共查询到20条相似文献,搜索用时 0 毫秒
1.
《Animal : an international journal of animal bioscience》2016,10(11):1883-1889
The production of protein from animal sources is often criticized because of the low efficiency of converting plant protein from feeds into protein in the animal products. However, this critique does not consider the fact that large portions of the plant-based proteins fed to animals may be human-inedible and that the quality of animal proteins is usually superior as compared with plant proteins. The aim of the present study was therefore to assess changes in protein quality in the course of the transformation of potentially human-edible plant proteins into animal products via livestock production; data from 30 Austrian dairy farms were used as a case study. A second aim was to develop an approach for combining these changes with quantitative aspects (e.g. with the human-edible feed conversion efficiency (heFCE), defined as kilogram protein in the animal product divided by kilogram potentially human-edible protein in the feeds). Protein quality of potentially human-edible inputs and outputs was assessed using the protein digestibility-corrected amino acid score and the digestible indispensable amino acid score, two methods proposed by the Food and Agriculture Organization of the United Nations to describe the nutritional value of proteins for humans. Depending on the method used, protein scores were between 1.40 and 1.87 times higher for the animal products than for the potentially human-edible plant protein input on a barn-gate level (=protein quality ratio (PQR)). Combining the PQR of 1.87 with the heFCE for the same farms resulted in heFCE×PQR of 2.15. Thus, considering both quantity and quality, the value of the proteins in the animal products for human consumption (in this case in milk and beef) is 2.15 times higher than that of proteins in the potentially human-edible plant protein inputs. The results of this study emphasize the necessity of including protein quality changes resulting from the transformation of plant proteins to animal proteins when evaluating the net contribution of livestock to the human food supply. Furthermore, these differences in protein quality might also need to be considered when choosing a functional unit for the assessment of environmental impacts of the production of different proteins. 相似文献
2.
Zehetmeier M Baudracco J Hoffmann H Heißenhuber A 《Animal : an international journal of animal bioscience》2012,6(1):154-166
Milk yield per cow has continuously increased in many countries over the last few decades. In addition to potential economic advantages, this is often considered an important strategy to decrease greenhouse gas (GHG) emissions per kg of milk produced. However, it should be considered that milk and beef production systems are closely interlinked, as fattening of surplus calves from dairy farming and culled dairy cows play an important role in beef production in many countries. The main objective of this study was to quantify the effect of increasing milk yield per cow on GHG emissions and on other side effects. Two scenarios were modelled: constant milk production at the farm level and decreasing beef production (as co-product; Scenario 1); and both milk and beef production kept constant by compensating the decline in beef production with beef from suckler cow production (Scenario 2). Model calculations considered two types of production unit (PU): dairy cow PU and suckler cow PU. A dairy cow PU comprises not only milk output from the dairy cow, but also beef output from culled cows and the fattening system for surplus calves. The modelled dairy cow PU differed in milk yield per cow per year (6000, 8000 and 10 000 kg) and breed. Scenario 1 resulted in lower GHG emissions with increasing milk yield per cow. However, when milk and beef outputs were kept constant (Scenario 2), GHG emissions remained approximately constant with increasing milk yield from 6000 to 8000 kg/cow per year, whereas further increases in milk yield (10 000 kg milk/cow per year) resulted in slightly higher (8%) total GHG emissions. Within Scenario 2, two different allocation methods to handle co-products (surplus calves and beef from culled cows) from dairy cow production were evaluated. Results showed that using the 'economic allocation method', GHG emissions per kg milk decreased with increasing milk yield per cow per year, from 1.06 kg CO2 equivalents (CO2eq) to 0.89 kg CO2eq for the 6000 and 10 000 kg yielding dairy cow, respectively. However, emissions per kg of beef increased from 10.75 kg CO2eq to 16.24 kg CO2eq due to the inclusion of suckler cows. This study shows that the environmental impact (GHG emissions) of increasing milk yield per cow in dairy farming differs, depending upon the considered system boundaries, handling and value of co-products and the assumed ratio of milk to beef demand to be satisfied. 相似文献
3.
