首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

Soil nutrient dynamics are affected by root-microbe interactions and plant development. We investigated the influence of plant growth stage and arbuscular mycorrhiza fungi (AMF) on carbon (C) and nitrogen (N) rhizodeposition and the transfer into the microbial biomass (MB).

Methods

Pea varieties (Pisum sativum L.) with (Frisson) and without mycorrhiza (P2) were 13C-15N-labelled and harvested at 45, 63, 71, and 95 days after sowing. Mycorrhization, MB, total C, N, 13C, 15N were determined in plant and soil compartments to calculate C and N derived from rhizodeposition (CdfR, NdfR).

Results

Total CdfR increased until pea maturity, NdfR until end of flowering. Their relative contribution steadily decreased over time, accounting for 4–10% of total plant C and N at harvest. Rhizodeposition contributed between 1 and 6% to MB C and N, although 20% of the rhizodeposits were discovered in the MB. Frisson released more NdfR than P2 but it was not possible to accurately estimate AMF effects on C and N due to differences in biomass partitioning.

Conclusions

CdfR followed an even flow from early growth until senescence. NdfR flow ceased after flowering possibly due to N relocation within the plant. Rhizodeposits contribute very little to MB in our study.
  相似文献   

2.
Nitrogen fixation was measured in monocropped sweet-blue lupin (Lupinus angustifolius), lupin intercropped with two ryegrass (Lolium multiflorum) cultivars or with oats (Avena sativa) on an Andosol soil, using the 15N isotope dilution method. At 117 days after planting and at a mean temperature below 10°C, monocropped lupin derived an average of 92% or 195 kg N ha−1 of its N from N2 fixation. Intercropping lupin with cereals increased (p<0.05) the percentage of N derived from atmospheric N2 (% Ndfa) to a mean of 96%. Compared to the monocropped, total N fixed per hectare in intercropped lupin declined approximately 50%, in line with the decrease in seeding rate and dry matter yield. With these high values of N2 fixation, selection of the reference crop was not a problem; all the cereals, intercropped or grown singly produced similar estimates of N2 fixed in lupin. It was deduced from the 15N data that significant N transfer occurred from lupin to intercropped Italian ryegrass but not to intercropped Westerwoldian ryegrass or to oats. Doubling the 15N fertilizer rate from 30 to 60 kg N ha−1 decreased % Ndfa to 86% (p<0.05), but total N fixed was unaltered. These results indicate that lupin has a high potential for N2 fixation at low temperatures, and can maintain higher rates of N2 fixation in soils of high N than many other forage and pasture legumes.  相似文献   

3.
The effects of elevated CO2 concentration upon rhizodeposition of nitrogen were investigated on field-grown Lolium perenne planted in soil cores set into the resident soil of a intensively managed ryegrass sward treated with elevated CO2 for nine consecutive years, under two contrasted N fertilisation regimes (Swiss FACE Experiment). The planted cores were excavated from the ambiant (35 Pa pCO2) and enriched (60 Pa pCO2) rings at two dates during the growing season (spring and early autumn). The cores were brought back to the laboratory for a pulse-labelling of ryegrass shoots with 15NH3, in order to quantify 15N-rhizodeposition.A recovery of 10–16% of the total 15N administred to the plant was recovered in the plant–soil system 48 h after the pulse-labelling; significant amounts of 15N were released into the soil adhering (adhering soil: AS) to the roots (0.44 μg 15N g AS−1 and 0.60 μg g AS−1 in the spring and the autumn samplings, respectively).In the spring sampling, there was no effect of atmospheric CO2 concentration on N rhizodeposition. In the autumn sampling, elevated CO2 stimulated N rhizodeposition that amounted to 7.2 and 5.2 mg 15N m−2, under elevated and ambient CO2, respectively. Nitrogen rhizodeposition was higher at high N (56 gN m−2) than at low N fertilisation (14 gN m−2), whatever the sampling date investigated.The mechanisms by which elevated atmospheric CO2 leads to a stimulation of the net root-released N flux remains to be investigated: was it caused by a higher nitrogen immobilisation by the microbial biomass and a reduced re-assimilation of mineralized N and/or by a stimulation of N efflux from roots? Concomitant to the observed reduction of C rhizodeposition, the stimulation of net N efflux suggests that the quality of root released compounds was modified under elevated CO2 concentration.  相似文献   

