首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Lectin-like oxidized low-density lipoprotein-1 (LOX-1) is the major receptor for oxidized low density lipoprotein (ox-LDL) uptake in human umbilical vein endothelial cells (HUVECs). Previously, we found that rapamycin inhibited ox-LDL accumulation in HUVECs, and this effect was related to its role in increasing the activity of autophagy-lysosome pathway. In this study, we determined whether rapamycin could also reduce ox-LDL uptake in HUVECs and investigated the underlying signaling mechanisms.

Results

Flow cytometry and live cell imaging showed that rapamycin reduced Dil-ox-LDL accumulation in HUVECs. Furthermore, rapamycin reduced the ox-LDL-induced increase in LOX-1 mRNA and protein levels. Western blotting showed that rapamycin inhibited mechanistic target of rapamycin (mTOR), p70s6k and IκBα phosphorylation triggered by ox-LDL. Flow cytometry implied that mTOR, NF-κB knockdown and NF-κB inhibitors significantly reduced Dil-ox-LDL uptake. Moreover, immunofluorescent staining showed that rapamycin reduced the accumulation of p65 in the nucleus after ox-LDL treatment for 30 h. mTOR knockdown decreased LOX-1 protein production and IκBα phosphorylation induced by ox-LDL. NF-κB knockdown and NF-κB inhibitors reduced LOX-1 protein production, but did not inhibit mTOR phosphorylation stimulated by ox-LDL.

Conclusions

These findings demonstrate that rapamycin reduce mTOR phosphorylation and subsequently inhibit NF-κB activation and suppresses LOX-1, resulting in a reduction in ox-LDL uptake in HUVECs.  相似文献   

3.

Background

Histone deacetylase 2 (HDAC2) is a class I histone deacetylase family member that plays a critical role in suppressing inflammatory gene expression in the airways, lung parenchyma, and alveolar macrophages in patients with chronic obstructive pulmonary disease (COPD). However, the expression of HDAC2 in peripheral blood monocytes (PBMCs), nuclear factor kappa B (NF-κB) p65, and serum inflammatory cytokine levels in COPD patients, smokers, and non-smokers remains unclear.

Methods

PBMCs were obtained from COPD patients, healthy smokers, and healthy nonsmokers. The HDAC2 and NF-κB p65 expression were quantified by Western Blot. HDAC activity was assessed by an HDAC fluorometric immunoprecipitation activity assay kit. Serum tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) levels were measured by ELISA.

Results

HDAC2 expression and HDAC activity were decreased in PBMCs in COPD patients compared with smokers and non-smokers. Increased NF-κB p65 expression, serum TNF-α and IL-8 levels were observed in COPD patients compared with nonsmokers. The FEV1%pred was positively correlated with HDAC2 expression and HDAC activity in COPD patients. Smokers had decreased HDAC activity, increased NF-κB p65 expression and serum TNF-α compared with nonsmokers.

Conclusions

HDAC2 expression was decreased in PBMCs of COPD patients and was correlated with disease severity. The reduction of HDAC2 expression not only directly enhances the expression of inflammatory genes, but may account for the activation of NF-κB mediated inflammation. Decreased HDAC2 may serve as a potential biomarker of COPD and predict the decline of lung function.  相似文献   

4.

Objective

T cell immunoglobulin- and mucin-domain-containing molecule-4 (Tim-4) receives much attention as a potentially negative regulator of immune responses. However, its modulation on macrophages has not been fully elucidated so far. This study aimed to identify the role of Tim-4 in nitric oxide (NO) modulation.

Methods

Macrophages were stimulated with 100 ng/ml LPS or 100 U/ml IFN-γ. RT-PCR was performed to detect TIM-4 mRNA expression. Tim-4 blocking antibody and NF-κB inhibitory ligand were involved in the study. NO levels were assayed by Griess reaction. Phosphorylation of NF-κB, Jak2 or Stat1 was verified by western blot.

