首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The profitability of dual-purpose breeding farms can be increased through genetic improvement of carcass traits. To develop a genetic evaluation of carcass traits of young bulls, breed-specific genetic parameters were estimated in three French dual-purpose breeds. Genetic correlations between these traits and veal calf, type and milk production traits were also estimated. Slaughter performances of 156 226 Montbeliarde, 160 361 Normande and 8691 Simmental young bulls were analyzed with a multitrait animal model. In the three breeds, heritabilities were moderate for carcass weight (0.12 to 0.19±0.01 to 0.04) and carcass conformation (0.21 to 0.26±0.01 to 0.04) and slightly lower for age at slaughter (0.08 to 0.17±0.01 to 0.03). For all three breeds, genetic correlations between carcass weight and carcass conformation were moderate and favorable (0.30 to 0.52±0.03 to 0.13). They were strong and favorable (−0.49 to −0.71±0.05 to 0.15) between carcass weight and age at slaughter. Between age at slaughter and carcass conformation, they were low and unfavorable to moderate and favorable (−0.25 to 0.10±0.06 to 0.18). Heavier young bulls tend to be better conformed and slaughtered earlier. Genetic correlations between corresponding young bulls and veal production traits were moderate and favorable (0.32 to 0.70±0.03 to 0.09), implying that selecting sires for veal calf production leads to select sires producing better young bulls. Genetic correlations between young bull carcass weight and cow size were moderately favorable (0.22 to 0.45±0.04 to 0.10). Young bull carcass conformation had moderate and favorable genetic correlations (0.11 to 0.24±0.04 to 0.10) with cow width but moderate and unfavorable genetic correlations (−0.21 to −0.36±0.03 to 0.08) with cow height. Taller cows tended to produce heavier young bulls and thinner cows to produce less conformed ones. Genetic correlations between carcass traits of young bulls and cow muscularity traits were low to moderate and favorable. Finally, genetic correlations between carcass traits of young bulls and milk production traits were low and unfavorable to moderate and favorable. These results indicate the existence for all three breeds of genetic variability for the genetic improvement of carcass traits of young bulls as well as favorable genetic correlations for their simultaneous selection and no strong unfavorable correlation with milk production traits.  相似文献   

2.
Combinations of two high-energy forage finishing diets and two initial body condition scores (BCSs) in a 2 × 2 factorial experimental design were evaluated on cull Holstein–Friesian (HF) cows to improve animal performance and carcass characteristics, aimed at achieving proper fatness and conformation scores (a minimum of ‘4’ and ‘O’, respectively) required for the marketing of high-value loin steaks. The two finishing diets were (i) conventional maize silage complemented with concentrate diet and (ii) wet maize ear silage (pastone) complemented with dry-herbage diet. The two initial body condition levels were (i) low BCS < 5 (LBCS) and (ii) high BCS > 5 (HBCS). The HBCS animals had the greatest potential to respond to the finishing diets. They needed a smaller total feed intake (TFI) and a shorter finishing period (FP) to meet the marketing requirements. The average feed budgets necessary to finish cull dairy cows and to achieve the minimum scores ‘4’ and ‘O’ of carcass classification were 2.31 and 3.61 t of dry matter (DM)/cow for HBCS and LBCS animals, respectively, while the FP lasted an average of 143 and 224 days for HBCS and LBCS animals, respectively. With regard to the two feeding diets, we found no differences for TFI, carcass characteristics and loin muscle features, such as weight, diameter and intramuscular fat.  相似文献   

3.
Two contrasting replacement strategies are used by Irish beef farmers to select replacement females – animals sourced from within the suckler beef herd and sourced from the dairy herd. The objective of this study was to investigate the effect of replacement strategy (i.e. beef v. beef×dairy (BDX)) on cow and calf performance using data from the national beef database across a range of beef and dairy breeds. The association between replacement strategy and calving difficulty score, calving interval, weaning weight, weaning price and all carcass traits was investigated using a mixed model. The effect of replacement strategy on cow survival, calving dystocia and calf perinatal mortality was quantified using logistic regression. Beef cows were older (10.92 days; P<0.001) at their first calving, but were 1.15 times (P<0.01) more likely to survive to a subsequent lactation compared with BDX cows. Calving interval was 1.53 days shorter (P<0.001) for BDX compared with beef cows. Greater calving difficulty and calving dystocia was associated with beef cows (P<0.001) relative to BDX. However, BDX were 1.36 times (P<0.001) more likely to have a dead calf at birth relative to beef cows. Calves weaned from BDX were heavier (18.49 kg; P<0.001) at weaning, reached slaughter 12.8 days earlier (P<0.001), had 7.99 kg heavier carcass (P<0.001) and a greater fat score (P<0.001) compared with the progeny of beef cows. Beef cow progeny had a superior conformation score (0.5; P<0.001) and achieved a greater price per kilogram (P<0.001) compared with progeny from BDX. Beef cull cows had a heavier carcass (5.58 kg), superior carcass conformation, greater carcass price per kilogram and greater overall carcass value (P<0.001) than BDX. Results from this study show that replacement strategy is of fundamental importance depending on the type of system implemented by farmers and consideration must be given to the traits of importance within the context of the individual production system.  相似文献   

