathway. In conclusion, our results reveal a new function of IL-1β in suppressing miR-24-3p up-regulation of the NKAP/NF-κB pathway.  相似文献   

12.
13.
14.
The value of restenosis after percutaneous coronary intervention (PCI) is recognized worldwide, especially for diabetic patients. Interleukin-1/Toll-like receptor (IL-1/TLR) signaling is involved in innate and adaptive immune responses, but whether and how the IL-1/TLR-induced nuclear factor kappa B (NFκB) pathway plays key roles in intimal formation is unclear. The underlying mechanism of intima hyperplasia was investigated with a model of carotid balloon injury in Goto-Kakizaki (GK) and Wistar rats and with lipopolysaccharide-stimulated macrophages. Elastic-van Gieson staining showed the medial area peakedon Day 3 post-injury and decreased by Day 7 post-injury in both GK and Wistar rats. The N/M at Day 7 in GK rats was significantly higher than in Wistar rats (p<0.001). The percent of 5-ethynyl-2′-deoxyuridine (EdU) staining-positive cells on Day 3 post-injury was greater than seen on Day 7 post-injury in GK and Wistar rats. The percent of EdU-positive cells on Days 3 and 7 post-injury in Wistar rats was less than that found in GK rats (p<0.01; p<0.05). NFκBp65 immunostaining had increased by Day 7 post-injury. Agilent Whole Genome Oligo Microarray verified that the IL-1/TLR-induced NFκB pathway was activated by carotid balloon injury. TLR4, IL-1 receptor associated kinase, inhibitors α of NFκB, human antigen R, c-Myc (Proto-Oncogene Proteins), EGF-like module-containing mucin-like hormone receptor-like 1 and Interleukin-6 were up-regulated or down-regulated according to immunochemistry, quantitative real-time PCR, Western blotting and Enzyme linked immunosorbent assay. Overall, we conclude that the IL-1/TLR-induced NFκB pathway participates in the intimal hyperplasia after carotid injury in GK and Wistar rats and that GK rats respond more intensely to the inflammation than Wistar rats.  相似文献   

15.

Introduction

Alcohol-induced neuroinflammation is mediated by pro-inflammatory cytokines and chemokines including tumor necrosis factor-α (TNFα), monocyte chemotactic protein-1 (MCP1) and interleukin-1-beta (IL-1β). Toll-like receptor-4 (TLR4) pathway induced nuclear factor-κB (NF-κB) activation is involved in the pathogenesis of alcohol-induced neuroinflammation. Inflammation is a highly regulated process. Recent studies suggest that microRNAs (miRNAs) play crucial role in fine tuning gene expression and miR-155 is a major regulator of inflammation in immune cells after TLR stimulation.

Aim

To evaluate the role of miR-155 in the pathogenesis of alcohol-induced neuroinflammation.

Methods

Wild type (WT), miR-155- and TLR4-knockout (KO) mice received 5% ethanol-containing or isocaloric control diet for 5 weeks. Microglia markers were measured by q-RTPCR; inflammasome activation was measured by enzyme activity; TNFα, MCP1, IL-1β mRNA and protein were measured by q-RTPCR and ELISA; phospho-p65 protein and NF-κB were measured by Western-blotting and EMSA; miRNAs were measured by q-PCR in the cerebellum. MiR-155 was measured in immortalized and primary mouse microglia after lipopolysaccharide and ethanol stimulation.

Results

Chronic ethanol feeding up-regulated miR-155 and miR-132 expression in mouse cerebellum. Deficiency in miR-155 protected mice from alcohol-induced increase in inflammatory cytokines; TNFα, MCP1 protein and TNFα, MCP1, pro-IL-1β and pro-caspase-1 mRNA levels were reduced in miR-155 KO alcohol-fed mice. NF-κB was activated in WT but not in miR-155 KO alcohol-fed mice. However increases in cerebellar caspase-1 activity and IL-1β levels were similar in alcohol-fed miR-155-KO and WT mice. Alcohol-fed TLR4-KO mice were protected from the induction of miR-155. NF-κB activation measured by phosphorylation of p65 and neuroinflammation were reduced in alcohol-fed TLR4-KO compared to control mice. TLR4 stimulation with lipopolysaccharide in primary or immortalized mouse microglia resulted in increased miR-155.

Conclusion

Chronic alcohol induces miR-155 in the cerebellum in a TLR4-dependent manner. Alcohol-induced miR-155 regulates TNFα and MCP1 expression but not caspase-dependent IL-1β increase in neuroinflammation.  相似文献   

