首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the dairy industry, excess dietary CP is consistently correlated with decreased conception rates. However, the source from which excess CP is derived and how it affects reproductive function in beef cattle is largely undefined. The objective of this experiment was to determine the effects of feeding excess metabolizable protein (MP) from feedstuffs differing in rumen degradability on ovulatory follicular dynamics, subsequent corpus luteum (CL) development, steroid hormone production and circulating amino acids (AA) in beef cows. Non-pregnant, non-lactating mature beef cows (n=18) were assigned to 1 of 2 isonitrogenous diets (150% of MP requirements) designed to maintain similar BW and body condition score (BCS) between treatments. Diets consisted of ad libitum corn stalks supplemented with corn gluten meal (moderate rumen undegradable protein (RUP); CGM) or soybean meal (low RUP; SBM). After a 20-day supplement adaptation period, cows were synchronized for ovulation. After 10 days of synchronization, gonadotropin releasing hormone (GnRH) was administered to reset ovarian follicular growth. Starting at GnRH administration and daily thereafter until spontaneous ovulation, transrectal ultrasonography was used to diagram ovarian follicular growth, and blood samples were collected for hormone, metabolite and AA analyses. After 7 days of visual detection of estrus, CL size was determined via ultrasound. Data were analyzed using the MIXED procedures of SAS. As designed, cow BW and BCS were not different (P⩾0.33). Ovulatory follicular wavelength, antral follicle count, ovulatory follicle size at dominance and duration of dominance were not different (P>0.13) between treatments. Cows supplemented with CGM had greater post-dominance ovulatory follicle growth, larger dominant follicles at spontaneous luteolysis, shorter proestrus, and larger ovulatory follicles (P⩽0.03) than SBM cows. No differences (P⩾0.44) in peak estradiol, ratio of estradiol to ovulatory follicle volume, or plasma urea nitrogen were observed. While CL volume and the ratio of progesterone to CL volume were not affected by treatment (P⩾0.24), CGM treated cows tended to have decreased (P=0.07) circulating progesterone 7 days post-estrus compared with SBM cows. Although total circulating plasma AA concentration did not differ (P=0.70) between treatments, CGM cows had greater phenylalanine (P=0.03) and tended to have greater leucine concentrations (P=0.07) than SBM cows. In summary, these data illustrate that excess MP when supplemented to cows consuming a low quality forage may differentially impact ovarian function depending on ruminal degradability of the protein source.  相似文献   

2.
The aim was to characterize dominant follicle (DF) and CL development through the estrous cycle of cattle using three-dimensional (3D) ultrasonography while making a comparison with conventional two-dimensional (2D) B-mode ultrasound (US) and to relate the measures taken to systemic concentrations of steroid hormones and gonadotropins. After synchronization of estrus, the ovaries of crossbred beef heifers (N = 5) were assessed using daily US with a GE Voluson i US scanner until the end of the first follicle wave, then every other day until emergence of the final (ovulatory) wave, when daily US resumed until ovulation. Follicle and CL growth were recorded and mapped. Measures of diameter (2D) and volume (3D) of the DF from the first and ovulatory waves of the cycles; and CL development were captured and stored for further analysis. Blood flow to the DF and CL were assessed using 3D power Doppler US measuring vascularization index (VI; %), vascularization flow index (0/100) and flow index (0/100). Jugular blood samples were collected every 24 hours for progesterone from the first estrus until the second ovulation. Concentrations of estradiol (E2) and follicle stimulating hormone (FSH) were measured every 8 hours from estrus to second follicle wave emergence; then, E2 only was measured from final follicle wave emergence until ovulation. Data were analyzed using PROC MIXED and PROC REG in SAS. Dominant follicle blood flow tended to decrease during follicle wave emergence and DF VI increased (P < 0.05) 24 hours before ovulation after peak E2. Measures of the DF and CL volume (3D) were highly predictive of 2D diameter measures throughout the cycle (P < 0.0001). Predictive values (r2) for day of wave emergence and day from ovulation were similar for 2D and 3D measures; however, 2D measures had higher repeatability when compared with 3D measures. There was no relationship between CL VI and progesterone early in the cycle (r2 = 0.12; P = 0.1); however, there was a strong positive relationship approaching ovulation (r2 = 0.77; P < 0.0001). In conclusion, 3D power Doppler measures of blood flow appears to be representative of vascular changes in the DF and CL throughout the estrous cycle. However, the extra time required to acquire and analyze a 3D image and the relatively little additional information obtained over that achievable with 2D imaging in terms of follicle and CL development might preclude its widespread use other than for detailed research purposes.  相似文献   