4.
Improving feed efficiency in dairy cattle by animal breeding has started in the Nordic countries. One of the two traits included in the applied Saved feed index is called maintenance and it is based on the breeding values for metabolic BW (MBW). However, BW recording based on heart girth measurements is decreasing and recording based on scales is increasing only slowly, which may weaken the maintenance index in future. Therefore, the benefit of including correlated traits, like carcass weight and conformation traits, is of interest. In this study, we estimated genetic variation and genetic correlations for eight traits describing the energy requirement for maintenance in dairy cattle including: first, second and third parity MBW based on heart girth measurements, carcass weight (CARW) and predicted MBW (pMBW) based on predicted slaughter weight, and first parity conformation traits stature (ST), chest width (CW) and body depth (BD). The data consisted of 21 329 records from Finnish Ayrshire and 9 780 records from Holstein cows. Heritability estimates were 0.44, 0.53, 0.56, 0.52, 0.54, 0.60, 0.17 and 0.26 for MBW1, MBW2, MBW3, CARW, pMBW, ST, CW and BD, respectively. Estimated genetic correlations among MBW traits were strong (>0.95). Genetic correlations between slaughter traits (CARW and pMBW) and MBW traits were higher (from 0.77 to 0.90) than between conformation and MBW traits (from 0.47 to 0.70). Our results suggest that including information on carcass weight and body conformation as correlated traits into the maintenance index is beneficial when direct BW measurements are not available or are difficult or expensive to obtain.  相似文献   

5.
Several studies have shown that feeding of an energy-dense diet over short periods to cull cows could be profitable in terms of increased saleable yield and improved carcass conditions. Although the application of growth promoters, such as anabolic implants and beta agonists, in finishing of cull cows have been recorded, there is no conclusive evidence as to the timing and duration of beta agonists in cull cow production. In this study, 288 cull cows with four or more permanent incisors and varying weights and body conditions were divided into four treatment groups so that variation in age, weight and body condition were equally distributed among groups. One group received concentrate feed without any beta agonist (C), whereas the other three groups also received concentrate feed with zilpaterol hydrochloride (6 p.p.m.) for 20 (Z20), 30 (Z30) or 40 (Z40) days, respectively, followed by a 2-day withdrawal. Animals were adapted for 10 days on a grain-based diet and fed an additional 40 days before slaughter. Growth rate and efficiency (live and carcass), trimmed meat yield and meat tenderness (Warner Bratzler shear force and sensory) of the aged (10 days) m. longissimus thoracis (LT) and m. semitendinosus (ST) were recorded. In general, Z cows had higher carcass gains and efficiency of gain than C cows (P < 0.05). In addition, Z carcasses showed higher proportional trimmed meat yields than C carcasses (P < 0.05). No significant differences in tenderness measurements were recorded for LT or ST. In general, supplementation of zilpaterol for 30 days showed better growth performance and higher trimmed meat yield than 20 and 40 days supplementation.  相似文献   

