首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A typical Go/No-Go decision is suggested to be implemented in the brain via the activation of the direct or indirect pathway in the basal ganglia. Medium spiny neurons (MSNs) in the striatum, receiving input from cortex and projecting to the direct and indirect pathways express D1 and D2 type dopamine receptors, respectively. Recently, it has become clear that the two types of MSNs markedly differ in their mutual and recurrent connectivities as well as feedforward inhibition from FSIs. Therefore, to understand striatal function in action selection, it is of key importance to identify the role of the distinct connectivities within and between the two types of MSNs on the balance of their activity. Here, we used both a reduced firing rate model and numerical simulations of a spiking network model of the striatum to analyze the dynamic balance of spiking activities in D1 and D2 MSNs. We show that the asymmetric connectivity of the two types of MSNs renders the striatum into a threshold device, indicating the state of cortical input rates and correlations by the relative activity rates of D1 and D2 MSNs. Next, we describe how this striatal threshold can be effectively modulated by the activity of fast spiking interneurons, by the dopamine level, and by the activity of the GPe via pallidostriatal backprojections. We show that multiple mechanisms exist in the basal ganglia for biasing striatal output in favour of either the `Go'' or the `No-Go'' pathway. This new understanding of striatal network dynamics provides novel insights into the putative role of the striatum in various behavioral deficits in patients with Parkinson''s disease, including increased reaction times, L-Dopa-induced dyskinesia, and deep brain stimulation-induced impulsivity.  相似文献   

2.
Wang Z  Kai L  Day M  Ronesi J  Yin HH  Ding J  Tkatch T  Lovinger DM  Surmeier DJ 《Neuron》2006,50(3):443-452
Long-term depression (LTD) of the synapse formed between cortical pyramidal neurons and striatal medium spiny neurons is central to many theories of motor plasticity and associative learning. The induction of LTD at this synapse is thought to depend upon D(2) dopamine receptors localized in the postsynaptic membrane. If this were true, LTD should be inducible in neurons from only one of the two projection systems of the striatum. Using transgenic mice in which neurons that contribute to these two systems are labeled, we show that this is not the case. Rather, in both cell types, the D(2) receptor dependence of LTD induction reflects the need to lower M(1) muscarinic receptor activity-a goal accomplished by D(2) receptors on cholinergic interneurons. In addition to reconciling discordant tracts of the striatal literature, these findings point to cholinergic interneurons as key mediators of dopamine-dependent striatal plasticity and learning.  相似文献   

3.
The neostriatum (dorsal striatum) is composed of the caudate and putamen. The ventral striatum is the ventral conjunction of the caudate and putamen that merges into and includes the nucleus accumbens and striatal portions of the olfactory tubercle. About 2% of the striatal neurons are cholinergic. Most cholinergic neurons in the central nervous system make diffuse projections that sparsely innervate relatively broad areas. In the striatum, however, the cholinergic neurons are interneurons that provide very dense local innervation. The cholinergic interneurons provide an ongoing acetylcholine (ACh) signal by firing action potentials tonically at about 5 Hz. A high concentration of acetylcholinesterase in the striatum rapidly terminates the ACh signal, and thereby minimizes desensitization of nicotinic acetylcholine receptors. Among the many muscarinic and nicotinic striatal mechanisms, the ongoing nicotinic activity potently enhances dopamine release. This process is among those in the striatum that link the two extensive and dense local arbors of the cholinergic interneurons and dopaminergic afferent fibers. During a conditioned motor task, cholinergic interneurons respond with a pause in their tonic firing. It is reasonable to hypothesize that this pause in the cholinergic activity alters action potential dependent dopamine release. The correlated response of these two broad and dense neurotransmitter systems helps to coordinate the output of the striatum, and is likely to be an important process in sensorimotor planning and learning.  相似文献   

4.
In Parkinson's disease (PD), dopamine depletion alters neuronal activity in the direct and indirect pathways and leads to increased synchrony in the basal ganglia network. However, the origins of these?changes remain elusive. Because GABAergic interneurons regulate activity of projection neurons and?promote neuronal synchrony, we recorded from pairs of striatal fast-spiking (FS) interneurons and direct- or indirect-pathway MSNs after dopamine depletion with 6-OHDA. Synaptic properties of?FS-MSN connections remained similar, yet within 3?days of dopamine depletion, individual FS cells doubled their connectivity to indirect-pathway MSNs, whereas connections to direct-pathway MSNs remained unchanged. A model of the striatal microcircuit revealed that such increases in FS innervation were effective at enhancing synchrony within targeted cell populations. These data suggest that after dopamine depletion, rapid target-specific microcircuit organization in the striatum may lead to increased synchrony of indirect-pathway MSNs that contributes to pathological network oscillations and motor symptoms of PD.  相似文献   