3.
Induction of ovulation by administration of gonadotropin-releasing hormone (GnRH) is commonly practiced in cattle to treat repeat breeders or cows exhibiting long estrous periods. This treatment may, however, disturb normal reproductive functions if timing is incorrect. The objective of the present study was to investigate the effect of exogenous GnRH on estradiol secretion of the ovulatory follicle, occurrence of ovulation, development and function of the corpus luteum (CL) and growth of a dominant follicle after ovulation in the bovine, when GnRH treatment was given before the expected physiological LH-surge. Luteolysis was induced by cloprostenol (PG) in three cows and six heifers. Every animal was assigned once to each of the following treatment or control manipulations, receiving either a single dose (0.1 mg) of GnRH (gonadorelin) at (1) 24 h (T1), (2) 48 h (T2), or (3) 72 h (T3) after PG, or (4) no gonadorelin (control manipulation, C). Ovaries were scanned by ultrasound and blood samples were collected for progesterone (P4) and estradiol-17β (E-17β) determination. Growth curves of dominant follicles between treatment 1 and the control differed significantly (P<0.01). One day after ovulation, the diameter of the dominant follicle was almost 1 mm larger in T1. This difference remained almost unchanged during the entire follow-up period. The recruitment of a new follicular wave after ovulation seemed to occur earlier. Development of CL and levels and profiles of P4-production remained unaffected. When GnRH was given 1 day after PG injection, two animals showed significantly different development of CL (P<0.05) and of P4-production (both in concentrations [P<0.05] and profile [P<0.01]). After normal ovulation and CL development, luteolysis took place on days 5 or 6 after ovulation, and animals ovulated on days 9 and 10. It is suggested that early induction of ovulation with GnRH can cause shortened luteal function in cattle and, ultimately, reduced fertility.  相似文献   

4.
The aims of the current study were to determine if the pattern of ovarian follicular growth and development in Bos indicus heifers is different to that reported in Bos taurus breeds, and to examine the factors that determine which dominant follicle will ovulate. In addition, the extent to which variation in follicular dynamics is attributable to variation between animals and over time was evaluated. The ovaries of 17 Brahman heifers were examined daily by transrectal ultrasonography using a 7.5 MHz transducer for a total of 117 interovulatory intervals over a period of 10 months. Size and position of individual follicles ⪖5 mm in diameter, and size of corpora lutea (CL) were recorded. Circulating progesterone concentrations were determined from plasma samples obtained twice weekly. Although size of dominant follicles and CL within the ovaries of Bos indicus heifers were smaller than reported for Bos taurus breeds, the overall patterns of dominant follicle growth were similar. There were significant correlations between number of dominant follicles occurring prior to ovulation and time of appearance of the second dominant follicle, duration of detection of CL and size of the ovulatory follicle in the preceding oestrous cycle (P < 0.05). There were significant animal effects on a number of ovarian characteristics including number of dominant follicles per oestrous cycle (P < 0.001), with one heifer having four dominant follicles in more than a third of oestrous cycles observed. In addition, changes in daylength over the 10 month period were related to changes in duration of the interovulatory interval, persistence and maximum diameter of CL and size of ovulatory follicles. Liveweight change over the same period was related to changes in maximum diameter of the first dominant follicle.  相似文献   

5.
Transitions from the anovulatory to the ovulatory season (n=20) and ovulatory to anovulatory season (n=11), were monitored daily by transrectal ultrasonography in wapiti. In 17 of 20 observations, the first interovulatory interval (IOI) was short (9.1+/-0.3 days; mean+/-S.E.M.) compared with later in the ovulatory season (21.3+/-0.1) and the last IOI (21.2+/-0.6 days). With one exception, the short IOI were composed of only one wave of follicular development. Subsequent IOI were composed of two or three waves. Maximum diameters of the first two ovulatory follicles were similar (11.3+/-0.4 mm versus 11.3+/-0.2 mm), but both were larger (P<0.05) than the last two ovulatory follicles of the ovulatory season (10.3+/-0.3 and 10.1+/-0.4 mm). Multiple ovulations occurred in three hinds at the first ovulation of the season and in one hind at the second ovulation, but were not at any other time. Day-to-day profiles of CL diameter and plasma progesterone concentration were smaller (P<0.05) for short versus long IOI. Maximum diameter (12.8+/-0.6 mm versus 12.5+/-0.6 mm) and the diameter profile of the last CL of the season were not different from that of the previous CL. In summary, transition to regular ovulation occurred over a 3-week interval and was preceded by one short IOI (9 days). Multiple ovulations were detected only at the onset of the ovulatory season. The characteristics of the last IOI of the ovulatory season were similar to those reported during the rut. The wave pattern of follicle development was maintained throughout both fall and winter transition periods and follicular wave emergence was preceded by a surge in serum FSH concentrations. Transition to anovulation occurred over a 3-month interval and was marked by a failure of the dominant follicle to ovulate after a typical luteal phase.  相似文献   