Results

Tim-4 was up-regulated in murine macrophages after interferon-gamma (IFN-γ) stimulation. Tim-4 over-expression decreased NO production and inducible nitric oxide synthase (iNOS) expression in lipopolysaccharide (LPS) or IFN-γ-stimulated macrophages. Consistently, Tim-4 blockade promoted LPS or IFN-γ-induced NO secretion and iNOS expression. Tim-4 over-expression decreased LPS-induced nuclear factor kappa B (NF-κB) p65 phosphorylation in macrophages, which was abrogated by NF-κB inhibitory ligand. On the contrary, Tim-4 blocking increased LPS-induced NF-κB signaling, which was also abrogated by NF-κB inhibition. In addition, Tim-4 blockade promoted Jak2 and Stat1 phosphorylation in IFN-γ stimulated macrophages.

Conclusion

These results indicate that Tim-4 is involved in negative regulation of NO production in macrophages, suggesting the critical role of Tim-4 in immune related diseases.  相似文献   

5.

Purpose

Nitric oxide (NO) is constitutively produced and released from the endothelium and several blood cell types by the isoform 3 of the NO synthase (NOS3). We have shown that NO protects against myocardial ischemia/reperfusion (I/R) injury and that depletion of circulating NOS3 increases within 24h of ischemia/reperfusion the size of myocardial infarction (MI) in chimeric mice devoid of circulating NOS3. In the current study we hypothesized that circulating NOS3 also affects remodeling of the left ventricle following reperfused MI.

Methods

To analyze the role of circulating NOS3 we transplanted bone marrow of NOS3−/− and wild type (WT) mice into WT mice, producing chimerae expressing NOS3 only in vascular endothelium (BC−/EC+) or in both, blood cells and vascular endothelium (BC+/EC+). Both groups underwent 60 min of coronary occlusion in a closed-chest model of reperfused MI. During the 3 weeks post MI, structural and functional LV remodeling was serially assessed (24h, 4d, 1w, 2w and 3w) by echocardiography. At 72 hours post MI, gene expression of several extracellular matrix (ECM) modifying molecules was determined by quantitative RT-PCR analysis. At 3 weeks post MI, hemodynamics were obtained by pressure catheter, scar size and collagen content were quantified post mortem by Gomori’s One-step trichrome staining.

Results

Three weeks post MI, LV end-systolic (53.2±5.9μl;***p≤0.001;n = 5) and end-diastolic volumes (82.7±5.6μl;*p<0.05;n = 5) were significantly increased in BC−/EC+, along with decreased LV developed pressure (67.5±1.8mmHg;n = 18;***p≤0.001) and increased scar size/left ventricle (19.5±1.5%;n = 13;**p≤0.01) compared to BC+/EC+ (ESV:35.6±2.2μl; EDV:69.1±2.6μl n = 8; LVDP:83.2±3.2mmHg;n = 24;scar size/LV13.8±0.7%;n = 16). Myocardial scar of BC−/EC+ was characterized by increased total collagen content (20.2±0.8%;n = 13;***p≤0.001) compared to BC+/EC+ (15.9±0.5;n = 16), and increased collagen type I and III subtypes.

Conclusion

Circulating NOS3 ameliorates maladaptive left ventricular remodeling following reperfused myocardial infarction.  相似文献   

6.

Background

Myelodysplastic syndromes (MDS) are clonal marrow stem-cell disorders with a high risk of progression to acute myeloid leukemia (AML). Treatment options are limited and targeted therapies are not available for MDS. In the present study, we investigated the cytotoxicity and the molecular mechanism of Homoharringtonine (HHT) and Bortezomib towards high-risk MDS cell line SKM-1 in vitro and the role of miR-3151 was first evaluated in SKM-1 cells.