4.
This study reports the effect of salinity and inoculation on growth, ion uptake and nitrogen fixation byVigna radiata. A soil ECe level of 7.5 dS m−1 was quite detrimental causing about 60% decline in dry matter and grain yield of mungbean plants whereas a soil ECe level of 10.0 dS m−1 was almost toxic. In contrast most of the studied strains of Rhizobium were salt tolerant. Nevertheless, nodulation, nitrogen fixation and total nitrogen concentration in the plant was drastically affected at high salt concentration. A noticeable decline in acetylene reduction activity occurred when salinity level increased to 7.5 dS m−1.  相似文献   

5.
In many temperate ecosystems, rates of atmospheric nitrogen deposition remain high over winter despite decreased agricultural activity over this season. The extent to which this nitrogen is accessible for plant growth over the following growing season may depend strongly on uptake by plants and soil microorganisms from late fall through early spring, when the majority of aboveground plant tissue has senesced. We added Ca(15NO3)2 (5 atom %15N) at a rate of 2 g m?2 of N (corresponding to 100 mg 15N m?2) to the surface of plots in a temperate old field during either late fall, winter, spring melt or early spring. We quantified the recovery of excess 15N in the soil microbial biomass and soil extracts following spring melt and in aboveground plant tissue at the peak of the plant growing season. Nitrate additions had no significant effect on total aboveground plant biomass, relative species abundance or percent tissue nitrogen. However, mean excess 15N in aboveground plant tissue varied significantly among treatments, with values of 8.1, 2.6, 0.3 and 7.3 mg m?2 for late fall, winter, spring melt and early spring addition plots, respectively. Corresponding values of excess 15N were 3.1, 1.4 and 0.2 mg m?2 in microbial biomass, and 0.17, 0.07 and 0.03 mg m?2 in soil extracts, for late fall, winter and spring melt addition plots, respectively. Overall, these results indicate that nitrogen retention from late fall through early spring may depend highly on plant uptake in this system, and that only a small fraction of the nitrogen that accumulates in the winter snow pack may be available to plants.  相似文献   

6.
Leaf growth responses to N supply and leaf position were studied using widely-spaced sunflower plants growing under field conditions. Both N supply (range 0.25 to 11.25 g added N per plant) and leaf position significantly (p=0.001) affected maximum leaf area (LAmax) of target leaves through variations in leaf expansion rate (LER); effects on duration of expansion were small. Specific leaf nitrogen (SLN, g N m-2) fell quite rapidly during the initial leaf expansion phase (LA < 35% LAmax) but leveled off during the final 65% increase of leaf area. This pattern held across leaf positions and N supply levels. Leaf nitrogen accumulation after 35% LAmax continued up to achievement of LAmax; reductions in the higher SLN characteristic of the initial phase were insufficient to cover the nitrogen requirements for expansion during the final phase. LER in the quasi-linear expansion phase (35 to 100% of LAmax) was strongly associated with SLN above a threshold that varied with leaf position (mean 1.79±0.225 g N m-2). This contrasts with the response of photosynthesis at high irradiance to SLN, which has previously been shown to have a threshold of 0.3 g N m-2; in the present work saturation of photosynthetic rate was evident when SLN reached 1.97 g N m-2. Thus, once the area of a leaf exceeds 35% of LAmax, expansion proceeds provided SLN values are close to the levels required for maximum photosynthesis. However, growth of leaves during the initial expansion phase ensures a minimum production of leaf area even at low N supply levels.  相似文献   

7.
Carbon-14 pulse labeling technique was used to study the effect of rooting medium salinity and form and availability of N on growth and rhizodeposition of wheat (Triticum aestivum L.). Thirty days old plants grown in continuously aerated Arnon and Hoagland nutrient solution were subjected to 14C pulse labeling for 24 h and transferred to aqueous rooting medium containing 0, 150, and 300 mM NaCl in all combinations with different forms (calcium nitrate, ammonium sulphate, and ammonium nitrate) and amounts (0.5, 1.0, 1.5, and 2.0 times the standard N concentration (150 ppm) of Arnon and Hoagland plant growth medium). Plant samples immediately after pulse labeling, following 7 days of growth under different rooting medium conditions, and the freeze-dried rooting medium were analyzed for total C and 14C. Length and fresh/dry weight of root and shoot portions and calculated values of unaccounted 14C were determined. Presence of NaCl in the rooting medium led to a decrease in root and shoot portions. However, NO3 -fed plants showed better growth than NH4 +-fed plants at all the three salinity levels. Salinity in rooting medium led to higher rhizodeposition and lower loss of 14C. Relatively higher proportion of 14C was released as rhizodeposits and retained in root/shoot portions of plants fed with NH4 + or NH4 ++NO3 , than those with NO3 , while less was respired. The specific activity of the rhizodeposits (kBq 14C g−1 C) was also higher under saline conditions. The rhizodeposits in NH4 +-fed plants were more highly labeled as compared to NO3 -plants.  相似文献   