5.
Striatal dopamine plays key roles in our normal and pathological goal-directed actions. To understand dopamine function, much attention has focused on how midbrain dopamine neurons modulate their firing patterns. However, we identify a presynaptic mechanism that triggers dopamine release directly, bypassing activity in dopamine neurons. We paired electrophysiological recordings of striatal channelrhodopsin2-expressing cholinergic interneurons with simultaneous detection of dopamine release at carbon-fiber microelectrodes in striatal slices. We reveal that activation of cholinergic interneurons by light flashes that cause only single action potentials in neurons from a small population triggers dopamine release via activation of nicotinic receptors on dopamine axons. This event overrides ascending activity from dopamine neurons and, furthermore, is reproduced by activating ChR2-expressing thalamostriatal inputs, which synchronize cholinergic interneurons in vivo. These findings indicate that synchronized activity in cholinergic interneurons directly generates striatal dopamine signals whose functions will extend beyond those encoded by dopamine neuron activity.  相似文献   

6.

Background

The striatum (caudate nucleus, CN, and putamen, Put) is a group of subcortical nuclei involved in planning and executing voluntary movements as well as in cognitive processes. Its neuronal composition includes projection neurons, which connect the striatum with other structures, and interneurons, whose main roles are maintaining the striatal organization and the regulation of the projection neurons. The unique electrophysiological and functional properties of the cholinergic interneurons give them a crucial modulating function on the overall striatal response.

Methodology/Principle Findings

This study was carried out using stereological methods to examine the volume and density (cells/mm3) of these interneurons, as visualized by choline acetyltransferase (ChAT) immunoreactivity, in the following territories of the CN and Put of nine normal human brains: 1) precommissural head; 2) postcommissural head; 3) body; 4) gyrus and 5) tail of the CN; 6) precommissural and 7) postcommissural Put. The distribution of ChAT interneurons was analyzed with respect to the topographical, functional and chemical territories of the dorsal striatum. The CN was more densely populated by cholinergic neurons than the Put, and their density increased along the anteroposterior axis of the striatum with the CN body having the highest neuronal density. The associative territory of the dorsal striatum was by far the most densely populated. The striosomes of the CN precommissural head and the postcommissural Put contained the greatest number of ChAT-ir interneurons. The intrastriosomal ChAT-ir neurons were abundant on the periphery of the striosomes throughout the striatum.

Conclusions/Significance

All these data reveal that cholinergic interneurons are differentially distributed in the distinct topographical and functional territories of the human dorsal striatum, as well as in its chemical compartments. This heterogeneity may indicate that the posterior aspects of the CN require a special integration of information by interneurons. Interestingly, these striatal regions have been very much left out in functional studies.  相似文献   

7.
In the rodent brain, certain G protein-coupled receptors and adenylyl cyclase type 3 are known to localize to the neuronal primary cilium, a primitive sensory organelle protruding singly from almost all neurons. A recent chemical screening study demonstrated that many compounds targeting dopamine receptors regulate the assembly of Chlamydomonas reinhardtii flagella, structures which are analogous to vertebrate cilia. Here we investigated the effects of dopaminergic inputs loss on the architecture of neuronal primary cilia in the rodent striatum, a brain region that receives major dopaminergic projections from the midbrain. We first analyzed the lengths of neuronal cilia in the dorsolateral striatum of hemi-parkinsonian rats with unilateral lesions of the nigrostriatal dopamine pathway. In these rats, the striatal neuronal cilia were significantly longer on the lesioned side than on the non-lesioned side. In mice, the repeated injection of reserpine, a dopamine-depleting agent, elongated neuronal cilia in the striatum. The combined administration of agonists for dopamine receptor type 2 (D2) with reserpine attenuated the elongation of striatal neuronal cilia. Repeated treatment with an antagonist of D2, but not of dopamine receptor type 1 (D1), elongated the striatal neuronal cilia. In addition, D2-null mice displayed longer neuronal cilia in the striatum compared to wild-type controls. Reserpine treatment elongated the striatal neuronal cilia in D1-null mice but not in D2-null mice. Repeated treatment with a D2 agonist suppressed the elongation of striatal neuronal cilia on the lesioned side of hemi-parkinsonian rats. These results suggest that the elongation of striatal neuronal cilia following the lack of dopaminergic inputs is attributable to the absence of dopaminergic transmission via D2 receptors. Our results provide the first evidence that the length of neuronal cilia can be modified by the lack of a neurotransmitter''s input.  相似文献   