Methods

SKM-1 cells were treated with different concentrations of HHT or Bortezomib, and cell viability was analyzed with CCK-8 assay. The influence on cell proliferation, cell cycle distribution and the percentage of apoptosis cells were analyzed by flow cytometry. Calcusyn software was used to calculate combination index (CI) values. Western blot was used to analysis phosphorylation of Akt and nuclear NF-κB protein expression in SKM-1 cells. Mature miR-3151 level and p53 protein level were detected after HHT or Bortezomib treatment. The cell proliferation and p53 protein level were reassessed in SKM-1 cells infected with lentivirus to overexpress miR-3151.

Results

Simultaneous exposure to HHT and Bortezomib (10.4:1) resulted in a significant reduction of cell proliferation in SKM-1 cells (P < 0.05). Cell cycle arrest at G0/G1 and G2/M phase was observed (P < 0.05). HHT and Bortezomib synergistically induced cell apoptosis by regulating members of caspase 9, caspase 3 and Bcl-2 family (P < 0.01). The mechanisms of the synergy involved Akt and NF-κB signaling pathway inhibition, downregulation of mature miR-3151 and increment of downstream p53 protein level. Overexpression of miR-3151 promoted cell proliferation and inhibited p53 protein expression in SKM-1 (P < 0.01).

Conclusions

HHT and Bortezomib synergistically inhibit SKM-1 cell proliferation and induce apoptosis in vitro. Inhibition of Akt and NF-κB pathway signaling contribute to molecular mechanism of HHT and Bortezomib. miR-3151 abundance is implicated in SKM-1 cell viability, cell proliferation and p53 protein expression.  相似文献   

7.
8.

Background

Up-regulation and association of nuclear factor kappa B (NF-κB) with carcinogenesis and tumor progression has been reported in several malignancies. In the current study, expression of NF-κB in cholangiocarcinoma (CCA) patient tissues and its clinical significance were determined. The possibility of using NF-κB as the therapeutic target of CCA was demonstrated.

Methodology

Expression of NF-κB in CCA patient tissues was determined using immunohistochemistry. Dehydroxymethylepoxyquinomicin (DHMEQ), a specific NF-κB inhibitor, was used to inhibit NF-κB action. Cell growth was determined using an MTT assay, and cell apoptosis was shown by DNA fragmentation, flow cytometry and immunocytofluorescent staining. Effects of DHMEQ on growth and apoptosis were demonstrated in CCA cell lines and CCA-inoculated mice. DHMEQ-induced apoptosis in patient tissues using a histoculture drug response assay was quantified by TUNEL assay.

Principal Findings

Normal bile duct epithelia rarely expressed NF-κB (subunits p50, p52 and p65), whereas all CCA patient tissues (n  =  48) over-expressed all NF-κB subunits. Inhibiting NF-κB action by DHMEQ significantly inhibited growth of human CCA cell lines in a dose- and time-dependent manner. DHMEQ increased cell apoptosis by decreasing the anti-apoptotic protein expressions–Bcl-2, XIAP–and activating caspase pathway. DHMEQ effectively reduced tumor size in CCA-inoculated mice and induced cell apoptosis in primary histocultures of CCA patient tissues.

Conclusions

NF-κB was over-expressed in CCA tissues. Inhibition of NF-κB action significantly reduced cell growth and enhanced cell apoptosis. This study highlights NF-κB as a molecular target for CCA therapy.  相似文献   

9.

Aims

In a recent genome-wide association study, WD-repeat domain 12 (WDR12) was associated with early-onset myocardial infarction (MI). However, the function of WDR12 in the heart is unknown.

Methods and Results

We characterized cardiac expression of WDR12, used adenovirus-mediated WDR12 gene delivery to examine effects of WDR12 on left ventricular (LV) remodeling, and analyzed relationship between MI associated WDR12 allele and cardiac function in human subjects. LV WDR12 protein levels were increased in patients with dilated cardiomyopathy and rats post-infarction. In normal adult rat hearts, WDR12 gene delivery into the anterior wall of the LV decreased interventricular septum diastolic and systolic thickness and increased the diastolic and systolic diameters of the LV. Moreover, LV ejection fraction (9.1%, P<0.05) and fractional shortening (12.2%, P<0.05) were declined. The adverse effects of WDR12 gene delivery on cardiac function were associated with decreased cellular proliferation, activation of p38 mitogen–activated protein kinase (MAPK)/heat shock protein (HSP) 27 pathway, and increased protein levels of Block of proliferation 1 (BOP1), essential for ribosome biogenesis. Post-infarction WDR12 gene delivery decreased E/A ratio (32%, P<0.05) suggesting worsening of diastolic function. In human subjects, MI associated WDR12 allele was associated significantly with diastolic dysfunction and left atrial size.