6.
The accurate supply of energy is essential to optimize livestock productivity and profitability. Furthermore, replacing empty BW gain (EBG) with carcass gain (CG) might be a suitable alternative to estimate the retained energy (RE) of beef cattle. Thus, this multi-analysis study was conducted aiming to estimate and validate new equations to predict carcass weight (CW), EBG, and RE of Zebu, beef crossbred, and dairy crossbred. A database composed by 1 112 animals encompassing bulls, steers, heifers of different genetic groups (Zebu, beef crossbred, and dairy crossbred), and two types of slaughter plants (commercial and experimental) was used for generating the new CW equation. For the development of the EBG and RE equations, a database of 636 observations composed of bulls, steers, and heifers of different genetic groups (Zebu, beef crossbred, and dairy crossbred) was assembled. The validation of new equations was performed using independent databases composed by 137 observations (80 for CW and 57 for EBG and RE). The new approaches for EBG and RE validation also included data from our research group studies (Inside) and independent data from literature publications (Outside). Furthermore, the new RE equation was compared to the current model devised by the nutritional requirements, diet formulation, and performance prediction of Zebu and crossbred cattle (BR-CORTE, 2016). Validation analyses were performed by using the Model Evaluation System (MES; 3.1.13, College Station, US). The CW was accurately estimated by the new equation when using both commercial and experimental data. Also, the equations developed in this study accurately estimated EBG and RE using both inside and outside data. In conclusion, equations proposed in this study accurately and precisely estimated CW, EBG, and RE of Zebu beef cattle that composed validation data set. Therefore, we suggest the following equations to estimate CW, EBG, and RE of Zebu cattle: CW, kg = − 11.0±1.56 + P + ((0.609±0.005 + G + B) × SBW); EBG (kg) = 0.044±0.017 + 1.47±0.026 × CG; RE (MJ/d) = 4.184 × (0.082±0.002 × EQEBW0.75 × CG0.777±0.039), where P = slaughter plant effect, if commercial = − 10.98, if experimental = 0; G = gender effect, if steer = 0, if bull = 0.008169 and if heifer = − 0.00612; B = genotype effect, if Zebu = 0, if dairy crossbreds = − 0.03301 and if beef crossbreds = − 0.01595; SBW = shrunk BW; CG = carcass gain; EQEBW = equivalent empty BW.  相似文献   

7.
The aim of the study was to define interrelationships between histopathological alterations in ovarian antral follicles and body condition in dairy cows with a tendency to emaciation (BCS 1 and 2) compared with dairy cows with normal body condition (BCS 3). The ovaries were recovered from slaughtered cyclic dairy cows (at the luteal phase of the cycle) of Czech Fleckvieh and Holstein breeds at different times of the post-partum period. The animals were estimated as belonging to certain grade of body condition score (BCS) according to a 5-point scale. Only dairy cows with BCS1 (emaciation; n=6), BCS2 (tendency to emaciation; n=5) and BCS3 (optimal body condition status; n=6) were available for the experiment. The ovarian samples were embedded into Technovit 7100 resin; the tissue sections were stained with buffered basic fuchsine with toluidine blue. For acidic mucopolysaccharides (aMPS) a combination of PAS-technique with Alcian blue was used. Histological analysis showed that emaciation was associated with an increased occurrence of late (cystic) and luteinization-related atresia in granulosa and theca cells and increased levels of aMPS in small atretic follicles. Our observations indicate that dairy cows with a tendency to emaciation (BCS 2) or emaciated (BCS 1) have elevated occurrence of late atresia and atresia with luteinization, while initial atresia is less. This expands our basic knowledge of ovarian histopathology providing new insight into the association of antral follicle atresia and body condition status in dairy cows.  相似文献   

8.
Economic margins on pig farms are small, and changing slaughter weights may increase farm profitability. However, one can question if the optimal slaughter weight is the same for each sex. On three farms, crossbred pigs (n = 1128) were used to determine the effect of sex and slaughter weight on performance, carcass quality and gross margin per pig place per year. On each farm, an equal number of entire males (EMs), barrows (BAs), immunocastrates (IC) and gilts (GIs) were housed separately in group pens. Pens were randomly divided into three categories of different slaughter weights: 105, 117 and 130 kg BW. In BA, the high average daily feed intake (ADFI) and the lower capacity to gain muscle led to a higher feed conversion ratio (FCR) and lower lean meat percentage in comparison to EM and IC. In all sexes, ADFI and FCR increased with an increasing slaughter weight but the effect of slaughter weight on carcass quality varied between sexes. In BA and GI, slaughter weight had no effect on carcass quality, but in EM and IC, carcass quality improved at higher slaughter weights. Gross margin per pig place per year was calculated as gross margin per pig × barn turnover per year, taking into account fixed costs per round, feed costs and output price per pig. The slaughter weight that gained the highest gross margin per year differed between sexes. Slaughtering BA and GI at 130 kg BW, compared to 105 or 117 kg BW, decreased the gross margin per pig place per year due to the lower margin per pig and barn turnover at higher weights. In IC and EM, no difference in gross margin per pig place per year could be demonstrated between slaughtering at 105, 117 or 130 kg BW. In IC, the increasing gross margin per pig with increasing slaughter weights counteracted with the lower barn turnover. In EM, gross margin per pig did not differ between slaughter weights, but the effect of barn turnover was too small to demonstrate significant differences between slaughter weights on gross margin per pig place per year. In conclusion, slaughter weight has an impact on profitability in BA and GI: they should not be slaughtered at 130 kg BW but at lower weights, but no effect could be demonstrated in EM and IC.  相似文献   

