共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-days-old plants of two cultivars of okra (Hibiscus esculentus L.), Sabzpari and Chinese-red, were subjected for 30 d to two water regimes (100 and 60 % field capacity). Leaf water potential and osmotic potential of both lines decreased significantly with the imposition of drought. Both the leaf pressure potential and osmotic adjustment were much lower in Chinese-red than those in Sabzpari. Chlorophyll (Chl) b content increased, whereas Chl a content remained unchanged and thus Chl a/b ratios were reduced in both lines. Drought stress also caused a significant reduction in net photosynthetic rate (P
N), transpiration rate (E), stomatal conductance (g
s), and water use efficiency (WUE) especially in cv. Sabzpari. The lines did not differ in intrinsic WUE (P
Ngs) or intercellular/ambient CO2 ratio. Overall, the growth of two okra cultivars was positively correlated with P
N, but not with g
s or P
N/E, and negatively correlated with osmotic adjustment. 相似文献
2.
Leaf Gas Exchange and Water Relations of Grapevines Grown in Three Different Conditions 总被引:1,自引:1,他引:1
Moutinho-Pereira J.M. Correia C.M. Gonçalves B.M. Bacelar E.A. Torres-Pereira J.M. 《Photosynthetica》2004,42(1):81-86
Diurnal and seasonal changes in the leaf water potential (), stomatal conductance (g
s), net CO2 assimilation rate (P
N), transpiration rate (E), internal CO2 concentration (C
i), and intrinsic water use efficiency (P
N/g
s) were studied in grapevines (Vitis vinifera L. cv. Touriga Nacional) growing in low, moderate, and severe summer stress at Vila Real (VR), Pinhão (PI), and Almendra (AL) experimental sites, respectively. In VR and PI site the limitation to photosynthesis was caused more by stomatal limitations, while in AL mesophyll limitations were also responsible for the summer decline in P
N. 相似文献
3.
Young peach plants (Prunus persica) were grown outdoors under different colored filters, to examine the effect of light quality on plant behavior. It was found that under blue light growth rate, leaf size and number, rate of spring bud opening and secondary branching were very similar to control plants grown under neutral shade. Blue + far-red light showed an overall strong inhibitory effect on all these characteristics. Red + far-red light produced the strongest growth activity with best results in growth rate and leaf size and number. The phytochrome pigment system was suggested to be the only pigment regulating growth under high light intensities. Blue and blue + far-red light acted antagonistically on apical dominance features of the tree. The former produced a wider tree with nearly horizontal shoots, while the latter produced a more erect narrow tree. 相似文献
4.
A major reason for the drought susceptibility of cultivated rice is the inability to regulate water loss as effectively as other cereals. We report studies of growth and gas exchange under well-watered and water-limiting conditions on selected species of Oryza and seek to relate this physiological information to the ecology of the genus. The immediate ancestor of the Oryza sativa cultigen is native to swamps and marshes, and wet habitats are typical for the genus as a whole. However, the ecological range of some species does extend to habitats that dry out seasonally. In all species studied growth was reduced by water deficit. In all species studied leaves had small absolute water contents and began to roll at a relative water content above 90%. However, there were species differences in leaf rolling and the response of stomatal conductance to an increase in vapour pressure deficit. Following re-watering, there were persistent reductions in stomatal conductance in most of the species tested, but the assimilation rate was not reduced in all of these cases. Where there was a persistant reduction in assimilation rate, there was also a reduction in carboxylation efficiency. It was a frequent observation that plants had a stomatal conductance greater than expected for their carbon assimilation rate; that is in the range where substantial changes in conductance have little effect upon photosynthesis. It is suggested that a reason for this may be the cooling of leaves which have a small thermal capacity in environments which often combine high temperature, humidity and irradiance. Large conductances combined with small water contents may be no disadvantage in the natural habitats of Oryza, but provide some reasons for the poor regulation of water loss in cultivated rice. Although there were significant differences in gas exchange amongst species the advantages that were observed over O. sativa were not of a magnitude likely to justify wide hybridisation. This implies that improvement in the drought resistance of rice is more likely to come from increasing water acquisition than from decreasing water loss. 相似文献
5.