草原畜牧业生产系统是一个涉及环境、经济、社会多层面、且系统内部气候-土壤-草地-家畜-管理之间相互作用的复杂的社会生态系统。草原不仅为人类提供所需要的肉奶,也提供了多种生态系统服务。然而,草原畜牧业也是主要的温室气体排放源之一。减缓畜牧业温室气体排放的研究已成为当前气候变化科学研究关注的焦点。综述了国内外草原畜牧业温室气体排放研究现状,指出现有研究的不足主要集中在以下3个方面:(1)虽然生命周期评价方法广泛应用于草原畜牧业温室气体排放研究,但是存在诸多问题,导致目前的研究框架体系尚不完善,特别体现在以下几方面:是否考虑外部输入、是否考虑土壤有机碳、畜牧业温室气体排放强度指标的选择等;(2)缺乏单一环节减缓措施对草原畜牧业整体温室气体减排效果的研究;(3)目前对影响草原畜牧业温室气体排放强度的因素主要集中在生态系统层面的分析,忽略了社会系统的作用,无法反映社会系统与生态系统的相互反馈机制,导致机制阐释不完善。综上所述,未来仍需从以下三方面开展研究:(1)完善草原畜牧业研究框架体系及提升研究方法;(2)加强对单一环节减缓措施对草原畜牧业温室气体整体减排效果的综合评价;(3)基于社会生态系统的角度深入研究影响草原畜牧业温室气体排放强度差异的机制。一方面,这有助于深入理解草原畜牧业温室气体排放强度情况,也为低碳型草原畜牧业发展政策的制定提供思路借鉴;另一方面对于科学合理的可持续利用草场和恢复草地生态环境均具有重要意义。 相似文献
4.
J. W. Owens 《Journal of Industrial Ecology》1997,1(1):37-49
Life-cycle assessment (LCA) is a technique for systematically analyzing a product from cradle-to-grave, that is, from resource extraction through manufacture and use to disposal. LCA is a mixed or hybrid analytical system. An inventory phase analyzes system inputs of energy and materials along with outputs of emissions and wastes throughout life cycle, usually as quantitative mass loadings. An impact assessment phase then examines these loadings in light of potential environmental issues using a mixed spectrum of qualitative and quantitative methods. The constraints imposed by inventory's loss of spatial, temporal, dose-response, and threshold information raise concerns about the accuracy of impact assessment. The degree of constraint varies widely according to the environmental issue in question and models used to extrapolate the inventory data. LCA results may have limited value in two areas: (I) local and/ortransient biophysical processes and (2) issues involving biological parameters, such as biodiversity, habitat alteration, and toxicity. The end result is that impact assessment does not measure actual effects or impacts, nor does it calculate the likelihood of an effect or risk Rather, LCA impact assessment results are largely directional environmental indicaton. The accuracy and usefulness of indicators need to be assessed individually and in a circumstance-specific manner prior to decision making. This limits LCAs usefulness as the sole basis for comprehensive assessments and the comparisons of alternatives. In conclusion, LCA may identify potential issues from a systemwide perspective, but more-focused assessments using other analytical techniques are often necessary to resolve the issues. 相似文献
5.
《Animal : an international journal of animal bioscience》2014,8(8):1329-1338
Feed production is a significant source of greenhouse gas (GHG) emissions from dairy production and demands large arable and pasture acreage. This study analysed how regional conditions influence GHG emissions of dairy feed rations in a life cycle perspective, that is the carbon footprint (CF) and the land area required. Factors assessed included regional climate variations, grass/clover silage nutrient quality, feedstuff availability, crop yield and feed losses. Using the Nordic feed evaluation model NorFor, rations were optimised for different phases of lactation, dry and growing periods for older cows, first calvers and heifers by regional feed advisors and combined to annual herd rations. Feed production data at farm level were based on national statistics and studies. CF estimates followed standards for life cycle assessment and used emissions factors provided by IPCC. The functional unit was ‘feed consumption to produce 1 kg energy corrected milk (ECM) from a cow with annual milk yield of 9 900 kg ECM including replacement animals and feed losses’. Feed ration CF varied from 417 to 531 g CO2 e/kg ECM. Grass/clover silage contributed more than 50% of total GHG emissions. Use of higher quality silage increased ration CF by up to 5% as a result of an additional cut and increased rates of synthetic N-fertiliser. Domestically produced horse bean (Vicia faba), by-products from the sugar industry and maize silage were included in the rations with the lowest CF, but horse bean significantly increased ration land requirement. Rations required between 1.4 to 2 m2 cropland and 0.1 to 0.2 m2/kg semi-natural grassland per kg ECM and year. Higher yield levels reduced ration total CF. Inclusion of GHG emissions from land use change associated with Brazilian soya feed significantly increased ration CF. Ration CF and land use depended on ration composition, which was highly influenced by the regional availability and production of feedstuffs. The impact of individual feedstuffs on ration CF varies due to, for example, cultivation practices and climate conditions and feedstuffs should therefore be assessed in a ration and regional perspective before being used to decrease milk CF. Land use efficiency should be considered together with ration CF, as these can generate goal conflicts. 相似文献
6.