Conclusions

WDR12 triggers distinct deterioration of cardiac function in adult rat heart and the MI associated WDR12 variant is associated with diastolic dysfunction in human subjects.  相似文献   

10.

Background

Platinum-based chemotherapy is a standard strategy for non-small cell lung cancer (NSCLC), while chemoresistance remains a major therapeutic challenge in current clinical practice. Our present study was aimed to determine whether inhibition of the NF-κB/miR-21/PTEN pathway could increase the sensitivity of NSCLC to cisplatin.

Methods

The expression of miR-21 in NSCLC tissues was determined using in situ hybridization. Next, the effect of miR-21 on the sensitivity of A549 cells to cisplatin was determined in vitro. Whether miR-21 regulated PTEN expression was assessed by luciferase assay. Furthermore, whether NF-κB targeted its binding elements in the miR-21 gene promoter was determined by luciferase and ChIP assay. Finally, we measured the cell viability and apoptosis under cisplatin treatment when NF-κB was inhibited.

Results

An elevated level of miR-21 was observed in NSCLC lung tissues and was related to a short survival time. Exogenous miR-21 promoted cell survival when exposed to cisplatin, while miR-21 inhibition could reverse this process. The RNA and protein levels of PTEN were significantly decreased by exogenous miR-21, and the 3′-untranslated region of PTEN was shown to be a target of miR-21. The expression of miR-21 was regulated by NF-κB binding to its element in the promoter, a finding that was verified by luciferase and ChIP assay. Hence, inhibition of NF-κB by RNA silencing protects cells against cisplatin via decreasing miR-21 expression.

Conclusion

Modulation of the NF-κB/miR-21/PTEN pathway in NSCLC showed that inhibition of this pathway may increase cisplatin sensitivity.  相似文献   

11.

Background

Intrahepatic cholestasis of pregnancy (ICP) is the most prevalent pregnancy specific liver disease. However, the pathogenesis and etiology of ICP is poorly understood.

Aim

To assess the expression of peroxisome proliferator-activated receptorγ (PPARγ) and nuclear factor kappa B (NF-κB) in placenta and HTR-8/SVneo cell, and evaluate the serum levels of cytokines, bile acids, hepatic function and lipids in control and ICP patients and the fetal outcome, in order to explore the role of PPARγ/NF-κB signaling pathway in the possible mechanism of ICP.

Methods

Clinical data of the pregnant women were collected and serum levels of cytokines, bile acids, hepatic function and lipids were measured. Expressions of PPARγ and NF-κB in placenta and HTR-8/SVneo cell were determined. The new-born information was collected to demonstrate the relationship between PPARγ/NF-κB signaling pathway and ICP.

Results

The serum levels of bile acids, hepatic function, triglycerides (TG), total cholesterol (TC), IL-6, IL-12 and TNF-α in ICP group were significantly increased (P<0.01), and serum level of IL-4 was significantly decreased (P<0.01). PPARγ and NF-κB staining were found in the membrane and cytoplasm of placental trophoblast cell. The expression of PPARγ and NF-κB were significantly higher in ICP group and taurocholate acid (TCA) treated HTR-8/SVneo cell (P<0.01). The new-born information in severe ICP group were significantly different as compared to that in control group (P<0.05), and part of information in mild ICP group were also difference to that in control group (P<0.05).

