首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Summary Specific xylose utilization mutants of Escherichia coli were isolated that had altered xylose isomerase (xylA), xylulokinase (xylB), and regulatory (xylR) or transport (xylT) activities. We screened the Clarke and Carbon E. coli gene bank and one clone, pLC10–15, was found to complement the xyl mutants we had characterized. Subcloning and DNA restriction mapping allowed us to locate the xylA and xylB genes on a 1.6 kbp BglII fragment and a 2.6 kbp HindIII-SalI fragment, respectively. The identification and mapping of xyl gene promoters suggest that the xylA and xylB genes are organized as an operon having a single xylose inducible promoter preceding the xylA gene.  相似文献   

4.
5.
Bacillus megaterium shows diauxic growth in minimal medium containing glucose and xylose. We have examined the influence of three elements that regulate xyl operon expression on diauxic growth and expression of a xylA-lacZ fusion. xylA is 13-fold repressed during growth on glucose. Induction occurs at the onset of the lag phase after glucose is consumed. Inactivation of xylR yields a two-fold increase in expression of xylA on glucose. Deletion of the catabolite responsive element (cre) has a more pronounced effect, reducing glucose repression from 13-fold in the wild type to about 2.5-fold. When xylR and cre are inactivated together a residual two-fold repression of xylA is found. Inactivation of xylR affects diauxic growth by shortening the lag phase from 70 to 40?min. In-frame deletion of ccpA results in the loss of diauxic growth, an increase in doubling time and simultaneous use of both sugars. In contrast, a strain with an inactivated cre site in xylA exhibits diauxic growth without an apparent lag phase on glucose and xylose, whereas fructose and xylose are consumed simultaneously.  相似文献   

6.
以大肠埃希菌MG1655的基因组为模板,通过PCR扩增获得木糖异构酶基因xylA。利用敲除编码对基因转录起负调控作用的lacIq基因的大肠埃希菌/谷氨酸棒杆菌穿梭质粒pEC-XK99E,酶连后转化大肠埃希菌BL21和谷氨酸棒杆菌ATCC 13032。成功构建出了具有大肠埃希菌BL21表达活性的木糖异构酶表达载体pEC(lacI-)-xylA。  相似文献   

7.
Summary A crude protein extract of Bacillus subtilis W23 contains a sequence-specific DNA binding activity for the xyl operator as detected by the gel mobility shift assay. A xylR determinant encoded on a multicopy plasmid leads to increased expression of this binding activity. In situ footprinting analysis of the protein-DNA complex in a polyacrylamide gel shows that the xyl operator is sequence-specifically bound and protected from cleavage by copper-phenanthroline at 26 phosphodiester bonds on each strand. Quantitative competition assays for repressor binding reveal that a 25 by synthetic xyl operator cloned into a polylinker is bound with the same affinity as the operator in the wild-type xyl regulatory region. This confirms that no additional sites in the wild-type sequence contribute to repressor binding. The xyl operator consists of ten palindromic base pairs flanking five central non-palindromic base pairs. A mutational analysis shows that the sequence of the central base pairs contributes to recognition by the repressor protein and that the spacing of the palindromic elements is crucial for repressor binding. An operator half site is not bound by the repressor. In vivo and in vitro induction studies suggest that, of several structurally similar sugars, xylose is the only molecular inducer of the Xyl repressor.  相似文献   

8.
Xylose metabolism, a variable phenotype in strains of Lactococcus lactis, was studied and evidence was obtained for the accumulation of mutations that inactivate the xyl operon. The xylose metabolism operon (xylRAB) was sequenced from three strains of lactococci. Fragments of 4.2, 4.2, and 5.4 kb that included the xyl locus were sequenced from L. lactis subsp. lactis B-4449 (formerly Lactobacillus xylosus), L. lactis subsp. lactis IO-1, and L. lactis subsp. lactis 210, respectively. The two environmental isolates, L. lactis B-4449 and L. lactis IO-1, produce active xylose isomerases and xylulokinases and can metabolize xylose. L. lactis 210, a dairy starter culture strain, has neither xylose isomerase nor xylulokinase activity and is Xyl. Xylose isomerase and xylulokinase activities are induced by xylose and repressed by glucose in the two Xyl+ strains. Sequence comparisons revealed a number of point mutations in the xylA, xylB, and xylR genes in L. lactis 210, IO-1, and B-4449. None of these mutations, with the exception of a premature stop codon in xylB, are obviously lethal, since they lie outside of regions recognized as critical for activity. Nevertheless, either cumulatively or because of indirect affects on the structures of catalytic sites, these mutations render some strains of L. lactis unable to metabolize xylose.  相似文献   