7.
The life-cycle energy, greenhouse gas emissions, and costs of a contemporary 2,450 sq ft (228 m3 ) U.S. residential home (the standard home, or SH) were evaluated to study opportunities for conserving energy throughout pre-use (materials production and construction), use (including maintenance and improvement), and demolition phases. Home construction and maintenance materials and appliances were inventoried totaling 306 metric tons. The use phase accounted for 91% of the total life-cycle energy consumption over a 50-year home life. A functionally equivalent energy-efficient house (EEH) was modeled that incorporated 11 energy efficiency strategies. These strategies led to a dramatic reduction in the EEH total life-cycle energy; 6,400 GJ for the EEH compared to 16,000 GJ for the SH. For energy-efficient homes, embodied energy of materials is important; pre-use energy accounted for 26% of life-cycle energy. The discounted (4%) life-cycle cost, consisting of mortgage, energy, maintenance, and improvement payments varied between 426,700 and 454,300 for a SH using four energy price forecast scenarios. In the case of the EEH, energy cost savings were offset by higher mortgage costs, resulting in total life-cycle cost between 434,100 and 443,200. Life-cycle greenhouse gas emissions were 1,010 metric tons CO2 equivalent for an SH and 370 metric tons for an EEH. 相似文献
8.
Deepak Sivaraman Sergio Pacca Kimberly Mueller Jessica Lin 《Journal of Industrial Ecology》2007,11(3):77-91
This study is a comparative life-cycle assessment (LCA) of two competing digital video disc (DVD) rental networks: the e-commerce option, where the customer orders the movies online, and the traditional business option, where the customer goes to the rental store to rent a movie. The analytical framework proposed is for a customer living in the city of Ann Arbor, Michigan in the United States. The primary energy and environmental performance for both networks are presented using a multicriterion LCA. The package selected by the traditional network is responsible for 67% of the difference in total energy consumption of the two alternatives. Results show that the e-commerce alternative consumed 33% less energy and emitted 40% less CO2 than the traditional option. A set of sensitivity analyses test the influence of distance traveled, transportation mode, and reuse of DVD and DVD packaging on the final results. The mode of transportation used by the customer in the traditional business model also affects global emissions and energy consumption. The customer walking to the store is by far the best option in the traditional network; however, the e-commerce option performed comparatively better despite all transportation modes tested. A novel economic indicator, ESAL, is used to compare different transportation modes based on the level of stress exerted on the pavement. The two networks are compared on the basis of cost accounting; consistent with its energy and environmental advantages, the e-commerce network also exerts lesser economic impact, by $1.17, for the functional unit tested. 相似文献
9.
Henriksson M Flysjö A Cederberg C Swensson C 《Animal : an international journal of animal bioscience》2011,5(9):1474-1484
To identify mitigation options to reduce greenhouse gas (GHG) emissions from milk production (i.e. the carbon footprint (CF) of milk), this study examined the variation in GHG emissions among dairy farms using data from previous CF studies on Swedish milk. Variations between farms in these production data, which were found to have a strong influence on milk CF, were obtained from existing databases of 1051 dairy farms in Sweden in 2005. Monte Carlo (MC) analysis was used to analyse the impact of variations in seven important parameters on milk CF concerning milk yield (energy-corrected milk (ECM) produced and delivered), feed dry matter intake (DMI), enteric CH4 emissions, N content in feed DMI, N-fertiliser rate and diesel used on farm. The largest between-farm variations among the analysed production data were N-fertiliser rate (kg/ha) and diesel used (l/ha) on farm (CV = 31% to 38%). For the parameters concerning milk yield and feed DMI, the CV was approximately 11% and 8%, respectively. The smallest variation in production data was found for N content in feed DMI. According to the MC analysis, these variations in production data led to a variation in milk CF of between 0.94 and 1.33 kg CO2 equivalents (CO2e)/kg ECM, with an average value of 1.13 kg CO2e/kg ECM. We consider that this variation of ±17%, which was found to be based on the used farm data, would be even greater if all Swedish dairy farms were included, as the sample of farms in this study was not totally unbiased. The variation identified in milk CF indicates that a potential exists to reduce GHG emissions from milk production on both the national and farm levels through changes in management. As milk yield and feed DMI are two of the most influential parameters for milk CF, feed conversion efficiency (i.e. units ECM produced/unit DMI) can be used as a rough key performance indicator for predicting CF reductions. However, it must be borne in mind that feeds have different CF due to where and how they are produced. 相似文献
10.