8.
A possible mechanism of participation of cholinergic striatal interneurons and dopaminergic cells in conditioned selection of a certain types of motor activity is proposed. This selection is triggered by simultaneous increase in the activity of dopaminergic cells and a pause in the activity of cholinergic interneurons in response to a conditioned stimulus. This pause is promoted by activation of striatal inhibitory interneurons and action of dopamine at D2 receptors on cholinergic cells. Opposite changes in dopamine and acetylcholine concentration synergistically modulate the efficacy of corticostriatal inputs, modulation rules for the "strong" and "weak" corticostriatal inputs are opposite. Subsequent reorganization of neuronal firing in the loop cortex--basal ganglia--thalamus--cortex results in amplification of activity of the group of cortical neurons that strongly activate striatal cells, and simultaneous suppression of activity of another group of cortical neurons that weakly activate striatal cells. These changes can underlie a conditioned selection of motor activity performed with involvement of the motor cortex. As follows from the proposed model, if the time delay between conditioned and unconditioned stimuli does not exceed the latency of responses of dopaminergic and cholinergic cells (about 100 ms), conditioned selection of motor activity and learning is problematic.  相似文献   

9.
Modulatory interneurons such as, the cholinergic interneuron, are always a perplexing subject to study. Far from clear-cut distinctions such as excitatory or inhibitory, modulating interneurons can have many, often contradictory effects. The striatum is one of the most densely expressing brain areas for cholinergic markers, and actylcholine (ACh) plays an important role in regulating synaptic transmission and cellular excitability. Every cell type in the striatum has receptors for ACh. Yet even for a given cell type, ACh affecting different receptors can have seemingly opposing roles. This review highlights relevant effects of ACh on medium spiny neurons (MSNs) of the striatum and suggests how its many effects may work in concert to modulate MSN firing properties.  相似文献   

10.
Dopamine input to the striatum is required for voluntary motor movement, behavioral reinforcement, and responses to drugs of abuse. It is speculated that these functions are dependent on either excitatory or inhibitory modulation of corticostriatal synapses onto medium spiny neurons (MSNs). While dopamine modulates MSN excitability, a direct presynaptic effect on the corticostriatal input has not been clearly demonstrated. We combined optical monitoring of synaptic vesicle exocytosis from motor area corticostriatal afferents and electrochemical recordings of striatal dopamine release to directly measure effects of dopamine at the level of individual presynaptic terminals. Dopamine released by either electrical stimulation or amphetamine acted via D2 receptors to inhibit the activity of subsets of corticostriatal terminals. Optical and electrophysiological data suggest that heterosynaptic inhibition was enhanced by higher frequency stimulation and was selective for the least active terminals. Thus, dopamine, by filtering less active inputs, appears to reinforce specific sets of corticostriatal synaptic connections.  相似文献   

11.
Medium spiny projection neurons (MSNs) are the main neuronal population in the neostriatum. MSNs are inhibitory and GABAergic. MSNs connect with other MSNs via local axon collaterals that produce lateral inhibition, which is thought to select cell assemblies for motor action. MSNs also receive inhibitory inputs from GABAergic local interneurons. This work shows, through the use of the paired pulse protocol, that somatostatin (SST) acts presynaptically to regulate GABA release from the terminals interconnecting MSNs. This SST action is reversible and not mediated through the release of dopamine. It is blocked by the SST receptor (SSTR) antagonist ciclosomatostatin (cicloSST). In contrast, SST does not regulate inhibition coming from interneurons. Because, SST is released by a class of local interneuron, it is concluded that this neuron helps to regulate the selection of motor acts. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   

12.
Recent studies indicate that dopamine neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) convey distinct signals. To explore this difference, we comprehensively identified each area's monosynaptic inputs using the rabies virus. We show that dopamine neurons in both areas integrate inputs from a more diverse collection of areas than previously thought, including autonomic, motor, and somatosensory areas. SNc and VTA dopamine neurons receive contrasting excitatory inputs: the former from the somatosensory/motor cortex and subthalamic nucleus, which may explain their short-latency responses to salient events; and the latter from the lateral hypothalamus, which may explain their involvement in value coding. We demonstrate that neurons in the striatum that project directly to dopamine neurons form patches in both the dorsal and ventral striatum, whereas those projecting to GABAergic neurons are distributed in the matrix compartment. Neuron-type-specific connectivity lays a foundation for studying how dopamine neurons compute outputs.  相似文献   