16.
TWEAK is a member of the TNF superfamily of cytokines that contribute to kidney tubulointerstitial injury. It has previously been reported that TWEAK induces transient nuclear translocation of RelA and expression of RelA-dependent cytokines in renal tubular cells. Additionally, TWEAK induced long-lasting NFκB activation suggestive of engagement of the non-canonical NFκB pathway. We now explore TWEAK-induced activation of NFκB2 and RelB, as well as expression of CCL21, a T-cell chemotactic factor, in cultured murine tubular epithelial cells and in healthy kidneys in vivo. In cultured tubular cells, TWEAK and TNFα activated different DNA-binding NFκB complexes. TWEAK-induced sustained NFκB activation was associated with NFκB2 p100 processing to p52 via proteasome and nuclear translocation and DNA-binding of p52 and RelB. TWEAK, but not TNFα used as control), induced a delayed increase in CCL21a mRNA (3.5±1.22-fold over control) and CCL21 protein (2.5±0.8-fold over control), which was prevented by inhibition of the proteasome, or siRNA targeting of NIK or RelB, but not by RelA inhibition with parthenolide. A second NFκB2-dependent chemokine, CCL19, was upregulates by TWEAK, but not by TNFα. However, both cytokines promoted chemokine RANTES expression (3-fold mRNA at 24 h). In vivo, TWEAK induced nuclear NFκB2 and RelB translocation and CCL21a mRNA (1.5±0.3-fold over control) and CCL21 protein (1.6±0.5-fold over control) expression in normal kidney. Increased tubular nuclear RelB and tubular CCL21 expression in acute kidney injury were decreased by neutralization (2±0.9 vs 1.3±0.6-fold over healthy control) or deficiency of TWEAK (2±0.9 vs 0.8±0.6-fold over healthy control). Moreover, anti-TWEAK treatment prevented the recruitment of T cells to the kidney in this model (4.1±1.4 vs 1.8±1-fold over healthy control). Our results thus identify TWEAK as a regulator of non-canonical NFκB activation and CCL21 expression in tubular cells thus promoting lymphocyte recruitment to the kidney during acute injury.  相似文献   

17.
The activation of nuclear factor (NF)κB pathway and its transducing signaling cascade has been associated with the pathogenesis of many inflammatory diseases. The central role that IκBα and p65 phosphorylation play in regulating NFκB signalling in response to inflammatory stimuli made these proteins attractive targets for therapeutic strategies. Although several chemical classes of NFκB inhibitors have been identified, it is only for a few of those that a safety assessment based on a comprehensive understanding of their pharmacologic mechanism of action has been reported. Here, we describe the specific anti-inflammatory effect of bindarit, an indazolic derivative that has been proven to have anti-inflammatory activity in a variety of models of inflammatory diseases, including lupus nephritis, arthritis and pancreatitis. The therapeutic effects of bindarit have been associated with its ability to selectively interfere with monocyte recruitment and the “early inflammatory response,” although its specific molecular mechanisms have remained ill-defined. For this purpose, we investigated the effect of bindarit on the LPS-induced production of inflammatory cytokines (MCP-1 and MCPs, IL-12β/p40, IL-6 and IL-8/KC) in both a mouse leukaemic monocyte-macrophage cell line and bone marrow-derived macrophages (BMDM). Bindarit inhibits the LPS-induced MCP-1 and IL-12β/p40 expression without affecting other analyzed cytokines. The effect of bindarit is mediated by the downregulation of the classical NFκB pathway, involving a reduction of IκBα and p65 phosphorylation, a reduced activation of NFκB dimers and a subsequently reduced nuclear translocation and DNA binding. Bindarit showed a specific inhibitory effect on the p65 and p65/p50 induced MCP-1 promoter activation, with no effect on other tested activated promoters. We conclude that bindarit acts on a specific subpopulation of NFκB isoforms and selects its targets wihtin the whole NFκB inflammatory pathway. These findings pave the way for future applications of bindarit as modulator of the inflammatory response.Key words: inflammation, NFκB, MCP-1, IL-12β/p40, macrophages, lipopolysaccharide, bindarit  相似文献   

18.
19.
20.
Nuclear Factor-Kappa B [NFκB] activation triggers the elevation of various pro-angiogenic factors that contribute to the development and progression of diabetic vasculopathies. It has been demonstrated that vascular endothelial growth factor [VEGF] activates NFκB signaling pathway. Under the ischemic microenvironments, hypoxia-inducible factor-1 [HIF-1] upregulates the expression of several proangiogenic mediators, which play crucial roles in ocular pathologies. Whereas YC-1, a soluble guanylyl cyclase [sGC] agonist, inhibits HIF-1 and NFκB signaling pathways in various cell and animal models. Throughout this investigation, we examined the molecular link between VEGF and NFκB under a hypoxia-independent microenvironment in human retinal microvascular endothelial cells [hRMVECs]. Our data indicate that VEGF promoted retinal neovasculogenesis via NFκB activation, enhancement of its DNA-binding activity, and upregulating NFκB/p65, SDF-1, CXCR4, FAK, αVβ3, α5β1, EPO, ET-1, and MMP-9 expression. Conversely, YC-1 impaired the activation of NFκB and its downstream signaling pathways, via attenuating IκB kinase phosphorylation, degradation and activation, and thus suppressing p65 phosphorylation, nuclear translocation, and inhibiting NFκB-DNA binding activity. We report for the first time that the nexus between VEGF and NFκB is implicated in coordinating a scheme that upregulates several pro-angiogenic molecules, which promotes retinal neovasculogenesis. Our data may suggest the potential use of YC-1 to attenuate the deleterious effects that are associated with hypoxia/ischemia-independent retinal vasculopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号