8.
Iodine is vital to human health, and iodine biofortification programs help improve human intake through plant consumption. There is no research on whether iodine biofortification influences basic plant physiological processes. Because nitrogen (N) uptake, utilization, and accumulation are determining factors in crop yield, the aim of this work was to establish the effect of the application of different doses (20, 40, and 80 μM) and forms of iodine (iodate [IO3 ] vs. Iodide [I]) on N metabolism and photorespiration. For this study we analyzed shoot biomass and the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AAT), glutamate dehydrogenase (GDH), glycolate oxidase (GO), glutamate:glyoxylate aminotransferase (GGAT), serine:glyoxylate aminotransferase (SGAT), hydroxypyruvate reductase (HR) and catalase (CAT), nitrate (NO3 ), ammonium (NH4 +), organic and total N, amino acids, proteins, serine (ser), malate, and α-ketoglutaric acid in edible lettuce leaves. Application of I at doses of at least 40 μM reduced the foliar concentration of NO3 with no decrease in biomass production, which may improve the nutritional quality of lettuce plants. In contrast, the application of 80 μM of I is phytotoxic for lettuce plants, reducing the biomass, foliar concentration of organic N and NO3 , and NR and GDH activities. HR activity is significantly inhibited with all doses of I; the least inhibition was at 80 μM. This may involve a decrease in the incorporation of carbonated skeletons from photorespiration into the Calvin cycle, which may be partially associated with the biomass decrease. Finally, the application of IO3 increases biomass production, stimulates NO3 reduction and NH4 + incorporation (GS/GOGAT), and optimizes the photorespiratory process. Hence, this appears to be the most appropriate form of iodine from an agronomic standpoint.  相似文献   

9.
It is important to quantify and understand the consequences of elevated temperature and carbon dioxide (CO2) on reproductive processes and yield to develop suitable agronomic or genetic management for future climates. The objectives of this research work were (a) to quantify the effects of elevated temperature and CO2 on photosynthesis, pollen production, pollen viability, seed‐set, seed number, seeds per pod, seed size, seed yield and dry matter production of kidney bean and (b) to determine if deleterious effects of high temperature on reproductive processes and yield could be compensated by enhanced photosynthesis at elevated CO2 levels. Red kidney bean cv. Montcalm was grown in controlled environments at day/night temperatures ranging from 28/18 to 40/30 °C under ambient (350 µmol mol?1) or elevated (700 µmol mol?1) CO2 levels. There were strong negative relations between temperature over a range of 28/18–40/30 °C and seed‐set (slope, ? 6.5% °C?1) and seed number per pod (? 0.34 °C?1) under both ambient and elevated CO2 levels. Exposure to temperature > 28/18 °C also reduced photosynthesis (? 0.3 and ? 0.9 µmol m?2 s?1 °C?1), seed number (? 2.3 and ? 3.3 °C?1) and seed yield (? 1.1 and ? 1.5 g plant?1 °C?1), at both the CO2 levels (ambient and elevated, respectively). Reduced seed‐set and seed number at high temperatures was primarily owing to decreased pollen production and pollen viability. Elevated CO2 did not affect seed size but temperature > 31/21 °C linearly reduced seed size by 0.07 g °C?1. Elevated CO2 increased photosynthesis and seed yield by approximately 50 and 24%, respectively. There was no beneficial interaction of CO2 and temperature, and CO2 enrichment did not offset the negative effects of high temperatures on reproductive processes and yield. In conclusion, even with beneficial effects of CO2 enrichment, yield losses owing to high temperature (> 34/24 °C) are likely to occur, particularly if high temperatures coincide with sensitive stages of reproductive development.  相似文献   