One of the ways in which risk assessment can inform life-cycle analysis (LCA) is by providing a mechanism to translate midpoint categories into common endpoints. Although this analytical step is complex and often highly uncertain, it can allow for prioritization among disparate midpoints and subsequent analytical refinements focused on the endpoints that dominate policy decisions. In this article, we present an approach to address three widely differing impact categories—particulate matter air pollution, greenhouse gas emissions, and personal income. We use the case of increased residential insulation as a measure to reduce energy consumption, which implies economic and public health tradeoffs across all three categories. We apply previously developed models that combined input-output LCA and risk assessment to address public health impacts from particulate matter, and extend the framework to address greenhouse gases and the public health consequences of changes in income. For a hypothetical loan program applied to both new and existing single-family homes, we find a payback period of approximately one year for the particulate matter and greenhouse gas–related midpoints and endpoints, with the structure of the loan implying that no economic payback is required. Our central estimates for avoided disability adjusted life years (DALYs) for a 50-year period are approximately 200,000 for particulate matter, 900,000 for greenhouse gases, and 300,000 for income changes, although values are highly dependent on discount rates and other model assumptions. We conclude that all three impact categories are potentially significant in this case, indicating that analytical refinements should be considered for all three impact categories to reduce model uncertainties. Our study demonstrates how LCA and risk assessment can work together in a framework that includes multiple impact categories, aiding in the evaluation of the net impacts of an energy policy change on society. 相似文献
11.
12.
Ina Rüdenauer Carl‐Otto Gensch Rainer Grießhammer Dirk Bunke 《Journal of Industrial Ecology》2005,9(4):105-116
The eco-efficiency analysis method developed and used by the Öko-Institut analyzes different alternatives that fulfill a defined consumer need, from an environmental as well as an economic perspective.
Like life-cycle assessment (LCA), eco-efficiency analysis makes possible the setting of priorities in purchasing decisions or can be used to show optimization potentials in product development processes.
Eco-efficiency analysis builds upon two methods: LCA, according to ISO 14040 ff. (to assess the environmental aspects of products and processes), and life-cycle costing. Life-cycle costing results in a single figure—the total costs of ownership to one or several actors. The environmental impacts can be evaluated and aggregated as a single score or the impact category indicator results can be kept separate. In either case two single scores can be compared: the total environmental burden or the impact category indicator results, and the total costs of ownership of the alternatives under consideration.
The results can then be plotted in two-dimensional graphs that show the effectiveness of certain measures in environmental and economic terms. The efficiency is expressed as a numerical ratio of environmental savings to difference in costs.
Together with furnishing more detailed results and a discussion of additional benefits or potential barriers, eco-efficiency analysis broadens the basis for decision-making processes. 相似文献
Like life-cycle assessment (LCA), eco-efficiency analysis makes possible the setting of priorities in purchasing decisions or can be used to show optimization potentials in product development processes.
Eco-efficiency analysis builds upon two methods: LCA, according to ISO 14040 ff. (to assess the environmental aspects of products and processes), and life-cycle costing. Life-cycle costing results in a single figure—the total costs of ownership to one or several actors. The environmental impacts can be evaluated and aggregated as a single score or the impact category indicator results can be kept separate. In either case two single scores can be compared: the total environmental burden or the impact category indicator results, and the total costs of ownership of the alternatives under consideration.