Growth and Leaf Gas Exchange Characteristics in Dalbergia sissoo Roxb. and D. latifolia Roxb. Under Water Deficit 总被引:1,自引:0,他引:1
Forty two-month-old plants of Dalbergia sissoo and D. latifolia were subjected for 56 d to water deficit induced by withholding water. Drought stress caused a significant reduction in plant height, stem diameter, net photosynthetic rate (P
N), transpiration rate (E), and stomatal conductance (g
s) in both species, but the reduction was greater in D. sissoo than in D. latifolia. Water use efficiency (P
N/E) was adversely affected due to water stress only in D. latifolia, and intrinsic water use efficiency (P
N/g
s) was increased in both species. There was a slight effect of water stress on variable to maximum fluorescence (Fv/Fm) (quantum yield of photosystem 2) in both species, but the species did not differ significantly in this attribute. 相似文献
6.
Fran?ois Tardieu Boris Parent Cecilio F. Caldeira Claude Welcker 《Plant physiology》2014,164(4):1628-1635
The sensitivity of expansive growth to water deficit has a large genetic variability, which is higher than that of photosynthesis. It is observed in several species, with some genotypes stopping growth in a relatively wet soil, whereas others continue growing until the lower limit of soil-available water. The responses of growth to soil water deficit and evaporative demand share an appreciable part of their genetic control through the colocation of quantitative trait loci as do the responses of the growth of different organs to water deficit. This result may be caused by common mechanisms of action discussed in this paper (particularly, plant hydraulic properties). We propose that expansive growth, putatively linked to hydraulic processes, determines the sink strength under water deficit, whereas photosynthesis determines source strength. These findings have large consequences for plant modeling under water deficit and for the design of breeding programs.Evolution has selected plants that reduce leaf area and seed number under water deficit, allowing production of at least a few viable seeds, in such a way that their alleles are not lost during dry years. Reducing transpiration rate by decreasing leaf area saves soil water during vegetative stages in favor of reproductive stages and keeps plants at a better water status (Boyer, 1985). It is safer than stomatal closure, which is usually accompanied by an increase in leaf temperature (Guilioni et al., 2008). However, this conservative strategy decreases carbon acquisition by plants, with two drawbacks. First, it reduces seed number and yield, crucial traits for agriculture but also for natural environments because this reduces the number of potential offspring. Second, conservative altruistic plants may be outgrown by fast-growing plants in natural environments and excluded from their niche (Gordon and Rice, 2000).As a consequence, opposite strategies can lead to drought tolerance, depending on the drought scenario (Tardieu, 2012). The conservative strategy fits most severe and long drought scenarios. A spender strategy involving maintenance of vegetative and reproductive growth allows higher yields under milder drought scenarios at a risk of reproductive failure under severe stresses. Because most species have evolved in a wide range of climatic conditions (Rebourg et al., 2003; Sharbel et al., 2000; Fatichi et al., 2014), the tradeoffs associated with the control of growth result in a wide genetic variability of responses of growth to water deficit. Indeed, a large genetic variability of growth maintenance has been observed in several species: by Tisné et al. (2010) in Arabidopsis (Arabidopsis thaliana), Welcker et al. (2011) in maize (Zea mays), Parent et al. (2010a) in rice (Oryza sativa), and Pereyra-Irujo et al. (2008) in sunflower (Helianthus annuus).We review here the genetic diversity and the potential mechanisms associated with the control of growth under water deficit and their consequences for the modeling of plant growth and for breeding strategies. 相似文献
7.