13.
In addition to the well-characterized direct and indirect projection neurons there are four major interneuron types in the striatum. Three contain GABA and either parvalbumin, calretinin or NOS/NPY/somatostatin. The fourth is cholinergic. It might be assumed that dissociated cell cultures of striatum (typically from embryonic day E18.5 in rat and E14.5 for mouse) contain each of these neuronal types. However, in dissociated rat striatal (caudate/putamen, CPu) cultures arguably the most important interneuron, the giant aspiny cholinergic neuron, is not present. When dissociated striatal neurons from E14.5 Sprague–Dawley rats were mixed with those from E18.5 rats, combined cultures from these two gestational periods yielded surviving cholinergic interneurons and representative populations of the other interneuron types at 5 weeks in vitro. Neurons from E12.5 CD-1 mice were combined with CPu neurons from E14.5 mice and the characteristics of striatal interneurons after 5 weeks in vitro were determined. All four major classes of interneurons were identified in these cultures as well as rare tyrosine hydroxylase positive interneurons. However, E14.5 mouse CPu cultures contained relatively few cholinergic interneurons rather than the nearly total absence seen in the rat. A later dissection day (E16.5) was required to obtain mouse CPu cultures totally lacking the cholinergic interneuron. We show that these cultures generated from two gestational age cells have much more nearly normal proportions of interneurons than the more common organotypic cultures of striatum. Interneurons are generated from both ages of embryos except for the cholinergic interneurons that originate from the medial ganglionic eminence of younger embryos. Study of these cultures should more accurately reflect neuronal processing as it occurs in the striatum in vivo. Furthermore, these results reveal a procedure for parallel culture of striatum and cholinergic depleted striatum that can be used to examine the function of the cholinergic interneuron in striatal networks.  相似文献   

14.
A system's wiring constrains its dynamics, yet modelling of neural structures often overlooks the specific networks formed by their neurons. We developed an approach for constructing anatomically realistic networks and reconstructed the GABAergic microcircuit formed by the medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) of the adult rat striatum. We grew dendrite and axon models for these neurons and extracted probabilities for the presence of these neurites as a function of distance from the soma. From these, we found the probabilities of intersection between the neurites of two neurons given their inter-somatic distance, and used these to construct three-dimensional striatal networks. The MSN dendrite models predicted that half of all dendritic spines are within 100μm of the soma. The constructed networks predict distributions of gap junctions between FSI dendrites, synaptic contacts between MSNs, and synaptic inputs from FSIs to MSNs that are consistent with current estimates. The models predict that to achieve this, FSIs should be at most 1% of the striatal population. They also show that the striatum is sparsely connected: FSI-MSN and MSN-MSN contacts respectively form 7% and 1.7% of all possible connections. The models predict two striking network properties: the dominant GABAergic input to a MSN arises from neurons with somas at the edge of its dendritic field; and FSIs are inter-connected on two different spatial scales: locally by gap junctions and distally by synapses. We show that both properties influence striatal dynamics: the most potent inhibition of a MSN arises from a region of striatum at the edge of its dendritic field; and the combination of local gap junction and distal synaptic networks between FSIs sets a robust input-output regime for the MSN population. Our models thus intimately link striatal micro-anatomy to its dynamics, providing a biologically grounded platform for further study.  相似文献   

15.
A hypothetical mechanism of the basal ganglia involvement in visual hallucinations is proposed. According to this mechanism, hallucination is the result of modulation of the efficacy of corticostriatal synaptic inputs and changes in spiny cell activity due to the rise of striatal dopamine concentration (or due to other reasons). These changes cause an inhibition of neurons in the substantia nigra pars reticulata and subsequent disinhibition of neurons in the superior colliculus and pedunculopontine nucleus (including its cholinergic cells). In the absence of afferentation from the retina this disinhibition leads to activation of neurons in the lateral geniculate nucleus, pulvinar and other thalamic nuclei projecting to the primary and highest visual cortical areas, prefrontal cortex, and also back to the striatum. Hallucinations as conscious visual patterns are the result of selection of signals circulating in several interconnected loops each of which includes one of above mentioned neocortical areas, one of thalamic nuclei, limbic and one of visual areas of the basal ganglia, superior colliculus and/or pedunculopontine nucleus. According to our model, cannabinoids, opioids and ketamine may lead to hallucinations due to their promotional role in the LTD of cortical inputs to GABAergic spiny cells of striatal striosomes projecting to dopaminergic neurons, disinhibition of the lasts, and increase in striatal dopamine concentration.  相似文献   

16.
In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest noncell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete‐expressing local interneurons in development of the adult olfactory circuitry. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