The results can then be plotted in two-dimensional graphs that show the effectiveness of certain measures in environmental and economic terms. The efficiency is expressed as a numerical ratio of environmental savings to difference in costs.
Together with furnishing more detailed results and a discussion of additional benefits or potential barriers, eco-efficiency analysis broadens the basis for decision-making processes. 相似文献
13.
《Animal : an international journal of animal bioscience》2016,10(2):212-220
Generally, <30% of dairy cattle’s nitrogen intake is retained in milk. Large amounts of nitrogen are excreted in manure, especially in urine, with damaging impacts on the environment. This study explores the effect of lowering dietary degradable nitrogen supplies – while maintaining metabolisable protein – on dairy cows’ performance, nitrogen use efficiency and gas emissions (NH3, N2O, CH4) at barn level with tied animals. Two dietary N concentrations (CP: 12% DM for LowN; 18% DM for HighN) were offered to two groups of three lactating dairy cows in a split-plot design over four periods of 2 weeks. Diets were formulated to provide similar metabolisable protein supply, with degradable N either in deficit or in excess (PDIN of 84 and 114 g/kg DM for LowN and HighN, respectively). Cows ingested 0.8 kg DM/day less on the LowN diet, which was also 2.5% less digestible. Milk yield and composition were not significantly affected. N exported in milk was 5% lower (LowN: 129 g N/day; HighN: 136 g N/day; P<0.001) but milk protein yield was not significantly affected (LowN: 801 g/day; HighN: 823 g/day; P=0.10). Cows logically ingested less nitrogen on the LowN diet (LowN: 415 g N/day; HighN: 626 g N/day; P<0.001) resulting in a higher N use efficiency (N milk/N intake; LowN: 0.31; HighN: 0.22; P<0.001). N excreted in urine was almost four times lower on the LowN diet (LowN: 65 g N/day; HighN: 243 g N/day; P<0.001) while urinary urea N concentration was eightfold lower (LowN: 4.6 g/l; HighN: 22.9 g/l; P<0.001). Ammonia emission (expressed in g/h in order to remove periods of the day with potential interferences with volatile molecules from feed) was also lower on the LowN diet (LowN: 1.03 g/h per cow; HighN: 1.25 g/h per cow; P<0.05). Greenhouse gas emissions (N2O and CH4) at barn level were not significantly affected by the amount of dietary N. Offering low amounts of degradable protein with suitable metabolisable protein amounts to cattle improved nitrogen use efficiency and lowered ammonia emissions at barn level. This strategy would, however, need to be validated for longer periods, other housing systems (free stall barns) and at farm level including all stages of manure management. 相似文献
14.
Nielsen BH Thomsen PT Sørensen JT 《Animal : an international journal of animal bioscience》2011,5(10):1613-1619
The objective of this study was to identify possible risk factors for poor cow hind limb cleanliness in Danish loose-housed, lactating dairy cows. The study was conducted as a cross-sectional study of 1315 cows in 42 commercial Danish dairy herds with primarily Danish Holstein cows. The effect of four cow-level factors (parity, days in milk, daily lying time and lameness) and eight herd-level factors (herd size, milk production, milking system, floor type, access to pasture grazing, floor scraping frequency, hoof bathing frequency and hoof washing frequency) on the risk of having dirtier hind limbs were analysed using ordinal logistic regression fitting a proportional odds model. Cow hind limb cleanliness was scored using an ordinal score from 1 to 4: 1 being clean and 4 being covered in dirt. The odds ratios (ORs) estimated from the proportional odds model depict the effect of a risk factor on the odds of having a higher rather than a lower cleanliness score. First parity cows had an increased risk of being dirtier compared with third parity or older cows (OR=1.70). Compared with late lactation, early and mid lactation were associated with an increased risk of being dirtier (OR=2.07 and 1.33, respectively). Decreasing the daily time lying by 30 min was associated with an increased risk of being dirtier (OR=1.05). Furthermore, an increased risk of being dirtier was found in herds with no pasture access (OR=3.75). 相似文献
15.