Effects of Water and Nutrient Availability on Water Relations, Gas Exchange and Growth Rate of Mature Plants and Resprouts of Arbutus unedo L. 总被引:1,自引:0,他引:1
This study examines the effects of water supply and nutritionon the water status, gas exchange and growth of mature plantsand resprouts of Arbutus unedo, a Mediterranean evergreen shrubadapted to drought and poor nutrition. Mature plants of A. unedorespond to irrigation with increased leaf water potential duringsummer drought, but they show a very conservative use of waterand they do not increase leaf conductance. There is also a verysmall increase in net photosynthesis and growth, which doesnot significantly increase productivity. Resprouts of A. unedo increase water potential, leaf conductance,transpiration rate, net photosynthesis and growth rate in responseto watering, showing a less conservative use of water than matureplants. Increased growth rates, both in mature plants and resprouts,are likely to be due to the higher cell turgor caused by improvedleaf water potential, rather than to increased photosynthesis. The only effect of nutrient addition on mature plants is anincrease in leaf nutrient content, and other aspects of thephysiology and growth of resprouts were unaffected. We thereforeconclude that water is a more limiting factor than nutrientsfor mature plants and resprouts of A. unedo growing in the studyarea. These results support previous data which indicate thathigher growth rates in resprouts than in mature plants of A.unedo are mainly the result of a higher water availability.Copyright1994, 1999 Academic Press Arbutus unedo L., strawberry tree, resprouts, water stress, nutrient availability, water relations, gas exchange, growth rate, regeneration 相似文献
8.
The growth and mortality patterns of the clonal forb Urticadioica were investigated at the level of the individual shootin two growing seasons, 1991 and 1992, in a natural stand. Shootheight and diameter at ground level of each shoot tagged inspring were measured repeatedly five times during the growingseason. Dry weights of these repeatedly measured shoots wereestimated using an allometric relationship between dry weight,height and diameter of harvested shoots. A large decrease inshoot density occurred with stand development from the beginningof the growing season in both the years: (1) shoot survivalrate was about 30% at the end of the growing season; (2) shootmortality rate per 10 x 10 cm subplot between censuses was positivelydependent on shoot density per subplot; (3) the mortality rateof individual shoots was negatively dependent on shoot size(height, diameter and weight) at each growing stage, suggestingone-sided competition between living and dying shoots; (4) shootsize (height, diameter and weight) variability in terms of thecoefficient of variation and skewness decreased in accordancewith shoot mortality. Symmetric competition between living shootswas detected by regression analysis based on a model for individualshoot growth considering the degree of competitive asymmetry.However, the competitive effect on individual shoot growth wasvery small (nearly absent). The mortality pattern of Urticadioica indicates that shoot self-thinning occurred from theearly growing stage as in non-clonal crowded monospecific stands,and contrasts with many clonal plants where shoot self-thinningrarely occurs or, if any, is confined only to a short periodof the later growing stage. The pattern of growth and competitionbetween living shoots of Urtica dioica contrasts with non-clonalcrowded plants undergoing intense competition (usually asymmetric)between individuals, but is a common feature of many clonalplants where shoot competition is supposed to be reduced by'physiological integration' between shoots. These form a newpattern not reported yet for clonal plants. It is pointed outthat clonal plants show a wider spectrum of the growth, competitionand mortality patterns of shoots than non-clonals. Some possiblemechanisms for the pattern of Urtica dioica are discussed.Copyright1995, 1999 Academic Press Shoot competition, diffusion model, individual shoot growth, shoot self-thinning, shoot size variability, Urtica dioica L 相似文献
9.