6.
Suprabasal progesterone concentrations around oestrus have induced disturbances in oestrous behaviour and ovulation. To determine whether fertility in such an altered oestrus can be maintained at normal levels with additional inseminations (AI) until ovulation, fertility was compared in heifers (n = 11) inseminated in normal oestrous cycles and thereafter in cycles in which the animals were treated with progesterone in order to create suprabasal concentrations after luteolysis. The treatment consisted of silicone implants containing 10.6 mg kg−1 of progesterone inserted subcutaneously on Day 8 of the oestrous cycle (day of ovulation designated Day 0) and removed on Day 25. Both in control oestrous cycles and oestrous cycles under progesterone treatment, growth of the ovulatory follicle and ovulation were determined by frequent ultrasound scanning. Blood was collected frequently for further analysis of progesterone, oestradiol-17β and luteinising hormone (LH). Insemination was performed 12 h after onset of standing oestrus. if ovulation did not occur 24 h after AI, heifers were inseminated again until ovulation. Pregnancy was diagnosed by ultrasound 25 days after ovulation.In control oestrous cycles, plasma progesterone decreased to 0.3 ± 0.3 nmol 1−1. Duration of oestrus was 22.9 ± 2.0 h, the interval from onset of oestrus to ovulation was 32.4 ± 2.3 h and the interval from LH peak to ovulation was 28.6 ± 1.4 h. The interovulatory interval was 20.7 ± 0.6 days. In oestrous cycles in treated heifers, progesterone decreased to 1.0 ± 0.3 nmol l−1 (P > 0.10) and the interovulatory interval was prolonged to 23.5 ± 1.0 days (P < 0.05). Standing oestrus lasted 47.2 ± 12.0 h (P = 0.09, n = 7). The interval from the onset of oestrus to ovulation was 59.4 ± 13.0 h (P = 0.08) and the interval from LH peak to ovulation 25.8 ± 1.3 h (P > 0.10). The prolonged oestrus was associated with increased (P < 0.05) growth of the ovulatory follicle and higher (P < 0.05) release of oestradiol-17β. Conception rates were 90% and 46% (P < 0.05), and the numbers of AI per heifer were 1.1 ± 0.1 and 3.4 ± 0.6 (P < 0.01) for control oestrous cycles and after treatment, respectively.The induction of suprabasal concentrations of progesterone caused asynchronies similar to those observed in cases of repeat breeding. The repeated AI did not maintain fertility at normal levels. It is suggested that the extended growth of the ovulatory follicle may cause impaired oocyte maturation or it may alter the maternal milieu owing to the prolonged release of oestradiol.  相似文献   

7.
The present experiment was conducted to study the growth profile of the ovulatory follicle in relation to the expression of estrus following administration of PGF(2alpha) to subestrus buffaloes. After detection of a mature corpus luteum by examination per rectum, confirmed by ultrasound scanning, subestrus buffaloes (n=20) were treated (Day 0) with single dose of Dinoprost tromethamin (25 mg, i.m.). Blood samples were collected at 0, 24 and 48 h after treatment for estimation of plasma progesterone concentration. Growth profile of the ovulatory follicle was monitored daily through ultrasound scanning starting from Day 0 until ovulation and the regression profile of CL was monitored at 0, 24 and 48 h of treatment. Estrus was detected by exposure to a fertile buffalo bull three times a day until expression of overt estrus or ovulation. Behavioral estrus was recorded in 14 animals and 6 animals ovulated silently. Sixteen animals including six animals with silent estrus ovulated from the dominant follicle present at treatment (Group A) and remaining four animals ovulated from the dominant follicle of succeeding follicular wave (Group B). The intervals from treatment to estrus (6.5+/-0.25 versus 3.2+/-0.27 days, P<0.001) and treatment to ovulation (7.5+/-0.25 versus 5.4+/-0.46 days, P<0.005) were significantly longer in animals of Group B compared with animals of Group A. Significant differences were observed in growth profile of the ovulatory follicle between animals of Groups A and B with respect to size of the follicle on Day 0 (9.8+/-0.7 versus 5.3+/-0.45 mm, P<0.001), daily growth rate (0.97+/-0.07 versus 1.6+/-0.2 mm/day, P<0.01) and increase in diameter (4.1+/-0.6 versus 7.8+/-0.7 mm, P<0.01). The animals with silent estrus (subgroup A-2) had significantly smaller diameter of the ovulatory follicle on Day 0 (7.7+/-0.4 versus 11.0+/-0.7 mm, P<0.005), its daily growth rate was significantly slower (0.7+/-0.02 versus 1.1+/-0.1 mm/day, P<0.01) and they recorded significantly longer interval from treatment to ovulation (7.3+/-0.56 versus 4.2+/-0.27 days, P<0.001) compared with the animals that showed overt estrus (subgroup A-1). The corpus luteum area (CL area) and plasma progesterone (P(4)) concentration declined continuously from 0 to 48 h after PGF(2alpha) treatment in the animals of both the Groups A and B. Non-significant differences were observed in mean CL area and plasma P(4) concentration at 0, 24 and 48 h post-treatment between animals of Groups A and B and also between animals of subgroups A-1 and A-2. The small size and the slow growth rate of the ovulatory follicle were identified as the possible cause of silent estrus in subestrus buffaloes after PGF(2alpha) treatment.  相似文献   