《Animal : an international journal of animal bioscience》2019,13(12):2903-2912
Dairy systems are a source of pollutant emissions, such as greenhouse gases (GHG) and NH3 that are associated with impacts on the environment. Gas emissions in barns are related mainly to diet intake and chemical composition, N excretion and manure management. A reduction in dietary N is known to be an effective way to reduce N excretion and the resulting NH3 emissions. However, most studies consider manure in liquid form with frequent removal from the barn. In deep litter systems, several processes can occur during the accumulation of solid manure that result in variable gas emissions. The objective of this experiment was to investigate the influence of the interaction between dietary CP (low or high) and manure management (liquid or solid) on gas emissions (NH3, N2O, CH4) at the barn level. Dietary treatments provided either low (LowN; 12% CP) or high (HighN; 18% CP) degradable protein to modify the amount of total ammonia nitrogen (TAN) excreted. The cows were housed for two 8-week periods in two mechanically ventilated rooms equipped to manage manure either in liquid (LM; slurry) or solid form (SM; deep litter). In the LM treatment, N balance was measured for 4 days. As expected, animals fed the LowN diet ingested 35% less N and excreted 65% less N in their urine, with no reduction in faecal N excretion and N secretion in milk. On the LowN diet, excretion of urea-N and NH3-N emissions were reduced regardless of the manure management. On the HighN diet, urinary urea-N excretion was three times as high, while NH3-N emissions were 3.0 and 4.5 times as high in LM and SM, respectively. Manure management strongly influenced CH4-C emissions, which were 30% higher in SM than in LM, due to the accumulation of litter. Moreover, gas emissions from solid manure increased over the accumulation period, except for NH3 on the LowN diet. Finally, our results suggest that methods used for national inventories would become more accurate by considering the variability in TAN excretion, which is the primary factor that influences NH3 emissions. 相似文献
16.
《Animal : an international journal of animal bioscience》2013,7(12):1944-1949
The objective of this study was to compare the efficiency of transfer of selenium (Se) to plasma and milk from inorganic sodium selenite, either free or microencapsulated, and from selenized yeast in dairy cows. The study consisted of an in situ-nylon bags incubation, and in an in vivo experiment to compare the Se status of cows supplemented with either sodium selenite, microencapsulated sodium selenite, or Se yeast. Thirty dairy cows, divided in five groups, were fed the following diets: the control group (CTR) received a total mixed ration supplemented with sodium selenite in order to have 0.3 mg/kg DM of total Se; 0.3M and 0.5M groups received the same control diet supplemented with lipid microencapsulated sodium selenite to provide 0.3 and 0.5 mg/kg DM of total Se, respectively; 0.3Y and 0.5Y groups received selenized yeast to provide 0.3 and 0.5 mg/kg of total Se, respectively. Cows were fed the supplements for 56 days during which milk, blood, and fecal samples were collected weekly to conduct analysis of Se and glutathione peroxidase (GSH-px) activity. Se concentration in the nylon bags was assessed to 72%, 64%, and 40% of the initial value (time 0) after 4, 8, and 24 h of incubation, respectively. In vivo, cows supplemented with 0.3 mg/kg of microencapsulated Se had higher milk Se concentration compared to CTR. The increment was more pronounced at the highest inclusion rate (0.5 mg/kg, 0.5M group). GSH-px activity was not significantly affected by treatments. The results indicate that lipid microencapsulation has the potential to protect nutrients from complete rumen reduction and that Se from microencapsulated selenite is incorporated in milk more efficiently than the free form. Microencapsulated sodium selenite was shown to be comparable to Se-yeast in terms of availability and incorporation in milk when fed at 0.3 mg/kg DM, whereas the inclusion in the diet at 0.5 mg/kg DM resulted in higher plasma and milk concentrations than selenized yeast. 相似文献
17.
Nina F Schulman Goutam Sahana Mogens S Lund Sirja M Viitala Johanna H Vilkki 《遗传、选种与进化》2008,40(2):195-214
A whole genome scan was carried out to detect quantitative trait loci (QTL) for fertility traits in Finnish Ayrshire cattle. The mapping population consisted of 12 bulls and 493 sons. Estimated breeding values for days open, fertility treatments, maternal calf mortality and paternal non-return rate were used as phenotypic data. In a granddaughter design, 171 markers were typed on all 29 bovine autosomes. Associations between markers and traits were analysed by multiple marker regression. Multi-trait analyses were carried out with a variance component based approach for the chromosomes and trait combinations, which were observed significant in the regression method. Twenty-two chromosome-wise significant QTL were detected. Several of the detected QTL areas were overlapping with milk production QTL previously identified in the same population. Multi-trait QTL analyses were carried out to test if these effects were due to a pleiotropic QTL affecting fertility and milk yield traits or to linked QTL causing the effects. This distinction could only be made with confidence on BTA1 where a QTL affecting milk yield is linked to a pleiotropic QTL affecting days open and fertility treatments. 相似文献
18.