Conclusions

The higher expressions of PPARγ and NF-κB in ICP placenta and TCA treated HTR-8/SVneo cell, together with the abnormal serum levels of cytokines, might induced by the imbalance of inflammatory and immune reaction, and then disturb placental bile acid and serum lipids transportation, finally result in fatal cholestasis which probably be one of the mechanism of ICP.  相似文献   

12.

Background

Nicotine is, to a large extent, responsible for smoking-mediated renal dysfunction. This study investigated nicotine’s effects on renal tubular epithelial cell apoptosis in vitro and it explored the mechanisms underlying its effects.

Methods

Human proximal tubular epithelial (HK-2) cells were treated with nicotine. Cell viability was examined by using the WST-1 assay. Intracellular levels of reactive oxygen species (ROS) and the expression of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) proteins were determined. The messenger ribonucleic acid and the protein expression associated with the nicotine acetylcholine receptors (nAChRs) in HK-2 cells was examined, and apoptosis was detected using flow cytometry, cell cycle analysis, and immunoblot analysis.

Results

The HK-2 cells were endowed with nAChRs. Nicotine treatment reduced cell viability dose dependently, increased ROS levels, and increased extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK expression. Nicotine increased NF-κB activation, which was attenuated by N-acetyl-L-cysteine, and ERK and JNK inhibitors, but was not affected by a p38 MAPK inhibitor. Nicotine increased the Bax/Bcl-2 ratio, which was attenuated by N-acetyl-L-cysteine, the NF-κB inhibitor, Bay 11–7082, and hexamethonium, a non-specific nAChR blocker. Flow cytometry revealed nicotine-induced G2/M phase arrest. While nicotine treatment increased the expression of phosphorylated cdc2 and histone H3, a marker of G2/M phase arrest, hexamethonium and Bay 11–7082 pretreatment reduced their expression.

Conclusions

Nicotine caused apoptosis in HK-2 cells by inducing ROS generation that activated the NF-κB signaling pathway via the MAPK pathway and it arrested the cell cycle at the G2/M phase. Nicotine-induced apoptosis in HK-2 cells involves the nAChRs.  相似文献   

13.

Background

Chronic ethanol (EtOH) abuse worsens pathophysiological derangements after hemorrhagic shock and resuscitation (H/R) that induce hepatic injury and strong inflammatory changes via JNK and NF-κB activation. Inhibiting JNK with a cell-penetrating, protease-resistant peptide D-JNKI-1 after H/R in mice with healthy livers ameliorated these effects. Here, we studied if JNK inhibition by D-JNKI-1 in chronically EtOH-fed mice after hemorrhagic shock prior to the onset of resuscitation also confers protection.

Methods

Male mice were fed a Lieber-DeCarli diet containing EtOH or an isocaloric control (ctrl) diet for 4 weeks. Animals were hemorrhaged for 90 min (32 ± 2 mm Hg) and randomly received either D-JNKI-1 (11 mg/kg, intraperitoneally, i. p.) or sterile saline as vehicle (veh) immediately before the onset of resuscitation. Sham animals underwent surgical procedures without H/R and were either D-JNKI-1 or veh treated. Two hours after resuscitation, blood samples and liver tissue were harvested.

Results

H/R induced hepatic injury with increased systemic interleukin (IL)-6 levels, and enhanced local gene expression of NF-κB-controlled genes such as intercellular adhesion molecule (ICAM)-1 and matrix metallopeptidase (MMP)9. c-Jun and NF-κB phosphorylation were increased after H/R. These effects were further increased in EtOH-fed mice after H/R. D-JNKI-1 application inhibited the proinflammatory changes and reduced significantly hepatic injury after H/R in ctrl-fed mice. Moreover, D-JNKI-1 reduces in ctrl-fed mice the H/R-induced c-Jun and NF-κB phosphorylation. However, in chronically EtOH-fed mice, JNK inhibition did not prevent the H/R-induced hepatic damage and proinflammatory changes nor c-Jun and NF-κB phosphorylation after H/R.