8.
The objective of Experiment 1 was to compare the effects of estradiol benzoate (EB) given 0 or 24h after the end of a progestagen treatment on ovulation and CL formation in anestrous cows. Twenty cows were treated with an intravaginal sponge containing 250 mg of medroxiprogesterone acetate (MPA). At sponge insertion, each cow received 3 mg EB and 10 mg MPA im. At device removal, cows received 0.7 mg EB either at that time (EB0) or 24h later (EB24). Ultrasound examinations and blood sampling to determine plasma progesterone concentrations were performed to detect ovulation and CL formation. Ovulation occurred in 77.8 and 81.8% cows in the EB0 and EB24 groups, respectively. Diameter of the ovulatory follicle (EB0 = 10.9 +/- 0.5mm; EB24 = 12.1 +/- 0.8 mm; P = 0.26) and the interval from sponge removal to ovulation (median = 3 days; P = 0.64) did not differ between treatments. Among the cows that ovulated (n = 16), short-lived CL were present in 2/7 and 2/9 cows in the EB0 and EB24 groups, respectively. Plasma progesterone concentrations and CL area did not differ between treatments (P > 0.05). In Experiment 2, cows were treated with the same protocol as in Experiment 1, but at sponge withdrawal all cows received 250 microg cloprostenol and timed artificial insemination (TAI) was performed 48 h after sponge removal. In Replicate 1 (n = 204 multiparous cows), pregnancy rates were 45.0 and 47.5% for EB0 and EB24, respectively (P > 0.05). In Replicate 2 (n = 69 primiparous cows) pregnancy rate did not differ between EB0 and EB24 (51.4% versus 52.9%). In conclusion, EB given 0 or 24h after the end of a progestagen treatment had the same effect on ovulation rate, time to ovulation, diameter of the ovulatory follicle, incidence of short-lived CL, luteal tissue area, and plasma progesterone concentrations of normal lifespan CL, and pregnancy rate after TAI in suckled beef cows.  相似文献   

9.
This study was conducted to identify factors affecting PGF(2alpha) efficacy to synchronize estrus in water buffalo cows. After detection of a corpus luteum (CL) by rectal palpation, cows were treated (im) with dinoprost (12.5, 25 or 50mg) or D(+) cloprostenol (75, 150 or 300 microg) in a total of 66 treatments. Blood samples were collected 0, 24 and 48 h after treatment and ultrasound examinations and observations for estrus were performed daily to the day of ovulation or to 6 days after treatment. No PGF(2alpha) dose-response pattern was observed and overall rates of luteal regression (progesterone <1.0 ng/ml at 48 h), estrus, no detected behavioral estrus with ovulation occurring, and ovulation were 71.2, 36.4, 19.7 and 54.5%, respectively. To analyze plasma progesterone concentrations and ovarian dynamics, cows were divided in three groups according to their response to treatment. Cows that failed to have ovulations from a follicle after treatment (Group A, n = 30) had (P < 0.05) a lower plasma progesterone concentration (2.98 ng/ml) and smaller CL area (CLA; 187.3 mm(2)) before treatment as compared with cows that had an ovulation from a follicle (4.43 ng/ml and 223.7 mm(2), respectively; Groups B and C, n = 36). In cows that failed to ovulate, plasma progesterone concentration decreased in the first 24 h, but did not decline further and was >1.0 ng/ml 48 h after treatment. Moreover, no significant change in CLA after treatment was detected, indicating that treatment induced only partial luteolysis. In cows that ovulated, plasma progesterone concentration and CLA decreased continuously from treatment to ovulation (consistent with complete luteolysis). Threshold values of 2.8 ng/ml for plasma progesterone concentration and 189 mm(2) for CLA were identified as the best predictors of ovulation before treatment (83.3 and 80.6% sensitivity and 58.6 and 65.5% specificity, respectively, with positive and negative predictive values around 71%). When the origin of the ovulatory follicle was investigated, the interval from treatment to ovulation was shorter (91.9 versus 113.3 h; P < 0.05), and the ovulatory follicle had a slower growth rate (1.02 versus 1.55 mm per day; P < 0.005), a lesser increase in diameter from treatment to ovulation (4.7 versus 8.0 mm; P < 0.001), and a greater maximum diameter (13.2 versus 12.1 mm; P < 0.05) in cows that ovulated from the largest follicle present in the ovary before treatment (Group B, n = 27) compared with cows that ovulated from the second largest follicle present in the ovary before treatment (Group C, n = 9). In summary, the efficacy of PGF(2alpha) for causing luteolysis and synchronizing estrus and ovulation in buffalo cows was dependent upon plasma progesterone concentration, CL size and ovarian follicular status before treatment.  相似文献   