Carbon Isotope Discrimination,Gas Exchange,and Growth of Sugarcane Cultivars under Salinity 总被引:2,自引:1,他引:2 下载免费PDF全文
Physiological features associated with differential resistance to salinity were evaluated in two sugarcane (Saccharum spp. hybrid) cultivars over an 8-week period during which greenhouse-grown plants were drip-irrigated with water or with NaCI solutions of 2, 4, 8, or 12 decisiemens (dS) m-1 electrical conductivity (EC). The CO2 assimilation rate (A), stomatal conductance (g), and shoot growth rate (SGR) began to decline as EC of the irrigation solution increased above 2 dS m-1. A, g, and SGR of a salinity-resistant cultivar (H69-8235) were consistently higher than those of a salinity-susceptible cultivar (H65-7052) at all levels of salinity and declined less sharply with increasing salinity. Carbon isotope discrimination ([delta]) in tissue obtained from the uppermost fully expanded leaf increased with salinity and with time elapsed from the beginning of the experiment, but [delta] was consistently lower in the resistant than in the susceptible cultivar at all levels of salinity. Gas-exchange measurements suggested that variation in [delta] was attributable largely to variation in bundle sheath leakiness to CO2 ([phi]). Salinity-induced increases in [phi] appeared to be caused by a reduction in C3 pathway activity relative to C4 pathway activity rather than by physical changes in the permeability of the bundle sheath to CO2. A strong correlation between [delta] and A, g, and SGR permitted these to be predicted from [delta] regardless of the cultivar and salinity level. [delta] thus provided an integrated measure of several components of physiological performance and response. 相似文献
10.
Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite. 相似文献
11.
Clipson, N. J. W. 1987. Salt tolerance in the halophyte Suaedamaritima L. Dum. Growth, ion and water relations and gas exchangein response to altered salinity.J. exp. Bot. 38: 19962004. Shoot and root fresh and dry weights and shoot sodium, chlorideand potassium contents were measured and shoot relative growthrates calculated in seedlings of Suaeda maritima over a periodof 11 d following a raising of culture solution salinity from0 to 200 mol m3 NaCl. Growth, growth rates and sodiumand chloride contents, as compared to plants growing in theabsence of salt were increased whilst potassium contents declined.Shoot sodium accumulation rate and the rate of transport ofsodium from root to shoot, osmotic potential, and rates of photosynthesisand transpiration were also measured for up to 72 h after transferof plants originally growing at 0 and 200 mol3 NaCl to200 and 400 mol m3 NaCl respectively. Ion uptake andtransport rates were maximal 6-12 h after transfer and thendeclined to new steady-state levels within 48 h; osmotic potentialswere lowered over a 72 h period on average by approximately1·0 MPa; and after 9 h photosynthetic and transpirationrates were reduced by about 20percnt; and 30% respectively.Results are discussed in terms of the ability of halophytesto adjust to fluctuating salinity and to salt tolerance mechanismsin general. Key words: Suaeda maritima, salinity, gas exchange, growth, ion and water relations 相似文献
12.
High-Temperature Preconditioning and Thermal Shock Imposition Affects Water Relations,Gas Exchange and Root Hydraulic Conductivity in Tomato 总被引:4,自引:0,他引:4
D. Morales P. Rodríguez J. Dell'Amico E. Nicolás A. Torrecillas M.J. Sánchez-Blanco 《Biologia Plantarum》2003,47(2):203-208
Potted tomato plants (Lycopersicon esculentum Mill. cv. Amalia) were submitted to three different treatments: control (C) plants were maintained at day/night temperature
of 25/18 °C; preconditioned plants (PS) were submitted to two consecutive periods of 4 d each, of 30/23 and 35/28 °C before
being exposed to a heat stress (40/33 °C lasting 4 d) and non-preconditioned (S) plants were maintained in the same conditions
as the C plants and exposed to the heat stress. The inhibition of plant growth was observed only in PS plants. Heat stress
decreased chlorophyll content, net photosynthetic rate and stomatal conductance in both PS and S plants. However, PS plants
showed good osmotic adjustment, which enabled them to maintain leaf pressure potential higher than in S plants. Furthermore,
at the end of the recovery period PS plants had higher pressure potential and stomatal conductance than in S plants.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
13.