Louise Christine Dammeier Joyce H. C. Bosmans Mark A. J. Huijbregts 《Journal of Industrial Ecology》2023,27(1):272-282
While technological characteristics largely determine the greenhouse gas (GHG) emissions during the construction of a wind farm and meteorological circumstances the actual electricity production, a thorough analysis to quantify the GHG footprint variability (in g CO2eq/kWh electricity produced) between wind farms is still lacking at the global scale. Here, we quantified the GHG footprint of 26,821 wind farms located across the globe, combining turbine-specific technological parameters, life-cycle inventory data, and location- and temporal-specific meteorological information. These wind farms represent 79% of the 651 global wind (GW) capacity installed in 2019. Our results indicate a median GHG footprint for global wind electricity of 10 g CO2eq/kWh, ranging from 4 to 56 g CO2eq/kWh (2.5th and 97.5th percentiles). Differences in the GHG footprint of wind farms are mainly explained by spatial variability in wind speed, followed by whether the wind farm is located onshore or offshore, the turbine diameter, and the number of turbines in a wind farm. We also provided a metamodel based on these four predictors for users to be able to easily obtain a first indication of GHG footprints of new wind farms considered. Our results can be used to compare the GHG footprint of wind farms to one another and to other sources of electricity in a location-specific manner. 相似文献
19.
Thomas E. Graedel 《Journal of Industrial Ecology》1997,1(4):57-70
Despite the dominant role service industries play in modern society, those industries have by and large not been involved in the strong efforts underway to create environmentally responsible operations. Part of the reason is that the role of these industries as driving factors in resource flows has not been recognized. Perhaps more important, no common framework for assessing the environmental responsibility of service industries has been established. This article provides such a framework and applies it to a generic service industry: automotive repair. Among the results are that evaluation must take different forms for different types of services, and that the approaches of service industries to the use of buildings and equipment will require innovative solutions quite unlike those advocated for the \"greening\" of manufacturing operations. 相似文献
20.
《Animal : an international journal of animal bioscience》2014,8(12):1971-1977
Body condition scoring is a common tool to assess the subcutaneous fat reserves of dairy cows. Because of its subjectivity, which causes limits in repeatability, it is often discussed controversially. Aim of the current study was to evaluate the impact of considering the cows overall appearance on the scoring process and on the validity of the results. Therefore, two different methods to reveal body condition scores (BCS), ‘independent BCS’ (iBCS) and ‘dependent BCS’ (dBCS), were used to assess 1111 Swiss Brown Cattle. The iBCS and the dBCS systems were both working with the same flowchart with a decision tree structure for visual and palpatory assessment using a scale from 2 to 5 with increment units of 0.25. The iBCS was created strictly complying with the defined frames of the decision tree structure. The system was chosen due to its formularized approach to reduce the influence of subjective impressions. By contrast, the dBCS system, which was in line with common practice, had a more open approach, where – besides the decision tree – the overall impression of the cow’s physical appearance was taken into account for generating the final score. Ultrasound measurement of the back fat thickness (BFT) was applied as a validation method. The dBCS turned out to be the better predictor of BFT, explaining 67.3% of the variance. The iBCS was only able to explain 47.3% of the BFT variance. Within the whole data set, only 31.3% of the animals received identical dBCS and iBCS. The pin bone region caused the most deviations between dBCS and iBCS, but also assessing the pelvis line, the hook bones and the ligaments led to divergences in around 20% of the scored animals. The study showed that during the assessment of body condition a strict adherence to a decision tree is a possible source of inexact classifications. Some body regions, especially the pin bones, proved to be particularly challenging for scoring due to difficulties in assessing them. All the more, the inclusion of the overall appearance of the cow into the assessment process counteracted these errors and led to a fair predictability of BFT with the flowchart-based BCS. This might be particularly important, if different cattle types and breeds are assessed. 相似文献