9.
Crossbreeding of Holstein-Friesian dairy cows with both early maturing (e.g. Aberdeen Angus (AA)) and late maturing (e.g. Belgian Blue (BB)) beef breeds is commonly practised. In Ireland, genetic merit for growth rate of beef sires is expressed as expected progeny difference for carcass weight (EPD(CWT)). The objective of this study was to compare the progeny of Holstein-Friesian cows, sired by AA and BB bulls of low (L) and high (H) EPD(CWT) for performance and carcass traits. A total of 118 spring-born male progeny from 20 (9 AA and 11 BB) sires (8 L and 12 H) were managed together from shortly after birth to about 19 months of age. They were then assigned to one of two mean slaughter weights (560 kg (light) or 620 kg (heavy)). Following slaughter, carcasses were graded for conformation class and fat class, the 6th to 10th ribs joint was dissected as an indicator of carcass composition, and samples of subcutaneous fat and musculus longissimus were subjected to Hunterlab colour measurements. A sample of m. longissimus was also chemically analysed. Slaughter and carcass weights per day of age for AAL, AAH, BBL and BBH were 747, 789, 790 and 805 (s.e. 10.5) g, and 385, 411, 427 and 443 (s.e. 4.4) g, respectively. Corresponding carcass weight, kill-out proportion, carcass conformation class (scale 1 to 5) and carcass fat class (scale 1 to 5) values were 289, 312, 320 and 333 (s.e. 4.0) kg, 516, 522, 542 and 553 (s.e. 3.5) g/kg, 2.5, 2.4, 3.0 and 3.1 (s.e. 0.10), and 3.4, 3.5, 2.9 and 2.8 (s.e. 0.11). There were few breed type × genetic merit interactions. Delaying slaughter date increased slaughter weight, carcass weight and all measures of fatness. It also reduced the proportion of carcass weight in the hind quarter and the proportions of bone and muscle in the ribs joint. None of these effects accompanied the increase in carcass weight due to higher EPD(CWT). It is concluded that BB have superior production traits to AA. Selection of sires for higher EPD(CWT) increases growth rate, kill-out proportion and carcass weight of progeny with little effect on carcass or muscle traits. The extra carcass weight due to higher EPD(CWT) is more valuable commercially than a comparable carcass weight increment from a delay in slaughter date because it comprises a higher proportion of muscle.  相似文献   

10.
In order to improve foal carcass quality, it is necessary in particular to improve the carcass dressing percentage and tissue composition. Thus, it is important to establish relationships between grading systems and these parameters. This research was conducted to study the effect of slaughter age (13 v. 26 months) and finishing feed (standard v. linseed feed) on carcass characteristics such as subcutaneous fat colour plus classification of foals for the degree of fatness and conformation. For this study, 46 foals of crossbred genotype (Galician Mountain×Burguete) were used. Finishing feed did not affect any parameter, whereas slaughter age influenced all parameters (P<0.05). The oldest foals had higher carcass measurements, 13% more of meat, 4% more of bone, 12% more of fat, and 4% and 9% bigger fore- and hindquarter, respectively. Consequently, bigger valuable prime cuts were obtained. Nevertheless, the meat : bone ratio was very similar for both 13- and 26-month-old foals (2.88). Most of 26-month-old foals were classified in ‘E’ (Extra) and ‘5’ (Complete fat cover) categories of conformation and degree of fatness. Most of the carcasses showed subcutaneous fat described as yellowish-white irrespective of age or diet. A regression model found that conformation (36%) and degree of fatness (33%) in live animals was positively linked with carcass tissue composition. It is therefore suggested that producers aim for older slaughter ages than 13 months and that the foal meat industry establishes grading systems to predict carcass quality. Further studies should be necessary to find the optimal slaughter age to obtain carcasses in the best categories of degree of fatness and conformation. New studies should be recommended to improve the meat : bone ratio of foal carcasses as it estimates the aptitude for meat production.  相似文献   