9.
High-level constitutive gene expression can result in cellular metabolic imbalance and limit production. To circumvent these problems, a P alsSD -controlled auto-inducible 2-ketoisovalerate biosynthetic pathway and a P spac -controlled IPTG-inducible Ehrlich pathway were constructed in Bacillus subtilis to modulate gene expression. Based on the precise gene expression characteristics of the two inducible pathways, the optimal IPTG induction time point and dose for 2-methyl-1-propanol biosynthesis were determined as 9.5?h and 300?μM, respectively. Under the optimized conditions, strain BSUΔL-03 with inducible pathways produced up to 3.83?±?0.46?g 2-methyl-1-propanol/l, which was about 60?% higher than BSUL04 with constitutive pathways.  相似文献   

10.
About 1500 hybrid broad-host-range plasmids from a genomic library ofPseudomonas saccharophila were individually transferred by conjugation fromEscherichia coli toAlcaligenes eutrophus. Direct selection for pentose-utilizing transconjugants yielded three clones capable of growth on xylose. Growth ofP. saccharophila as well as the transconjugants ofA. eutrophus on xylose was relatively slow, exhibiting doubling times of about 9.5 h. Plasmid pGN3 harbored by one transconjugant contained a 28-kb DNA insert, 16.4 kb of which comprised the minimal information required for xylose utilization byA. eutrophus. At least thexyl genes encoding xylose isomerase and xylulokinase were located within this region, as indicated by their induction during growth ofA. eutrophus (pGN3) on xylose. Southern hybridizations with a heterologous gene probe confirmed the presence of thesexyl genes. In bothP. saccharophila andA. eutrophus (pGN3), low activities of several enzymes operating in the pentose phosphate and Entner-Doudoroff pathways might limit the rate of xylose catabolism.  相似文献   

11.
As a vital flavor compound, acetoin is extensively used in dairy products and drinks industry. In this study, Bacillus subtilis was engineered to metabolize glucose and xylose as substrates for acetoin production. Initially, gene araE from B. subtilis, encoding the xylose transport protein AraE, was placed under the control of the constitutive promoter P43 for over-expression. Batch cultures showed that 10 g/L xylose was depleted completely in 32 h. Subsequently, genes xylA and xylB from Escherichia coli, encoding xylose isomerase and xylulokinase respectively, were introduced into B. subtilis, and the recombinant turned out to assimilate glucose and xylose without preference. In shake-flask fermentations, 5.5 g/L acetoin with a yield of 0.70 mol (mol sugar)−1 was obtained by the optimum strain BSUL13 under microaerobic conditions, which offered a metabolic engineering strategy on engineering microbe as cell factory for the production of high-valued chemicals from renewable resource.  相似文献   

12.
Bacillus megaterium shows diauxic growth in minimal medium containing glucose and xylose. We have examined the influence of three elements that regulatexyl operon expression on diauxic growth and expression of axylA-lacZ fusion.xylA is 13-fold repressed during growth on glucose. Induction occurs at the onset of the lag phase after glucose is consumed. Inactivation ofxylR yields a two-fold increase in expression ofxylA on glucose. Deletion of the catabolite responsive element (cre) has a more pronounced effect, reducing glucose repression from 13-fold in the wild type to about 2.5-fold. WhenxylR andcre are inactivated together a residual two-fold repression ofxylA is found. Inactivation ofxylR affects diauxic growth by shortening the lag phase from 70 to 40 min. In-frame deletion ofccpA results in the loss of diauxic growth, an increase in doubling time and simultaneous use of both sugars. In contrast, a strain with an inactivatedcre site inxylA exhibits diauxic growth without an apparent lag phase on glucose and xylose, whereas fructose and xylose are consumed simultaneously.  相似文献   