10.
Plant growth is often affected with hampered physiological and cellular functioning due to salinity and drought stress. To assess the effectiveness of plant bioregulators (PBRs) in mitigating abiotic stresses, a double spilt plot field study was conducted with three replications at ICAR-CSSRI, research farm, Nain, Panipat. The study comprised of three deficit irrigation regimes viz., 100, 80 and 60% of crop evapo-transpiration (ETc) (I1, I2 and I3), four levels of irrigation water salinity i.e. 2, 4, 8, 12 dS m−1 (S0, S1, S2 and S3) and two PBRs salicylic acid (SA; G1) and thiourea (TU; G2). Irrigations, as per regimes and salinity, were applied at identified critical stages of wheat and if needed in pearl millet. PBRs were applied as seed priming and foliar sprays at two sensitive stages of respective crops. The trend of plant height, and physiological and biochemical traits was similar under different treatments at both stages, but differed significantly only at reproductive stage. Water deficit caused significant reduction in pearl millet (5.1%) and wheat (6.7%) grain yields. The reduction in grain yield under 8 and 12 dS m−1 was 12.90 and 22.43% in pearl millet and 7.68 and 32.93% in wheat, respectively compared to 2 dS m−1. Application of either SA (G1) or TU (G2) significantly enhanced plant height and grain yield, but magnitude of the increment was higher with SA in pearl millet and with TU in wheat. Application of SA and TU increased grain yield by 14.42 and 12.98 in pearl millet, and 12.90 and 17.36% in wheat, respectively. The plant height, RWC, TC, MI, LP, proline, Fv/Fm and Na/K ratio significantly reduced by salinity stress in pearl millet and both water and salinity stress in wheat. Application of both PBRs proved beneficial to mitigate adverse effect of water deficit and salt stress by significantly improving physiological traits, biochemical traits and ultimately grain yield in both crops.  相似文献   

11.
This work aims to study the effect of foliar spraying of three anti-transpirants i.e., A­1: tryptophan (Tri), A2: potassium silicate (KS), A3: chitosan (Chi) as well as A0: control (Tap water) under three irrigation regimes, I1: 2400, I2: 3600, and I3: 4800 m3ha?1 on the quality and production of faba bean crop and its nutrient contents. The study was carried out during two successive winter seasons of 2018/2019 and 2019/2020. Drought stress affected the average performance of all studied traits as it reduced seed yield and traits, as a result of the decrease in chlorophyll related to photosynthesis, protein, carbohydrates, total phenols, amino acids, macronutrients (N, P, and K), micronutrient contents (Fe, Mn, and Zn) and their absorption. The single foliar spraying of faba bean with tryptophan 75 ppm, potassium silicate at 100 ppm, or chitosan at 750 ppm significantly increased all studied traits and reduced the drought stress compared to control under different irrigation systems. We recommended using a foliar spray of chitosan (750 ppm) on faba bean plants under an irrigation level of 4800 m3 led to an improvement in the physiological properties of the plant, i.e., plant height, the number of branches/plants, and the number of plants, pods plant?1, the number of seed pods?1, the weight of 100 seeds and seed yield ha?1 increased with relative increase about 42.29, 89.47, 28.85, 75.91, 24.43, and 306.48% compared to control. The quality properties also improved, as the total chlorophyll, protein, carbohydrates, total phenols, and amino acids were higher than the control with a relative increase of 63.83, 29.58, 27.72, 37.54, and 64.19%. Additionally, an increase in the contents and uptake of macronutrients (N, P, and K), and micronutrients (Fe, Mn, Zn) and their absorption. The increase was estimated with 29.41, 75.00, 16.56, 431.17, 630.48, 72.68%, 22.37, 35.69, 42.33, 397.63, 452.58, and 485.94% about the control. This was followed by potassium silicate (100 ppm), then tryptophan (75 ppm) compared to the control, which recorded the minimum values ??in plant traits.  相似文献   