Conclusions

These results indicate, that JNK inhibition is protective only in not pre-harmed liver after H/R. In contrast, the pronounced H/R-induced liver damage in mice being chronically fed with ethanol cannot be prevented by JNK inhibition after H/R and seems to be under the control of NF-κB.  相似文献   

14.

Background

Infection is a common cause of acute lung injury (ALI). This study was aimed to explore whether Toll-like receptors 4 (TLR4) of airway smooth muscle cells (ASMCs) play a role in lipopolysaccharide (LPS)-induced airway hyperresponsiveness and potential mechanisms.

Methods

In vivo: A sensitizing dose of LPS (50 µg) was administered i.p. to female mice before anesthesia with either 3% sevoflurane or phenobarbital i.p. After stabilization, the mice were challenged with 5 µg of intratracheal LPS to mimic inflammatory attack. The effects of sevoflurane were assessed by measurement of airway responsiveness to methacholine, histological examination, and IL-1, IL-6, TNF-α levels in bronchoalveolar lavage fluid (BALF). Protein and gene expression of TLR4 and NF-κB were also assessed. In vitro: After pre-sensitization of ASMCs and ASM segments for 24h, levels of TLR4 and NF-κB proteins in cultured ASMCs were measured after continuous LPS exposure for 1, 3, 5, 12 and 24h in presence or absence of sevoflurane. Constrictor and relaxant responsiveness of ASM was measured 24 h afterwards.

Results

The mRNA and protein levels of NF-κB and TLR4 in ASM were increased and maintained at high level after LPS challenge throughout 24h observation period, both in vivo and in vitro. Sevoflurane reduced LPS-induced airway hyperresponsiveness, lung inflammatory cell infiltration and proinflammatory cytokines release in BALF as well as maximal isometric contractile force of ASM segments to acetylcholine, but it increased maximal relaxation response to isoproterenol. Treatment with specific NF-κB inhibitor produced similar protections as sevoflurane, including decreased expressions of TLR4 and NF-κB in cultured ASMCs and improved pharmacodynamic responsiveness of ASM to ACh and isoproterenol.

Conclusions

This study demonstrates the crucial role of TLR4 activation in ASMCs during ALI in response to LPS. Sevoflurane exerts direct relaxant and anti-inflammatory effects in vivo and in vitro via inhibition of TLR4/NF-κB pathway.  相似文献   

15.

Background

Nuclear factor kappa B (NF-κB) has been implicated in anesthetic preconditioning (APC) induced protection against anoxia and reoxygenation (A/R) injury. The authors hypothesized that desflurane preconditioning would induce NF-κB oscillation and prevent endothelial cells apoptosis.

Methods

A human umbilical vein endothelial cells (HUVECs) A/R injury model was used. A 30 minute desflurane treatment was initiated before anoxia. NF-κB inhibitor BAY11-7082 was administered in some experiments before desflurane preconditioning. Cells apoptosis was analyzed by flow cytometry using annexin V–fluorescein isothiocyanate staining and cell viability was evaluated by modified tertrozalium salt (MTT) assay. The cellular superoxide dismutases (SOD) activitiy were tested by water-soluble tetrazolium salt (WST-1) assay. NF-κB p65 subunit nuclear translocation was detected by immunofluorescence staining. Expression of inhibitor of NF-κB-α (IκBα), NF-κB p65 and cellular inhibitor of apoptosis 1 (c-IAP1), B-cell leukemia/lymphoma 2 (Bcl-2), cysteine containing aspartate specific protease 3 (caspases-3) and second mitochondrial-derived activator of caspase (SMAC/DIABLO) were determined by western blot.

Results

Desflurane preconditioning caused phosphorylation and nuclear translocation of NF-κB before anoxia, on the contrary, induced the synthesis of IκBα and inhibition of NF-κB after reoxygenation. Desflurane preconditioning up-regulated the expression of c-IAP1 and Bcl-2, blocked the cleavage of caspase-3 and reduced SMAC release, and decreased the cell death of HUVECs after A/R. The protective effect was abolished by BAY11-7082 administered before desflurane.