13.
Carcinogenic nickel compounds are known to induce promutagenic DNA lesions such as DNA strand breaks and DNA adducts in cultured mammalian cells. In standard mutation assays, in contrast, they were found to be either inactive or weakly active. In our in vitro mutation studies in a lacI transgenic embryonic fibroblast cell line, nickel subsulfide (Ni3S2) increased mutation frequency up to 4.5-fold. We subsequently applied the comet assay and transgenic rodent mutation assays to investigate the DNA damaging effect and mutagenic potential of nickel subsulfide in target cells of carcinogenesis. A 2-h in vitro treatment of freshly isolated mouse nasal mucosa and lung cells with nickel subsulfide clearly induced DNA fragmentation in a concentration dependent manner. The strong effect was not seen in the same cell types following inhalative treatment of mice and rats, leading only in the mouse nasal mucosa to high DNA damage. When the same inhalative treatment was applied to lacZ and lacI transgenic mice and rats, the spontaneous mutation frequency of these target genes in the respiratory tissues was not increased. These results support a recently proposed non-genotoxic model of nickel carcinogenesis, which acts through gene silencing via DNA methylation and chromatin condensation. This model may also explain our in vitro mutation data in the lacI transgenic cell line, in which nickel subsulfide increased mutation frequency, but in about one-third of the mutants, molecular analysis did not reveal any DNA sequence change in the coding region of the lacI gene despite of the phenotypic loss of its function.  相似文献   

14.
Twenty different Pseudomonas strains utilizing m-toluate were isolated from oil-contaminated soil samples near Minsk, Belarus. Seventeen of these isolates carried plasmids ranging in size from 78 to about 200 kb (assigned pSVS plasmids) and encoding the meta cleavage pathway for toluene metabolism. Most plasmids were conjugative but of unknown incompatibility groups, except for one, which belonged to the IncP9 group. The organization of the genes for toluene catabolism was determined by restriction analysis and hybridization with xyl gene probes of pWW0. The majority of the plasmids carried xyl-type genes highly homologous to those of pWW53 and organized in a similar manner (M. T. Gallegos, P. A. Williams, and J. L. Ramos, J. Bacteriol. 179:5024–5029, 1997), with two distinguishable meta pathway operons, one upper pathway operon, and three xylS-homologous regions. All of these plasmids also possessed large areas of homologous DNA outside the catabolic genes, suggesting a common ancestry. Two other pSVS plasmids carried only one meta pathway operon, one upper pathway operon, and one copy each of xylS and xylR. The backbones of these two plasmids differed greatly from those of the others. Whereas these parts of the plasmids, carrying the xyl genes, were mostly conserved between plasmids of each group, the noncatabolic parts had undergone intensive DNA rearrangements. DNA sequencing of specific regions near and within the xylTE and xylA genes of the pSVS plasmids confirmed the strong homologies to the xyl genes of pWW53 and pWW0. However, several recombinations were discovered within the upper pathway operons of the pSVS plasmids and pWW0. The main genetic mechanisms which are thought to have resulted in the present-day configuration of the xyl operons are discussed in light of the diversity analysis carried out on the pSVS plasmids.  相似文献   

15.
Summary A cluster of three genes involved in d-xylose catabolism (viz. xylose genes) in Lactobacillus pentosus has been cloned in Escherichia coli and characterized by nucleotide sequence analysis. The deduced gene products show considerable sequence similarity to a repressor protein involved in the regulation of expression of xylose genes in Bacillus subtilis (58%), to E. coli and B. subtilis d-xylose isomerase (68% and 77%, respectively), and to E. coli d-xylulose kinase (58%). The cloned genes represent functional xylose genes since they are able to complement the inability of a L. casei strain to ferment d-xylose. NMR analysis confirmed that 13C-xylose was converted into 13C-acetate in L. casei cells transformed with L. pentosus xylose genes but not in untransformed L. casei cells. Comparison with the aligned amino acid sequences of d-xylose isomerases of different bacteria suggests that L. pentosus d-xylose isomerase belongs to the same similarity group as B. subtilis and E. coli d-xylose isomerase and not to a second similarity group comprising d-xylose isomerases of Streptomyces violaceoniger, Ampullariella sp. and Actinoplanes. The organization of the L. pentosus xylose genes, 5-xylR (1167 bp, repressor) — xylA (1350 bp, D-xylose isomerase) — xylB (1506 bp, d-xylulose kinase) — 3 is similar to that in B. subtilis. In contrast to B. subtilis xylR, L. pentosus xylR is transcribed in the same direction as xylA and xylB.  相似文献   