12.
Trinsoutrot  I.  Jocteur Monrozier  L.  Cellier  J.  Waton  H.  Alamercery  S.  Nicolardot  B. 《Plant and Soil》2001,234(1):61-72
The biochemical composition of stems, pod walls and roots of oilseed rape (Brassica napus L.) plants, grown in a growth chamber with two levels of N fertiliser, was assessed by two global methods, i.e., serial extraction with the Van Soest's technique and temperature-programmed pyroanalysis (TP-Py). Statistical analysis of the effect of various parameters on the proportion of soluble components, hemicellulose, cellulose and lignin-like components in oilseed rape organs showed that the composition of plant materials depended on the N nutrition conditions during plant growth. Contents of soluble and hemicellulose fractions were affected by the technique used. Elsewhere, both global techniques resulted in similar proportions of skeletal cellulose (respectively 41 and 36% in low and high N stems, 37 and 30% in low and high N pod walls, 32 and 29% in low and high N roots) and of lignin-like components which ranged from about 7% in high N stems and pod walls to 16% in low N roots. Spectroscopy by FTIR showed a significant band at 1650 cm–1 (amide I in proteins) in the root material (organ with the lowest C/N ratio) and the absence of lignin-specific bands. Carbon distribution by 13C NMR CP/MAS of labelled plants indicated that 60–64% was (cellulose + hemicellulose)-C, close to the values obtained by global methods. The proportion of aromatic-C (110–160 ppm) and phenolic ether was higher in roots than in stems and pod walls. Organs from oilseed rape plants with higher N contents exhibited a larger proportion of C in the 171 ppm chemical shift attributed to the peptide bond. The concomitance of a high level of aromatic and proteinaceous components in roots would reveal the presence of tannin–protein complexes in addition with true lignin.  相似文献   

13.
Nodulation, nitrogen (N2) fixation and xylem sap composition were examined in sand cultured plants of Bambara groundnut (Vigna subterranea L.) and Kersting's bean (Macrotyloma geocarpum L.) inoculated with Bradyrhizobium strain CB756 and supplied via the roots for a 4 week period from the third week onwards with different levels of (15N)-nitrate (0–15 mM). The separate contributions of nitrate and N2 to plant nitrogen were measured by isotope dilution. Increasing levels of nitrate inhibited nodule growth (measured as dry matter or nodule N) of both species parallel with decreased dependence on symbiotically-fixed N. Specific nodule activity (N2 fixed g nodule dry−1 d−1 of nodules) was reduced progressively with time in V. subterranea at higher (5 or 15 mM) levels of NO3, but this was not so for M. geocarpum. Root xylem bleeding sap of both species showed ureides (allantoin and allantoic acid) as predominant (>90%) solutes of nitrogen when plants were relying solely on atmospheric N. Levels of ureide and glutamine decreased and those of asparagine and nitrate in xylem increased with increasing level of applied nitrate. Relative levels of xylem ureide-N were positively correlated (R2=0.842 for M. geocarpum and 0.556 for V. subterranea), and the ratio of asparagine to glutamine in xylem exudate negatively correlated (R2=0.955 for M. geocarpum and 0.736 for V. subterranea) with plant reliance on nitrogen fixation. The data indicate that xylem sap analyses might be useful for indirect field assays of nitrogen fixation by the species and that Kersting's bean might offer some potential as a symbiosis in which N2 fixation is relatively tolerant of soil N.  相似文献   

14.
Leaf angles, frequency distribution of leaf area inclinations, leaf area index, amount of intercepted radiation, biological, vegetative and grain yields and grain yield proportion of biological yield were determined in maize stands of two population densities, 55 555 plants ha?1 (S 1), and 80 000 plants ha?1 (S 2). Also the effect of the artificial change of leaf angle upon these indices was studied. We classified normal maize stand (N) as the interstage between a planophile and a plagiophile type of canopy, that with artificially changed leaf angle (V) as an erectophile type of canopy. The relative interception of the incoming radiation in the variantsV S 1 andV S 2 was lower than in the variantsN S 1 andN S 2. The variantsV in comparison with variants N increased grain yield and biological yield.  相似文献   