Conclusions

The results demonstrated that desflurane activated NF-κB during the preconditioning period and inhibited excessive activation of NF-κB in reperfusion. And the oscillation of NF-κB induced by desflurane preconditioning finally up-regulated antiapoptotic proteins expression and protected endothelial cells against A/R.  相似文献   

16.

Background

Peptidyl-prolyl isomerase cyclophilin A (CypA) plays important roles in signaling, protein translocation, inflammation, and cancer formation. However, little is known about the mechanisms by which CypA exerts its effects. C57BL/6 Ppia (encoding CypA)-deficient embryonic fibroblasts show reduced activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), the p65/RelA subunit, suggesting that CypA may mediate modulation of NF-κB activity to exert its biological effects.

Methodology

Western blotting and qRT-PCR analyses were used to evaluate the association of CypA deficiency with reduced activation of NF-κB/p65 at the protein level. GST pull-down and co-immunoprecipitation were used to examine interactions between CypA and p65/RelA. Truncation mutants and site-directed mutagenesis were used to determine the sequences of p65/RelA required for interactions with CypA. Enhancement of p65/RelA nuclear translocation by CypA was assessed by co-transfection and immunofluorescent imaging. Treatment of cells with cycloheximide that were harvested at various time points for Western blot analyses was carried out to evaluate p65/RelA protein stability. The functional activity of NF-κB was assessed by electrophoretic mobility-shift assays (EMSA), luciferase assays, and changes in expression levels of target genes.

Results

GST pull-down assays in vitro and co-immunoprecipitation analyses in vivo provided evidence for protein-protein interactions. These interactions were further supported by identification of a CypA-binding consensus-like sequence within NF-κB subunit p65 at the N-terminal 170–176 amino acid residues. Significantly, CypA provided stability for NF-κB p65 and promoted NF-κB p65 nuclear translocation, resulting in increased nuclear accumulation and enhanced NF-κB activity.

Conclusions

Our findings revealed important mechanisms that regulate NF-κB activation, and offer new insights into the role of CypA in aberrant activation of NF-κB-mediated signaling for altered expression of its target genes, resulting in pathological effects in various diseases.  相似文献   

17.

Objective

To determine the expression patterns of NF-κB regulators and target genes in clear cell renal cell carcinoma (ccRCC), their correlation with von Hippel Lindau (VHL) mutational status, and their association with survival outcomes.

Methods

Meta-analyses were carried out on published ccRCC gene expression datasets by RankProd, a non-parametric statistical method. DEGs with a False Discovery Rate of < 0.05 by this method were considered significant, and intersected with a curated list of NF-κB regulators and targets to determine the nature and extent of NF-κB deregulation in ccRCC.

Results

A highly-disproportionate fraction (~40%; p < 0.001) of NF-κB regulators and target genes were found to be up-regulated in ccRCC, indicative of elevated NF-κB activity in this cancer. A subset of these genes, comprising a key NF-κB regulator (IKBKB) and established mediators of the NF-κB cell-survival and pro-inflammatory responses (MMP9, PSMB9, and SOD2), correlated with higher relative risk, poorer prognosis, and reduced overall patient survival. Surprisingly, levels of several interferon regulatory factors (IRFs) and interferon target genes were also elevated in ccRCC, indicating that an ‘interferon signature’ may represent a novel feature of this disease. Loss of VHL gene expression correlated strongly with the appearance of NF-κB- and interferon gene signatures in both familial and sporadic cases of ccRCC. As NF-κB controls expression of key interferon signaling nodes, our results suggest a causal link between VHL loss, elevated NF-κB activity, and the appearance of an interferon signature during ccRCC tumorigenesis.

Conclusions

These findings identify NF-κB and interferon signatures as clinical features of ccRCC, provide strong rationale for the incorporation of NF-κB inhibitors and/or and the exploitation of interferon signaling in the treatment of ccRCC, and supply new NF-κB targets for potential therapeutic intervention in this currently-incurable malignancy.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号