Cassava (Manihot esculenta, Crantz) is an important staple crop for tropical climates worldwide, including drought-prone environments where it is valued for its reliable yield. The extent to which stress tolerance involves regulation of growth and carbon balance aided by remobilization of carbohydrate from various plant parts was investigated. Plants were grown in 1-meter high pots to permit observation of deep rooting while they were subjected to four soil water regimes over a 30-d period. Transpiration declined abruptly in conjunction with leaf ABA accumulation and severe leaf abscission. In water stressed plants, growth of all plant parts decreased substantially; however, a basal rate of leaf growth continued to provide some new leaves, and although growth of fibrous lateral roots was reduced, main root elongation to deeper regions was only modestly decreased by stress. In leaf blades and petioles, sugars were the predominant form of nonstructural carbohydrate and about one third was in starch; these reserves were depleted rapidly during stress. In contrast, stems and storage roots maintained relatively high starch concentrations and contents per organ until final harvest. Stems gradually lost starch and had sufficient reserves to serve as a prolonged source of remobilized carbohydrate during stress. The amount of starch stored in stems represented about 35 % of the reserve carbohydrate in the plant at the onset of water stress (T0), and 6 % of total plant dry mass. We suggest that this pool of carbohydrate reserves is important in sustaining meristems, growing organs, and respiring organs during a prolonged stress and providing reserves for regrowth upon resumed rainfall. 相似文献
14.
We examined differences in net photosynthetic rate (P
N), transpiration rate (E), water use efficiency (WUE), ratio of substomatal to atmospheric CO2 concentration (C
i/C
a), cuticle thickness (CT), epidermis cell size (ECS), mesophyll cell size (MCS), vascular bundle size (VBS), tissue density (TD), and coefficient of water loss (k) in Sabina vulgaris as related to sex, shoot form, and leaf form. P
N, E, WUE, C
i/C
a, MCS, VBS, and k varied with sex, whereas CT, ECS, and TD did not. These differences in physiology and anatomy between the female and male plants may be closely related with their reproduction behaviour. P
N, E, C
i/C
a, CT, ECS, MCS, and VBS were significantly smaller in the erect shoots than in the prostrate shoots, WUE was just opposite; TD and k did not vary with shoot form. These changes in physiology with shoot form indicate that erect shoots may be more tolerant of water stress than prostrate shoots. P
N, E, C
i/C
a, TD, and k were significantly greater in the spine leaves than in the scale leaves, whereas WUE, CT, ECS, MCS, and VBS followed the opposite trends. The changes in physiology and anatomy with leaf form suggest that scale leaves have higher drought-resistant and water-holding capacities than spine leaves. Measurements of field gas exchange showed that three-year-old seedlings had lower drought-resistance and higher water loss than five-year-old seedlings, which provides some evidence that seedling survival decreases with decreasing plant age. 相似文献
15.
16.
Leaf Gas Exchange and Water Relations in Polylepis tarapacana at Extreme Altitudes in the Bolivian Andes 总被引:2,自引:0,他引:2
García-Núñez C. Rada F. Boero C. González J. Gallardo M. Azócar A. Liberman-Cruz M. Hilal M. Prado F. 《Photosynthetica》2004,42(1):133-138
Stress-induced restrictions to carbon balance, growth, and reproduction are the causes of tree-line formation at a global scale. We studied gas exchange and water relations of Polylepis tarapacana in the field, considering the possible effects of water stress limitations imposed on net photosynthetic rate (P
N). Daily courses of microclimatic variables, gas exchange, and leaf water potential were measured in both dry-cold and wet-warm seasons at an altitude of 4 300 m. Marked differences in environmental conditions between seasons resulted in differences for the dry-cold and wet-warm seasons in mean leaf water potentials (–1.67 and –1.02 MPa, respectively) and mean leaf conductances (33.5 and 58.9 mmol m–2 s–1, respectively), while differences in mean P
N (2.5 and 2.8 mol m–2 s–1, respectively) were not as evident. This may be related to limitations imposed by water deficit and lower photon flux densities during dry and wet seasons, respectively. Hence P. tarapacana has coupled its gas exchange characteristics to the extreme daily and seasonal variations in temperature and water availability of high elevations. 相似文献
17.