15.
The Ball–Berry (BB) model of stomatal conductance (gs) is frequently coupled with a model of assimilation to estimate water and carbon exchanges in plant canopies. The empirical slope (m) and ‘residual’ gs (g0) parameters of the BB model influence transpiration estimates, but the time‐intensive nature of measurement limits species‐specific data on seasonal and stress responses. We measured m and g0 seasonally and under different water availability for maize and sunflower. The statistical method used to estimate parameters impacted values nominally when inter‐plant variability was low, but had substantial impact with larger inter‐plant variability. Values for maize (m = 4.53 ± 0.65; g0 = 0.017 ± 0.016 mol m?2 s?1) were 40% higher than other published values. In maize, we found no seasonal changes in m or g0, supporting the use of constant seasonal values, but water stress reduced both parameters. In sunflower, inter‐plant variability of m and g0 was large (m = 8.84 ± 3.77; g0 = 0.354 ± 0.226 mol m?2 s?1), presenting a challenge to clear interpretation of seasonal and water stress responses – m values were stable seasonally, even as g0 values trended downward, and m values trended downward with water stress while g0 values declined substantially.  相似文献   

16.
Imsande  John  Schmidt  Jean M. 《Plant and Soil》1998,202(1):41-47
During pod filling, a grain legume remobilizes vegetative nitrogen and sulfur to its developing fruit. This study was conducted to determine whether different nitrogen sources affected N and S assimilation and remobilization during pod filling. Well-nodulated plants fed 1.0 mM KNO3, 0.5 mM urea, or 2.5 mM urea assimilated 0%, 37%, or 114% more N, respectively, and 25%, 46%, or 56% more S, respectively, than did the average non-nodulated control plant fed 5.0 mM KNO3. Thus, N source during pod filling greatly affected both N and S assimilation. Depending upon N source, plant N concentration during pod filling decreased from 2.96% to between 1.36% and 1.82%. Non-nodulated control plants fed 5.0 mM KNO3 had the highest residual N at harvest. During the same treatments, plant S concentration decreased from 0.246% to a relatively uniform 0.215%. Thus, during pod filling, vegetative N was seemingly remobilized more efficiently (38–54%) than was S (13%). N source also affected seed yield and seed quality. Non-nodulated control plants fed 5.0 mM KNO3 produced the lowest yield (21.1 g seeds plant-1), whereas well nodulated plants fed 1.0 mM KNO3, 0.5 mM urea, or 2.5 mM urea produced yields of 26.2 g, 31.8 g, and 36.7 g seeds plant-1, respectively. Non-nodulated plants fed 2.5 mM urea yielded 28.6 g of seeds plant-1. Seed N concentrations of non-nodulated plants and nodulated plants fed 2.5 mM urea were high, 6.30% and 6.11% N, respectively, whereas their seed S concentrations were low, 0.348% and 0.330% S, respectively. N sources that produced both a relatively high seed yield and seed N concentration (i.e., a relatively high total seed N plant-1) produced a proportionately smaller increase in total seed sulfur. Consequently, seed quality, as judged solely by seed S concentration, was lowered.  相似文献   

17.
《Aquatic Botany》1987,27(3):217-227
Evapotranspiration (E) by Eichhornia crassipes (Mart.) Solms and Typha latifolia L. growing in 5.77-m2 tanks and evaporation (E0) from control tanks were measured over a 6-month period at Auburn, Alabama (32.5° N latitude). The E/E0 ratios for E. crassipes and T. latifolia were 1.31–2.52 (mean = 1.75) and 1.05–2.50 (mean = 1.62), respectively. Evidence is presented which demonstrates that E/E0 values were similar to those which occur in natural populations of the two species. Both plant characteristics and meteorological variables influenced evapotranspiration. Equations for estimating evapotranspiration were EEc = (4.19 + (7.32 × 10−8) S2 + (0.00035 × 10−3)H2)D R2 = 0.92ETl = (1.43 + (2.79 × 10−15)S4 + 1.44L)D R2 = 0.93 where EEc and ETl are monthly water loss in mm/month for E. crassipes and T. latifolia, respectively; S is the average daily solar radiation in W m−2 integrated over 24 h for the month; H is plant height in m; L is leaf area index (dimensionless); and D is the number of days in the month.  相似文献   