11.
The cull ewes represent an important part of sheep flock. However, this category of animal is often submitted to under nutrition leading to poor BW and skeletal carcasses. Their rehabilitation using a high energy diet can be an alternative to improve their body condition. The objective of this experiment was to study the BW gain and carcass characteristics of Barbarine cull ewes using rosemary (Rosmarinus officinalis L.) distillation residues (RR) and extruded linseed. For this, 28 ewes above 6 years old and 33±0.5 kg of BW were divided into four groups: CCC was fed 500 g of barley-straw with concentrate, RCC received 300 g of straw and 200 g of RR as basal diet with concentrate; whereas two other groups received the experimental concentrate, containing 10% of linseed, with 500 g of straw for CLC and 300 g of straw plus 200 g of RR for RLC group. At the end of experiment (90 days), all animals were slaughtered. For all ewes, the daily concentrate intake averaged 700 g; the average daily gain was 131 g and the slaughter BW 43.4 kg without significant difference between groups. Neither basal diet nor concentrate type did affect the carcass’ weight, yield and composition. In addition, the organ’s proportions were similar for all groups. The RR intake slightly improved muscle’s protein content (P=0.03) and tended to decrease initial pH (P=0.06) and to increase meat redness (P=0.06), whereas linseed concentrate had no effect on meat color and its chemical composition. The subcutaneous fat color and firmness score relived a good quality trade for carcasses from all diets, in spite of higher yellowness and lower firmness recorded for linseed diet (P<0.05), which were moderately improved by rosemary combination with linseed. To conclude, the Barbarine cull ewes could gain up to 120 g/day in BW. The used diets permitted this BW gain without undesirable effects on carcass characteristics and meat quality. However, the study of meat fatty acid profile and antioxidant status should continue.  相似文献   

12.
Shortening the dry period (DP) has been proposed as a strategy to improve energy balance (EB) in cows in early lactation. This study evaluated the effects of shortening the DP on milk yield (MY), EB and residual feed intake (RFI) in two breeds; Swedish Red (SR) and Swedish Holstein (SH). Cows were blocked by breed and parity and then randomly assigned to one of two treatments; short DP of 4 weeks (4W, n=43) or conventional DP of 8 weeks (8W, n=34). Cows were kept and fed under the same conditions, except for the 4 weeks when the 4W group were still lactating prepartum and thus kept with the lactating cows. Milk yield and BW were recorded and body condition score (BCS) was rated from 10 weeks prepartum to 12 weeks postpartum. Dry matter intake (DMI) was recorded for lactating cows postpartum. Milk yield was reduced by 6.75 kg/day during the first 12 weeks postpartum (P<0.001) for the 4W cows compared with 8W cows, but there was no significant difference in total MY (3724 kg compared with 3684 kg, P=0.7) when the milk produced prepartum was included. Protein content was higher in 4W cows (3.42%) than in 8W cows (3.27%) (P<0.001) postpartum. In the 8W group, cows lost more BCS after calving (P<0.05). Cows of SR breed had higher BCS than cows of SH breed (SR=3.7, SH=3.2, P<0.001), but no differences in BW were found between breed and treatment. Energy balance was improved for cows in the 4W group (P<0.001), while feed efficiency, expressed as RFI, was reduced for 4W cows than for 8W cows (5.91 compared with −5.39, P<0.01). Shortening the DP resulted in improved EB postpartum with no difference between the breeds and no milk losses when including the milk produced prepartum.  相似文献   