Fahim Nawaz M. Yasin Ashraf Rashid Ahmad Ejaz Ahmad Waraich 《Biological trace element research》2013,151(2):284-293
Insufficient stand establishment at early growth stages in wheat (Triticum aestivum L.) due to drought stress is a major problem that limits overall efficiency and yield of crop. Priming of seed is an effective method for raising seed performance and improving tolerance of crops to abiotic stresses especially drought. The seeds of two local wheat cultivars (Kohistan-97 and Pasban-90) were soaked in distilled water or sodium selenate solutions of 25, 50, 75, and 100 μM for 1/2 or 1 h at 25 °C and later re-dried to their original moisture levels before sowing. One-hour priming significantly increased root length stress tolerance index, dry matter stress tolerance index, and total biomass of seedlings; however, no significant effect of changing duration of Se seed priming was observed on plant height stress tolerance index and shoot/root ratio. Among cultivars, Kohistan-97 was found to be more responsive to Se seed treatment as 1 h priming at 100 μM significantly increased its total biomass by 43 % as compared to control treatment. Although biomass of seedlings was not affected with Se seed priming under normal conditions, but it increased significantly with increase in rates of Se under drought stress conditions. One-hour priming at 75 μM increased the total sugar content and total free amino acids in both wheat cultivars. A more significant decrease in soluble proteins of seedlings was observed by 1 h priming than 1/2 h priming under drought stress conditions. 相似文献
18.
Leaf gas exchange and plant water relations of three co-occurring evergreen Mediterranean shrubs species, Quercus ilex L. and Phillyrea latifolia L. (typical evergreen sclerophyllous shrubs) and Cistus incanus L. (a drought semi-deciduous shrub), were investigated in order to evaluate possible differences in their adaptive strategies, in particular with respect to drought stress. C. incanus showed the highest annual rate of net photosynthetic rate (P
N) and stomatal conductance (g
s) decreasing by 67 and 69 %, respectively, in summer. P. latifolia and Q. ilex showed lower annual maximum P
N and g
s, although P
N was less lowered in summer (40 and 37 %, respectively). P. latifolia reached the lowest midday leaf water potential (1) during the drought period (–3.54±0.36 MPa), 11 % lower than in C. incanus and 19 % lower than in Q. ilex. Leaf relative water content (RWC) showed the same trend as 1. C. incanus showed the lowest RWC values during the drought period (60 %) while they were never below 76 % in P. latifolia and Q. ilex; moreover C. incanus showed the lowest recovery of 1 at sunset. Hence the studied species are well adapted to the prevailing environment in Mediterranean climate areas, but they show different adaptive strategies that may be useful for their co-occurrence in the same habitat. However, Q. ilex and P. latifolia by their water use strategy seem to be less sensitive to drought stress than C. incanus. 相似文献
19.
Photosynthetica - During mild water stress (decrease of full water capacity from 60 to 35 %) net photosynthetic rate (P N) of four spring barley and wheat genotypes was about twice lower than that... 相似文献
20.
T. Łoboda 《Photosynthetica》2001,38(3):429-432
During mild water stress (decrease of full water capacity from 60 to 35 %) net photosynthetic rate (P
N) of four spring barley and wheat genotypes was about twice lower than that for unstressed plants and was mainly limited by
non-stomatal factors. Availability of CO2 from intercellular spaces did not change significantly when stomatal conductance (g
s) decreased from 0.25-0.35 to 0.15-0.20 mol(H2O) m−2 s−1. There may be two main processes leading to similar intercellular CO2 concentration (c
i) in stressed and unstressed seedlings despite of twice lower P
N under mild water stress: (a) lower diffusion of CO2 through stomata represented by lower g
s, (b) lower consumption of CO2 by photosynthetic apparatus of stressed plants. Last factor is partially pronounced by lower response of P
N to c
i observed for stressed than for control plants.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献