17.
Wilson CJ 《Neuron》2006,50(3):347-348
D1 and D2 dopamine receptors are expressed in disjoint subsets of striatal projection neurons, the direct and indirect pathways, respectively. This differential distribution of receptors forms the basis for explanations of many aspects of basal ganglia function and dysfunction, but it seems incompatible with some other important properties of striatal neurons. In this issue of Neuron, Wang et al. discover the mechanism of D2 sensitivity of long term depression at synapses on the striatal projection neuron. They show that D2 dependence of LTD does not depend on dopamine receptors of on the projection cell but is mediated by dopamine-induced changes in release of acetylcholine by interneurons that contact projection cells of both types.  相似文献   

18.
Modulation of striatal enkephalinergic neurons by antipsychotic drugs   总被引:6,自引:0,他引:6  
In this paper we review the detailed mechanisms underlying the modulation of enkephalinergic neurons by dopaminergic neurons in rat striatum. Several lines of evidence, which showed that striatal levels of [Met5]enkephalin (ME) increase after the nigrostriatal dopaminergic pathway was interrupted by hemitransection or direct administration of 6-hydroxydopamine to the substantia nigra, or after repeated injections of either reserpine or haloperidol, suggest that dopamine (DA) plays an important role in regulating the metabolism of ME-containing neurons in the striatum. The increase in ME content after repeated injections of haloperidol was found in areas heavily innervated by DA neurons such as striatum or nucleus accumbens but not in hypothalamus, brain stem, and hippocampus. Further studies suggest that striatal cholinergic interneurons may partially mediate the action of haloperidol on enkephalinergic neurons. Several studies have been carried out to determine whether the elevation of striatal ME content after haloperidol treatment was caused by an increase in the synthesis or by a decrease in the utilization of ME. The rate of decline of striatal ME content in haloperidol-treated rats was steeper than that of controls after intraventricular injection of cycloheximide, which indicated that haloperidol accelerates the turnover of ME. This hypothesis was confirmed by our recent findings that the level of mRNA coding for preproenkephalin A, determined by cell-free translation and blot hybridization with cDNA clones, is increased after repeated injections of haloperidol.  相似文献   

19.
用6-羟多巴胺破坏黑质纹状体通路,使大鼠多巴胺耗竭后,应用原位杂交组织化学方法测量D1多巴胺受体对即早基因c-fos和zif268诱导反应,分析强啡肽对突触前、后调节作用。先用D1多巴胺受体激动剂SKF-38393反复处理动物,促进纹状体内强啡肽表达,在伏隔核强啡肽表达增加,同时伴随着即早基因c-fos和zif268的减少.在纹状体的背部和两侧,强啡肽表达虽大量增加,而D1多巴胺受体反应仍然维持原水平.在中央纹状体区,即早基因的表达处于中间水平。结果提示,纹状体内强啡肽起着调节多巴胺输入到纹状体黑质神经元的作用,包括突触前、后位置;并且调节作用在纹状体的腹、背侧区是不同的  相似文献   

20.
The orexigenic peptide ghrelin plays a prominent role in the regulation of energy balance and in the mediation of reward mechanisms and reinforcement for addictive drugs, such as nicotine. Nicotine is the principal psychoactive component in tobacco, which is responsible for addiction and relapse of smokers. Nicotine activates the mesencephalic dopaminergic neurons via nicotinic acetylcholine receptors (nAchR). Ghrelin stimulates the dopaminergic neurons via growth hormone secretagogue receptors (GHS-R1A) in the ventral tegmental area and the substantia nigra pars compacta resulting in the release of dopamine in the ventral and dorsal striatum, respectively. In the present study an in vitro superfusion of rat striatal slices was performed, in order to investigate the direct action of ghrelin on the striatal dopamine release and the interaction of ghrelin with nicotine through this neurotransmitter release. Ghrelin increased significantly the dopamine release from the rat striatum following electrical stimulation. This stimulatory effect was reversed by both the selective nAchR antagonist mecamylamine and the selective GHS-R1A antagonist GHRP-6. Nicotine also increased significantly the dopamine release under the same conditions. This stimulatory effect was antagonized by mecamylamine, but not by GHRP-6. Ghrelin further stimulated the nicotine-induced dopamine release and this effect was abolished by mecamylamine and was partially inhibited by GHRP-6. The present results demonstrate that ghrelin stimulates directly the dopamine release and amplifies the nicotine-induced dopamine release in the rat striatum. We presume that striatal cholinergic interneurons also express GHS-R1A, through which ghrelin can amplify the nicotine-induced dopamine release in the striatum. This study provides further evidence of the impact of ghrelin on the mesolimbic and nigrostriatal dopaminergic pathways. It also suggests that ghrelin signaling may serve as a novel pharmacological target for treatment of addictive and neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号