13.
Equations for predicting the meat, fat and bone proportions in beef carcasses using the European Union carcass classification scores for conformation and fatness, and hindquarter composition were developed and their accuracy was tested using data from 662 cattle. The animals included bulls, steers and heifers, and comprised of Holstein–Friesian, early- and late-maturing breeds × Holstein–Friesian, early-maturing × early-maturing, late-maturing × early-maturing and genotypes with 0.75 or greater late-maturing ancestry. Bulls, heifers and steers were slaughtered at 15, 20 and 24 months of age, respectively. The diet offered before slaughter includes grass silage only, grass or maize silage plus supplementary concentrates, or concentrates offered ad libitum plus 1 kg of roughage dry matter per head daily. Following the slaughter, carcasses were classified mechanically for conformation and fatness (scale 1 to 15), and the right side of each carcass was dissected into meat, fat and bone. Carcass conformation score ranged from 4.7 to 14.4, 5.4 to 10.9 and 2.0 to 12.0 for bulls, heifers and steers, respectively; the corresponding ranges for fat score were 2.7 to 11.5, 3.2 to 11.3 and 2.8 to 13.3. Prediction equations for carcass meat, fat and bone proportions were developed using multiple regression, with carcass conformation and fat score both included as continuous independent variables. In a separate series of analyses, the independent variable in the model was the proportion of the trait under investigation (meat, fat or bone) in the hindquarter. In both analyses, interactions between the independent variables and gender were tested. The predictive ability of the developed equations was assed using cross-validation on all 662 animals. Carcass classification scores accounted for 0.73, 0.67 and 0.71 of the total variation in carcass meat, fat and bone proportions, respectively, across all 662 animals. The corresponding values using hindquarter meat, fat and bone in the model were 0.93, 0.87 and 0.89, respectively. The bias of the prediction equations when applied across all animals was not different from zero, but bias did exist among some of the genotypes of animals present. In conclusion, carcass classification scores and hindquarter composition are accurate and efficient predictors of carcass meat, fat and bone proportions.  相似文献   

14.
The objective was to evaluate serum concentrations of nonesterified fatty acids (NEFA), cortisol, insulin, and progesterone (P4) of dairy cows maintaining or mobilizing body weight (BW). Eleven non-lactating, non-pregnant, and ovariectomized Gir × Holstein cows were stratified by BW and body condition score (BCS), and randomly assigned to: 1) BW loss (six cows; LOSS) and 2) BW maintenance (five cows; MAINT). Treatments were achieved through a grazing schedule using three pastures. From Days −7 to 1 of the study, all cows were maintained in Pasture A (12 kg of dry matter/cow daily). From Days 2 to 30, LOSS cows were maintained in Pasture B (less than 1.0 kg of dry matter/cow daily), whereas MAINT cows were maintained in Pasture C (12 kg of dry matter/cow daily). However, from Days 3 to 30 of the study, cows from both treatments were regrouped daily into Pasture A from 0600 to 1200 h to allow LOSS cows to consume, on average, 4.5 kg/d of forage dry matter. On Day −66 of the study, all cows received an intravaginal drug releasing device containing 1.9 g of P4 (replaced every 14 d and removed on Day 3). Cow BW and BCS were assessed on Day 0 and 30 and blood samples were collected daily from Days 0 to 30 at 0600 and 1200 h. Changes in BW and BCS were greater (P ≤ 0.05) in LOSS cows compared to MAINT cows. Within samples collected at 0600 h, serum NEFA concentrations were often greater (P < 0.05) in LOSS cows compared to MAINT after Day 14. Serum P4 concentrations were greater (P < 0.05) on Days 21 and 22, and tended (P < 0.10) to be greater on Days 16, 23, and 24 of the study in LOSS cows compared to MAINT. In conclusion, BW loss was associated with increased circulating concentrations of P4 in non-lactating ovariectomized dairy cows; this was mainly attributed to fat mobilization and consequent release of P4 stored in adipose tissues.  相似文献   

15.
The effects of sex, slaughter weight and carcass weight on carcass characteristics and meat quality traits were evaluated using 100 Segureña lambs. The management of all lambs was similar prior to slaughter at 19–25 kg. Slaughtered animals with a hot carcass weight below 20 kg were assigned to class B, and those greater than 22 kg to class C. Carcass weight had a significant influence on “non-carcass” components, dressing percentage, subjective carcass conformation, fat deposits, carcass fatness, bone and most carcass measurements. Sex had a significant effect on age at slaughter, “non-carcass” components, rib measurements, dressing percentage, fat deposits, and neck and shoulder percentage. As the weight increased, the carcass measurements also increased. Concurrently, while improving the conformation indices of the carcass, leg and dressing percentages, neither the commercial cuts of the animal nor tissue composition was significantly affected. Sex primarily affected the quantity of all types of fat deposits.  相似文献   

16.
Background

Optimal body condition in early lactation is generally accepted as a prerequisite for good reproductive performance. Examination of milk progesterone profiles offers an objective method for characterization of postpartum ovarian activity in dairy cows. The present study investigated the relationship between body condition after calving, some metabolic parameters in blood plasma, and fertility, as reflected by milk progesterone profiles in the two dairy breeds Swedish Red (SR) and Swedish Holstein (SH).