10.
The hypothesis that, in the ewe, prostaglandin (PG) F2alpha administration on day 3 after ovulation is followed by luteolysis and ovulation was tested using 24 animals. The ewes were treated with a dose of a PGF2alpha analogue (delprostenate, 160 microg) on days 1 (n=8), 3 (n=8) or 5 (n=8) after ovulation, was established by transrectal ultrasonography. Daily scanning and blood sampling were performed to determine ovarian changes and progesterone serum concentrations by radioinmunoassay. The treatment induced a sharp decrease of progesterone concentrations followed by oestrus and ovulation in all ewes treated on days 3 and 5 and in one ewe treated on day 1 (8/8, 8/8, 1/8; P<0.05). Seven ewes treated on day 1 did not respond to PGF2alpha treatment and had an inter-ovulatory cycle of normal length (17.4 +/- 0.5 days). However, the profile of progesterone concentrations during the cycle of these ewes was delayed 1 day (P<0.05) compared with a control cycle. The overall interval between PGF2alpha and oestrus for the 17 responding ewes was 42.4 +/- 2.3 h. In 15 of these ewes the ovulatory follicle was originated from the first follicular wave and the ovulation occurred at 60.8 +/- 1.8 h after PGF2alpha treatment. The other two responding ewes ovulated an ovulatory follicle originated from the second follicular wave between 72 and 96 h after treatment. These results support the hypothesis and suggest that refractoriness to PGF2alpha of the recently formed corpus luteum (CL) may be restricted to the first 1-2 days post-ovulation.  相似文献   

11.
Nutritional alternatives to strengthen animal immunocompetence are critical for welfare and productivity in livestock systems, such as beef cattle operations. This experiment evaluated physiological and innate immunity effects of supplementing an immunomodulatory feed ingredient (Omnigen-AF; Phibro Animal Health, Teaneck, NJ, USA) to beef heifers administered bacterial lipopolysaccharide (LPS). In total, 8 non-pregnant, non-lactating nulliparous Angus×Hereford heifers (676±4 days of age) were ranked by BW (473±8 kg), and assigned to crossover design containing two periods of 34 days each. Heifers were housed in individual pens and had ad libitum access to meadow foxtail (Alopecurus pratensis L.) hay, water and a granulated commercial vitamin+mineral mix. Within each period, heifers received (as-fed basis) 227 g/day of dried distillers grains including (OMN) or not (CON) 56 g of Omnigen-AF for 34 days. On day 28 of each period (0800 h), heifers received an intravenous bolus dose (0.5 μg/kg of BW, diluted in 5 ml of 0.9% sterile saline) of bacterial LPS (Escherichia coli 0111:B4). Hay DM intake was recorded daily from day 0 to 34. Blood was collected at −1, 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 24, 48, 72, 96, 120 and 144 h relative to LPS administration. Heifer intravaginal temperature was recorded every 10 min from −0.5 to 10 h relative to LPS administration. No treatment effect was detected (P=0.35) for hay DM intake during the experiment. No treatment effects were detected (P⩾0.64) for intravaginal temperature and plasma concentrations of tumor necrosis-α, cortisol and haptoglobin, which increased (time effect, P<0.01) for OMN and CON heifers and peaked at 4.5, 2, 4 and 48 h, respectively, after LPS administration. No treatment effects were detected (P⩾0.35) for whole blood mRNA expression of chemokine ligand 5, tumor necrosis-α, cyclooxygenase 2 and interleukin 8, which also increased (time effect, P<0.01) for OMN and CON heifers and peaked at 0.5, 1.5, 2 and 2.5 h, respectively, after LPS administration. Whole blood mRNA expression of interleukin 8 receptor and L-selectin were also similar (P⩾0.61) between OMN and CON heifers, and decreased (time effect, P<0.01) for both treatments reaching nadir levels at 1 and 2.5 h, respectively, after LPS administration. Collectively, OMN supplementation did not modulate the physiological and innate immunity responses of beef heifers to bacterial LPS administration.  相似文献   

12.
The possibility that initiation of luteinization in ovarian follicles by luteinizing hormone (LH) is mediated by prostaglandins (PG's) was investigated in rabbits. Estrous rabbits, given an ovulatory dose of LH (50 μg) intravenously, were administered indomethacin (IM), an inhibitor of PG biosynthesis, by various routes. Progesterone levels in the serum and in the induced corpora lutea (CL) were subsequently measured by radioimmunoassay. Continued daily subcutaneous injections of IM from 2 days before through 2 days after LH treatment reduced the corpus luteal level, measured at 72 hours post-LH, of PGF from 208 ± 43 to 98 ± 20 pg/CL (P < 0.025) and that of PGE from 272 ± 31 to 115 ± 9 pg/CL (P < 0.005). At the same time, progesterone levels were 72 ± 12 and 93 ± 10 ng/CL (P > 0.05) in the oil-treated and IM-treated rabbits, respectively. Serum progesterone continued to rise in a linear fashion during the period from 24 to 72 hours following LH treatment, whether IM was injected or not. Intrafollicular treatment with LH (100 ng/follicle) raised the progesterone content in the treated follicles 72 hours later from 1.1 ± 0.5 to 50.1 ± 13.5 ng. (P < 0.01). This progesterone content reached 21.5 ± 15.8 ng (P < 0.05) in follicles similarly treated with PGE2 (5 μg/follicle), but remained meagre at lower doses of PGE2 (100 ng/follicle and 2 ng/follicle). Serum progesterone increased from 0.5 ± 0.1 to 1.2 ± 0.1 ng/ml (P < 0.005) within 72 hours in rabbits treated intrafollicularly with LH, but remained unaltered in those similarly treated with PGE2 (P > 0.1). Intrafollicular injections with PGF failed to induce changes in either level of progesterone. It is concluded that prostaglandins probably do not mediate the luteinizing action of LH in rabbit Graafian follicles, although some degree of luteinization can be induced by high levels of exogenous PGE2.  相似文献   