16.
Xylans are the predominant polysaccharides in hemicelluloses and an important potential source of biofuels and chemicals. The ability of Bacillus subtilis subsp. subtilis strain 168 to utilize xylans has been ascribed to secreted glycoside hydrolase family 11 (GH11) and GH30 endoxylanases, encoded by the xynA and xynC genes, respectively. Both of these enzymes have been defined with respect to structure and function. In this study, the effects of deletion of the xynA and xynC genes, individually and in combination, were evaluated for xylan utilization and formation of acidic xylooligosaccharides. Parent strain 168 depolymerizes methylglucuronoxylans (MeGXn), releasing the xylobiose and xylotriose utilized for growth and accumulating the aldouronate methylglucuronoxylotriose (MeGX3) with some methylglucuronoxylotetraose (MeGX4). The combined GH11 and GH30 activities process the products generated by their respective actions on MeGXn to release a maximal amount of neutral xylooligosaccharides for assimilation and growth, at the same time forming MeGX3 in which the internal xylose is substituted with methylglucuronate (MeG). Deletion of xynA results in the accumulation of β-1,4-xylooligosaccharides with degrees of polymerization ranging from 4 to 18 and an average degree of substitution of 1 in 7.2, each with a single MeG linked α-1,2 to the xylose penultimate to the xylose at the reducing terminus. Deletion of the xynC gene results in the accumulation of aldouronates comprised of 4 or more xylose residues in which the MeG may be linked α-1,2 to the xylose penultimate to the nonreducing xylose. These B. subtilis lines may be used for the production of acidic xylooligosaccharides with applications in human and veterinary medicine.  相似文献   

17.
Summary Toluene degrading (xyl) genes on a Pseudomonas TOL plasmid pWWO are located within a 39-kb DNA portion. The 56-kb region including these xyl genes and its 17-kb derivative with a deletion of the internal 39-kb portion transposed to various sites on target replicons such as pACYC184 and R388 in escherichia coli recA strains. Thus the 56- and 17-kb regions were designated Tn4651 and Tn4652, respectively. Genetic analysis of Tn4652 demonstrated that its transposition occurs by a two-step process, namely, cointegrate formation and its subsequent resolution. The presence in cis of DNA sequences of no more than 150 bp at both ends of Tn4652 was prerequisite for cointegrate formation, and this step was mediated by a trans-acting factor, transposase, which was encoded in a 3.0-kb segment at one end of the transposon. Cointegrate resolution took place site-specifically within a 200-bp fragment, which was situated 10 kb away from the transposase gene. Based on the stability of cointegrates formed by various mini-Tn4652 derivatives, it was shown that the cointergrate resolution requires two trans-acting factors encoded within 1.0- and 1.2-kb fragments that encompass the recombination site involved in the resolution.  相似文献   

18.
19.
The environmental strain Bacillus amyloliquefaciens FZB42 promotes plant growth and suppresses plant pathogenic organisms present in the rhizosphere. We sampled sequenced the genome of FZB42 and identified 2,947 genes with >50% identity on the amino acid level to the corresponding genes of Bacillus subtilis 168. Six large gene clusters encoding nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) occupied 7.5% of the whole genome. Two of the PKS and one of the NRPS encoding gene clusters were unique insertions in the FZB42 genome and are not present in B. subtilis 168. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis revealed expression of the antibiotic lipopeptide products surfactin, fengycin, and bacillomycin D. The fengycin (fen) and the surfactin (srf) operons were organized and located as in B. subtilis 168. A large 37.2-kb antibiotic DNA island containing the bmy gene cluster was attributed to the biosynthesis of bacillomycin D. The bmy island was found inserted close to the fen operon. The responsibility of the bmy, fen, and srf gene clusters for the production of the corresponding secondary metabolites was demonstrated by cassette mutagenesis, which led to the loss of the ability to produce these peptides. Although these single mutants still largely retained their ability to control fungal spread, a double mutant lacking both bacillomycin D and fengycin was heavily impaired in its ability to inhibit growth of phytopathogenic fungi, suggesting that both lipopeptides act in a synergistic manner.  相似文献   

20.
A 6-kb region from the chromosome of Streptomyces antibioticus, an oleandomycin producer, was cloned and sequenced. This region was located between the 3′ end of the gene encoding the third subunit of the oleandomycin type I polyketide synthase and the oleP and oleB genes, which encode a cytochrome P450 monooxygenase and an oleandomycin resistance gene, respectively. Analysis of the nucleotide sequence revealed the presence of five genes encoding a cytochrome P450-like protein (oleP1), two glycosyltransferases (oleG1 and oleG2) involved in the transfer of the two 6-deoxysugars (L-oleandrose and D-desosamine) to the oleandomycin macrolactone ring, a methyltransferase (oleM1), and a gene (oleY) of unknown function. Insertional inactivation of this region by gene disruption generated an oleandomycin non-producing mutant which accumulated a compound that, according to mass spectrometry analysis, could correspond to the oleandomycin macrolactone ring (oleandolide), suggesting that the mutation affects oleandrosyl glycosyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号