Results

Multiparous dairy cows (n = 73) of SR and SH breeds were selected and divided into three groups based on their body condition score (BCS) after parturition. Selected plasma metabolites were determined, milk progesterone profiles were identified and body condition was scored. Over-conditioned cows and atypical progesterone profiles were more common among SR cows. Insulin sensitivity was lower and IGF 1 higher among SR cows. Insulin was positively related to body condition, but not related to breed.

Conclusions

Atypical progesterone profiles were more common and insulin sensitivity lower in SR than in SH cows, but the SR breed had a higher proportion of over-conditioned SR cows. It is reasonable to assume that breed differences in body condition contributed to these results.

  相似文献   

17.
Existing methods for estimating individual dairy cow energy balance typically either need information on feed intake, that is, the traditional input–output method, or frequent measurements of BW and body condition score (BCS), that is, the body reserve changes method (EBbody). The EBbody method holds the advantage of not requiring measurements of feed intake, which are difficult to obtain in practice. The present study aimed first to investigate whether the EBbody method can be simplified by basing EBbody on BW measurements alone, that is, removing the need for BCS measurements, and second to adapt the EBbody method for real-time use, thus turning it into a true on-farm tool. Data came from 77 cows (primiparous or multiparous, Danish Holstein, Red or Jersey) that took part in an experiment subjecting them to a planned change in concentrate intake during milking. BW was measured automatically during each milking and real-time smoothed using asymmetric double-exponential weighting and corrected for the weight of milk produced, gutfill and the growing conceptus. BCS assessed visually with 2-week intervals was also smoothed. EBbody was calculated from BW changes only, and in conjunction with BCS changes. A comparison of the increase in empty body weight (EBW) estimated from EBbody with EBW measured over the first 240 days in milk (DIM) for the mature cows showed that EBbody was robust to changes in the BCS coefficients, allowing functions for standard body protein change relative to DIM to be developed for breeds and parities. These standard body protein change functions allow EBbody to be estimated from frequent BW measurements alone, that is, in the absence of BCS measurements. Differences in EBbody levels before and after changes in concentrate intake were calculated to test the real-time functionality of the EBbody method. Results showed that significant EBbody increases could be detected 10 days after a 0.2 kg/day increase in concentrate intake. In conclusion, a real-time method for deriving EBbody from frequent BW measures either alone or in conjunction with BCS measures has been developed. This extends the applicability of the EBbody method, because real-time measures can be used for decision support and early intervention.  相似文献   

18.
Selection for beef traits in Italian dual-purpose breeds is often carried out using growth and in vivo conformation recorded on young, performance tested bulls and muscularity traits scored during routinely linear type evaluation on primiparous cows. In this context, the knowledge of the genetic structure of traits obtained in different sexes and at different times is necessary for a proper selection plan. This study aimed to estimate, in the local dual-purpose Rendena breed, the genetic relationships between muscularity linear type traits from primiparous cows, the same traits scored on candidate young bulls, and the performance test traits recorded in candidate young bulls. Type traits included: front (chest and shoulder), back (loins and rump); thigh, buttocks side and rear views (two traits). Performance test traits were: average daily gain; EUROP fleshiness evaluation; and dressing percentage. Muscularity linear type traits were recorded on 11 992 first parity cows, and the muscularity type traits were scored on 957 candidate young bulls. Heritability estimates obtained for muscularity traits were moderate in young bulls (on average 0.326), about 16% higher than in primiparous cows. The average heritability for performance test traits in young bulls resulted 0.342. Moderate to strong genetic correlations were found between performance test and muscularity type traits collected in young bulls (from 0.500 between front (chest and shoulder) and average daily gain to 0.955 between thigh, buttocks side view and in vivo dressing percentage). The genetic relationships obtained between muscularity linear type traits of primiparous cows and performance traits of young bulls were variable (from a null correlation between front (chest and shoulder) and average daily gain to 0.822 between thigh, buttocks rear view and dressing percentage), with an average genetic correlation of 0.532. Generally, the traits measured during performance testing in young bulls were favourably correlated with muscularity traits evaluated on primiparous cows, indicating a common selection pathway.  相似文献   