13.
目的:对未破裂黄素化卵泡综合征(LUFS)周期及正常排卵周期患者在不同时间性激素进行测定与比较,探讨LUFS的发生与性激素的关系。方法:对自然周期有排卵障碍的患者使用克罗米芬+HCG促排,分别在月经周期的第3天(C3)、第10天(C10)、卵泡成熟日(CM)(卵泡直径≥18mm)、尿LH阳性或注射HCG后48小时(CL)进行性激素测定,根据患者是否有排卵分为:正常排卵组(A组);未排卵出现LUFS组(B组)。选择同期自然周期正常排卵者为对照组(C组),同上法进行性激素测定。对A、B、C组患者不同时间的血清性激素进行比较。结果:1、FSH:在CM日A、B两组的促卵泡成熟激素(FSH)均低于C组(P<0.01)。2、LH:在C3、C10、CL日测定的A、B组LH值均高于C组(P<0.01),在CM日测定的A、B组LH值低于C组(P<0.01)。3、P:在CM日A、B两组的孕酮值低于C组(P<0.01);4、E2:在C3日测定的B组E2值低于C组(P<0.01),在CL日测定的B组E2值高于C组(P<0.01);5、PRL:在不同时间各组的PRL值均无显著性差异(P>0.05)。6、T:在不同时间各组的T值均无显著性差异(P>0.05)。结论:性激素在LUFS的发生中起重要作用,但以C3日E2值与LUFS的发生的关系最大,E2值低者易发生LUFS。  相似文献   

14.
The bovine appeasing substance (BAS) is expected to have calming effects in cattle experiencing stressful situations. Therefore, this study investigated the impacts of BAS administration during two of the most stressful events within beef production systems: weaning and feedlot entry. In experiment 1, 186 Bos indicus-influenced calves (73 heifers, 113 bulls) were weaned at 211 ± 1 days of age (day 0). At weaning, calves were ranked by sex and BW, and assigned to receive BAS (Nutricorp, Araras, SP, Brazil; n = 94) or water (CON; n = 92). Treatments (5 ml) were topically applied to the nuchal skin area of each animal. Calf BW was recorded and samples of blood and tail-switch hair were collected on days 0, 15 and 45. Calves that received BAS had greater (P < 0.01) BW gain from day 0 to 15 compared with CON. Overall BW gain (days 0 to 45) and BW on days 15 and 45 were also greater (P ≤ 0.03) in BAS v. CON. Plasma haptoglobin concentration was less (P < 0.01) in BAS v. CON on day 15, whereas cortisol concentrations in plasma and tail-switch hair did not differ between treatments (P ≥ 0.13). In experiment 2, 140 B. indicus-influenced bulls (∼27 months of age) from 2 different pasture-based systems (70 bulls/origin) were transported to a commercial feedlot (≤ 200-km transport; day -1). On day 0, bulls were ranked by source and BW, and assigned to receive BAS (n = 70) or CON (n = 70) and the same sampling procedures as in experiment 1. Bulls receiving BAS had greater (P = 0.04) BW gain from day 0 to 15, but less (P < 0.01) BW gain from day 15 to 45 compared to CON. No other treatment effects were detected (P > 0.14). Therefore, BAS administration to beef calves alleviated the haptoglobin response associated with weaning, and improved calf growth during the subsequent 45 days. Administration of BAS to beef bulls at feedlot entry improved BW gain during the initial 15 days, but these benefits were not sustained throughout the 45-day experiment.  相似文献   