18.
Hemp (Cannabis sativa L.) may be a suitable crop for the bio‐economy as it requires low inputs while producing a high and valuable biomass yield. With the aim of understanding the physiological basis of hemp's high resource‐use efficiency and yield potential, photosynthesis was analysed on leaves exposed to a range of nitrogen and temperature levels. Light‐saturated net photosynthesis rate (Amax) increased with an increase in leaf nitrogen up to 31.2 ± 1.9 μmol m?2 s?1 at 25 °C. The Amax initially increased with an increase in leaf temperature (TL), levelled off at 25–35 °C and decreased when TL became higher than 35 °C. Based on a C3 leaf photosynthesis model, we estimated mesophyll conductance (gm), efficiency of converting incident irradiance into linear electron transport under limiting light (κ2LL), linear electron transport capacity (Jmax), Rubisco carboxylation capacity (Vcmax), triose phosphate utilization capacity (Tp) and day respiration (Rd), using data obtained from gas exchange and chlorophyll fluorescence measurements at different leaf positions and various levels of incident irradiance, CO2 and O2. The effects of leaf nitrogen and temperature on photosynthesis parameters were consistent at different leaf positions and among different growth environments except for κ2LL, which was higher for plants grown in the glasshouse than for those grown outdoors. Model analysis showed that compared with cotton and kenaf, hemp has higher photosynthetic capacity when leaf nitrogen is <2.0 g N m?2. The high photosynthetic capacity measured in this study, especially at low nitrogen level, provides additional evidence that hemp can be grown as a sustainable bioenergy crop over a wide range of climatic and agronomic conditions.  相似文献   

19.
Characterisation of novel S-alleles from cherry (Prunus avium L.)   总被引:1,自引:0,他引:1  
In plant populations exhibiting gametophytic self-incompatibility, individuals harbouring rare S alleles are likely to have a reproductive advantage over individuals having more common alleles. Consequently, determination of the self-incompatibility haplotype of individuals is essential for genetic studies and the development of informed management strategies. This study characterises six new S alleles identified in wild cherry (Prunus avium L.). Investigations to determine the S genotype of individuals in recently planted woodland through length polymorphisms of introns associated with the stylar S-RNase gene and the pollen SFB gene revealed six S intron profiles which did not correspond to those of known S alleles. These are now attributed to S 27 to S 32 . Consensus primers, annealing in the S-RNase sequence coding for the signal peptide and C5 regions, were used to isolate the S-RNase alleles associated with the novel S intron profiles. The proteins corresponding to the new alleles were separated by isoelectric focusing from stylar extracts and their pI values determined. Similarities between the deduced amino acid sequence for the new alleles isolated and other cherry S-RNase sequences available on the databases ranged from 40% to 86%. Amplification products for SFB introns ranged from 172 to 208bp. New sequence regions exposed to positive selection were identified and the significance of the PS3 region reinforced. A phylogenetic relationship between P. avium S-RNases for S 10 and S 13 and between corresponding SFB alleles may indicate co-evolution of allele specificities of these two genes. The nucleotide sequences reported in this paper have been submitted to the EMBL/GenBank database under the following accession numbers: S 27 (DQ266439), S 28 (DQ266440), S 29 (DQ266441), S 30 (DQ266442), S 31 (DQ266443), S 32 (DQ266444).  相似文献   

20.
Summary A population genetic model is proposed for the reproduction of self-incompatible inbred lines in which incompatibility is controlled by 1–4 loci. From theoretical considerations it was expected that: a) with the random matings of lines In, (obtained by self-pollination of n generations), some lines would be cross-incompatible (all the plants within these lines would be homozygous for S-genes) and the rest would be cross-compatible (retain heterozygosity for one or more S-genes); b) in the case of random matings of Unes InGm (obtained by self-pollination of n generations and by random pollination for m generations), some lines would be cross-incompatible (heterozygous for one S-gene) and the rest would be cross-compatible (retain heterozygosity for two or more S-genes); c) the relative proportion of sterile plants, obtained by random pollination of cross-compatible lines, would be related to the number of segregating S-loci and to the generation in which the lines are studied.Forty-four inbred lines of sugar beet derived from self-incompatible plants of a population were analysed. Comparisons of the observed values with the theoretically expected ones demonstrated that: a) of 18 In (I1-I4) lines, 6 were cross-incompatible (homozygous for S-genes) and 12 were cross-compatible having one S-locus segregating in 7 lines and two S-loci segregating in 5 lines; b) of 22 InG1 (I2G1 and I3G1) lines, one line was self-fertile, 7 lines were cross-incompatible (heterozygous for one S-loci) and 14 lines were cross-compatible (heterozygous for two S-loci).No line was found to have three or more segregating S-loci. The results of this population genetics analysis of self- and cross-incompatibility in sugar beet comply with diallel analysis data on sugar beet incompatibility and indicates that it is under the gametophytic control of two basic S-loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号