19.
Selection in native local breeds needs great carefulness due to the small population size and the risk of inbreeding. Furthermore, most breeds are dual-purpose, and milk and beef attitudes are antagonistic. For preservation purposes functional traits need to be considered. Focusing on the small local Rendena cattle, this study aimed to analyse the genetic correlations among milk, beef and udder health traits and the response to selection predicted under different scenarios. The study considered milk, fat and protein yields (MY), factor scores for udder volume (UV), conformation (UC) and muscularity obtained from type traits scored on primiparous cows, and performance test traits (PT) measured on young bulls at test station: average daily gain, in vivo SEUROP fleshiness, in vivo dressing percentage. Somatic cell score (SCS) was considered as a functional trait, with a possibility of restricting its genetic gain to zero. The study considered 281 497 MY test-day data collected on 16 974 cows, and data from linear type evaluation on 11 992 primiparous cows for factor scores. The PT data were recorded on 1428 young bulls, and SCS obtained from cell counts at milk recording. Bi-trait restricted maximum likelihood animal model analyses were performed to assess genetic parameters. Heritability varied from 0.157 (fat) to 0.442 (dressing percentage). Udder volume and MY resulted positively genetically correlated (average correlation 0.427), whereas the low-negative genetic correlation between MY and UC (−0.141) suggested a negative impact of milk gain on udder form. Beef traits of factor muscularity and PT showed medium-high favourable genetic correlations (from 0.357 to 0.984), excluding a null correlation between daily gain and muscularity. The genetic correlation MY v. muscularity was unfavourable (−0.328 on average), whereas null correlations were found in MY v. PT, apart from fat v. dressing percentage (−0.151). Somatic cell score showed low unfavourable correlations with protein (0.111) and UV (0.092), and favourable correlations with UC (−0.193). Response to selection in different scenarios indicated a good balanced gain for milk and beef when standardized economic weights of 0.66 and 0.34 are given to the two attitudes, and SCS genetic gain is restricted. Current genetic trends (MY and PT increasing, but muscularity lessening) reflect a stronger selection for milk, suggesting a slight progressive change towards a milk conformation. Aiming to preserve the dual-purpose characteristics of a breed, proper breeding policies taking into account the genetic relationships among traits and including functional traits should be applied in local dual-purpose populations.  相似文献   

20.
This study examined the relationship of residual feed intake (RFI) with digestion, body composition, carcass traits and visceral organ weights in beef bulls offered a high concentrate diet. Individual dry matter (DM) intake (DMI) and growth were measured in a total of 67 Simmental bulls (mean initial BW 431 kg (s.d.=63.7)) over 3 years. Bulls were offered concentrates (860 g/kg rolled barley, 60 g/kg soya bean meal, 60 g/kg molasses and 20 g/kg minerals per vitamins) ad libitum plus 0.8 kg grass silage DM daily for 105 days pre-slaughter. Ultrasonic muscle and fat depth, body condition score (BCS), muscularity score, skeletal measurements, blood metabolites, rumen fermentation and total tract digestibility (indigestible marker) were determined. After slaughter, carcasses and perinephric and retroperitoneal fat were weighed, carcasses were graded for conformation and fat score and weight of non-carcass organs, liver, heart, kidneys, lungs, gall bladder, spleen, reticulo-rumen full and empty and intestines full, were determined. The residuals of the regression of DMI on average daily gain (ADG), mid-test metabolic BW (BW0.75) and the fixed effect of year, using all animals, were used to compute individual RFI coefficients. Animals were ranked on RFI and assigned to high (inefficient), medium or low groupings. Overall mean ADG and daily DMI were 1.6 kg (s.d.=0.36) and 9.4 kg (s.d.=1.16), respectively. High RFI bulls consumed 7 and 14% more DM than medium and low RFI bulls, respectively (P<0.001). No differences between high and low RFI bulls were detected (P>0.05) for ADG, BW, BCS, skeletal measurements, muscularity scores, ultrasonic measurements, carcass weight, perinephric and retroperitoneal fat weight, kill-out proportion and carcass conformation and fat score. However, regression analysis indicated that a 1 kg DM/day increase in RFI was associated with a decrease in kill-out proportion of 20 g/kg (P<0.05) and a decrease in carcass conformation of 0.74 units (P<0.05). Weight of non-carcass organs did not differ (P>0.05) between RFI groups except for the empty weight of reticulo-rumen, which was 8% lighter (P=0.05) in low RFI compared with high RFI bulls. Regression analysis indicated that a 1 kg DM/day increase in RFI was associated with a 1 kg increase in reticulo-rumen empty weight (P<0.05). Of the visceral organs measured, the reticulo-rumen may be a biologically significant contributory factor to variation in RFI in beef bulls finished on a high concentrate diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号