15.
This experiment compared insulin sensitivity parameters, milk production and reproductive outcomes in lactating dairy cows consuming excessive energy, and receiving in a 2×2 factorial arrangement design: (1) concentrate based on ground corn (CRN; n=13) or citrus pulp (PLP; n=13), and (2) supplemented (n=14) or not (n=12) with 2.5 g/day of chromium (Cr)-propionate. During the experiment (day 0 to 182), 26 multiparous, non-pregnant, lactating Gir×Holstein cows (initial days in milk=80±2) were offered corn silage for ad libitum consumption, and individually received concentrate formulated to allow diets to provide 160% of their daily requirements of net energy for lactation. Cow BW and body condition score (BCS) were recorded weekly. Milk production was recorded daily and milk samples collected weekly. Blood samples were collected weekly before the morning concentrate feeding. Glucose tolerance tests (GTT; 0.5 g of glucose/kg of BW) were performed on days −3, 60, 120 and 180. Follicle aspiration for in vitro embryo production was performed via transvaginal ovum pick-up on days −1, 82 and 162. No treatment differences were detected (P⩾0.25) for BW and BCS change during the experiment. Within weekly blood samples, concentrations of serum insulin and glucose, as well as insulin : glucose ratio were similar among treatments (P⩾0.19), whereas CRN had less (P<0.01) non-esterified fatty acid concentrations compared with PLP (0.177 v. 0.215 mmol/l; SEM=0.009). During the GTT, no treatment differences were detected (P⩾0.16) for serum glucose concentration, glucose clearance rate, glucose half-life and insulin : glucose ratio. Serum insulin concentrations were less (P=0.04) in CRN supplemented with Cr-propionate compared with non-supplemented CRN (8.2 v. 13.5 µIU/ml, respectively; SEM=1.7), whereas Cr-propionate supplementation did not impact (P=0.70) serum insulin within PLP cows. Milk production, milk fat and solid concentrations were similar (P⩾0.48) between treatments. However, CRN had greater (P<0.01) milk protein concentration compared with PLP (3.54% v. 3.14%, respectively; SEM=0.08). No treatment differences were detected (P⩾0.35) on number of viable oocytes collected and embryos produced within each aspiration. In summary, feeding a citrus pulp-based concentrate to lactating dairy cows consuming excessive energy did not improve insulin sensitivity, milk production and reproductive outcomes, whereas Cr-propionate supplementation only enhanced insulin sensitivity in cows receiving a corn-based concentrate during a GTT.  相似文献   

16.
Ovulation is critical for successful reproduction and correlates with ovarian cancer risk, yet genetic studies of ovulation have been limited. It has long been thought that the mechanism controlling ovulation is highly divergent due to speciation and fast evolution. Using genetic tools available in Drosophila, we now report that ovulation in Drosophila strongly resembles mammalian ovulation at both the cellular and molecular levels. Just one of up to 32 mature follicles per ovary pair loses posterior follicle cells (“trimming”) and protrudes into the oviduct, showing that a selection process prefigures ovulation. Follicle cells that remain after egg release form a “corpus luteum (CL)” at the end of the ovariole, develop yellowish pigmentation, and express genes encoding steroid hormone biosynthetic enzymes that are required for full fertility. Finally, matrix metalloproteinase 2 (Mmp2), a type of protease thought to facilitate mammalian ovulation, is expressed in mature follicle and CL cells. Mmp2 activity is genetically required for trimming, ovulation and CL formation. Our studies provide new insights into the regulation of Drosophila ovulation and establish Drosophila as a model for genetically investigating ovulation in diverse organisms, including mammals.  相似文献   

17.
We hypothesized that reducing the size of the ovulatory follicle using aspiration and GnRH would reduce the size of the resulting CL, reduce circulating progesterone concentrations, and alter conception rates. Lactating dairy cows (n=52) had synchronized ovulation and AI by treating with GnRH and PGF2alpha as follows: Day -9, GnRH (100 microg); Day -2, PGF2alpha (25 mg); Day 0, GnRH (100 microg); Day 1, AI. Treated cows (aspirated group; n=29) had all follicles > 4 mm in diameter aspirated on Days -5 or -6 in order to start a new follicular wave. Control cows (nonaspirated group: n=23) had no follicle aspiration. The size of follicles and CL were monitored by ultrasonography. The synchronized ovulation rate (ovulation rate to second GnRH injection: 42/52=80.8%) and double ovulation rate of synchronized cows (6/42=14.3%) did not differ (P > 0.05) between groups. Aspiration reduced the size of the ovulatory follicle (P < 0.0001; 11.5 +/- 0.2 vs 14.5 +/- 0.4 mm), and serum estradiol concentrations at second GnRH treatment (P < 0.0002; 2.5 +/- 0.4 vs 5.7 +/- 0.6 pg/mL). The volume of CL was less (P < 0.05) for aspirated than nonaspirated cows on Day 7 (2,862 +/- 228 vs 5,363 +/- 342 mm3) or Day 14 (4,652 +/- 283 vs 6,526 +/- 373 mm3). Similarly, serum progesterone concentrations were less on Day 7 (P < 0.05) and Day 14 (P < 0.10) for aspirated cows. Pregnancy rate per AI for synchronized cows was lower (P < 0.05) for aspirated (3/21=14.3%) than nonaspirated (10/21=47.6%) cows. In conclusion, ovulation of smaller follicles produced lowered fertility possibly because development of smaller CL decreased circulating progesterone concentrations.  相似文献   

18.
To study the ovarian response to the long-term effect of PGF, 16 cows were treated with 25 mg tromethamine dinoprost (Pronalgon F; Pfizer, Tokyo, Japan) for 21 days after natural ovulation. Five control cows were treated with sterile physiological saline. The follicle and corpus luteum (CL) development were monitored using a real-time ultrasound instrument. In addition, the plasma concentration of progesterone (P4) was determined. In nine of the 16 Pronalgon-treated cows, the first dominant follicle (1st DF), second dominant follicle (2nd DF), and third dominant follicle ovulated consecutively (group A). In five cows, the 1st and 2nd DFs ovulated consecutively (group B). The developing CL started to regress approximately 5 days after each ovulation without maturation in groups A and B. In the two remaining Pronalgon-treated cows, there was no further ovulation after natural ovulation (group C). In one cow in group C, the 1st DF became atretic and the 2nd DF became cystic with the diameter of the cystic follicle reaching 31.2 mm on Day 30. In another cow, the 1st DF became cystic with a diameter of 30.9 mm on Day 18. Although P4 began to increase after each ovulation in all of the Pronalgon-treated cows, it decreased immediately after each ovulation without a large increase, peaking at approximately 1 ng/mL. Furthermore, the number of days when P4 was >1 ng/mL from natural ovulation to Day 21 was 2.6 ± 0.7 days, which was significantly less than that in the control cows (16.0 ± 0.6 days). These results indicate that the long-term effect of PGF has an important role in ovulation of all dominant follicles and might induce cystic ovaries in cows.  相似文献   

19.
The objective was to determine the effects of the duration of progesterone exposure during the ovulatory wave on fertility (pregnancy rate) in beef cattle. We tested the hypothesis that short-progesterone exposure during the growing and early-static phase of the ovulatory follicle (analogous to the ovulatory wave of 3-wave cycles) is associated with higher fertility than a longer duration of exposure (analogous to the ovulatory wave of 2-wave cycles). Three to 5 days after ovulation, beef heifers (n = 172) and suckled beef cows (n = 193) were given an intravaginal progesterone-releasing device (CIDR) and 2.5 mg estradiol - 17β +50 mg progesterone im to induce a new follicular wave. Cattle were allocated to short- or long-progesterone exposure groups (for 3 and 6 d after wave emergence, respectively) after which prostaglandin F was administered and CIDR were removed. Forty-eight hours later, all cattle were given 12.5 mg pLH and artificially inseminated (AI) with frozen-thawed semen. The diameter of the two largest follicles and the corpus luteum were measured by transrectal ultrasonography at CIDR removal, insemination, and 36 h after insemination. Pregnancy diagnosis was done ultrasonically 38 and 65 d post-AI. There was no difference in pregnancy rates in short- vs long-progesterone exposure in heifers (53 vs 47%, P = 0.44) or cows (63 vs 58%, P = 0.51). However, the diameter of the ovulatory follicle at CIDR removal and AI was smaller in short- than in long-progesterone groups (P < 0.02), and larger in cows than in heifers (P < 0.006). In conclusion, short-progesterone exposure during the growing and early-static phase of the ovulatory follicle (similar to 3-wave cycles) was not associated with higher fertility than a longer progesterone exposure (similar to 2-wave cycles).  相似文献   

20.
For the spring-calving beef herds, late gestation coincides with winter and early spring, when cows are dependent on feed supplements with low quality hay, which is hard to meet their nutrient requirements. However, the effects of deficiencies of metabolizable protein intake during late gestation on offspring beef quality are unclear. Wagyu cattle have excellent marbling, and insemination with Wagyu vs Angus semen is a practical option for beef producers to improve beef quality. To test, Angus cows (621 ± 73 kg) were selected and randomly separated into two groups. Each group was inseminated with either Angus or Wagyu semen. During the last 90 days of gestation, cows in each group were further separated and received either a low protein diet (85% of the NRC metabolizable protein requirement), which was a low quality hay-based diet common in northwestern region of the U.S., or an adequate protein diet (108% NRC requirement). All progeny was managed together and harvested at a final BW of 576.5 ± 16.6 kg. Wagyu-sired offspring had higher marbling scores and quality grades than Angus (P < 0.01). Protein supplementation did not affect Slice Shear Force (SSF) in either breeds (P = 0.60). However, Wagyu-sired cattle had lower SSF than Angus-sired (P < 0.01). In addition, Wagyu-sired cattle had higher intramuscular fat (P < 0.05) and total collagen content (P < 0.05), but Angus-sired had greater mature collagen cross-links, as shown by higher contents of Pyridinoline (P < 0.01) and Ehrlich Chromogen (P < 0.01). Consistently, the mRNA expression of enzymes catalyzing collagen cross-linking was higher in Angus-sired offspring, including Plod 1 (P < 0.05), Plod 2 (P = 0.08), and P4Hα 2 (P < 0.01). In conclusion, Wagyu-sired cattle had greater tenderness and marbling score compared to Angus-sired, which was associated with lower collagen cross-links. Feeding mature grass hay-based diet with relatively low protein content during late gestation had no major effect on beef quality of subsequent cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号