首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The utrophin-dystrophin deficient (DKO) mouse model has been widely used to understand the progression of Duchenne muscular dystrophy (DMD). However, it is unclear as to what extent muscle pathology affects metabolism. Therefore, the present study was focused on understanding energy expenditure in the whole animal and in isolated extensor digitorum longus (EDL) muscle and to determine changes in metabolic enzymes. Our results show that the 8 week-old DKO mice consume higher oxygen relative to activity levels. Interestingly the EDL muscle from DKO mouse consumes higher oxygen per unit integral force, generates less force and performs better in the presence of pyruvate thus mimicking a slow twitch muscle. We also found that the expression of hexokinase 1 and pyruvate kinase M2 was upregulated several fold suggesting increased glycolytic flux. Additionally, there is a dramatic increase in dynamin-related protein 1 (Drp 1) and mitofusin 2 protein levels suggesting increased mitochondrial fission and fusion, a feature associated with increased energy demand and altered mitochondrial dynamics. Collectively our studies point out that the dystrophic disease has caused significant changes in muscle metabolism. To meet the increased energetic demand, upregulation of metabolic enzymes and regulators of mitochondrial fusion and fission is observed in the dystrophic muscle. A better understanding of the metabolic demands and the accompanied alterations in the dystrophic muscle can help us design improved intervention therapies along with existing drug treatments for the DMD patients.  相似文献   

2.
The positive-strand coronavirus genome of ~30 kilobase in length and subgenomic (sg) mRNAs of shorter lengths, are 5’ and 3’-co-terminal by virtue of a common 5’-capped leader and a common 3’-polyadenylated untranslated region. Here, by ligating head-to-tail viral RNAs from bovine coronavirus-infected cells and sequencing across the ligated junctions, it was learned that at the time of peak viral RNA synthesis [6 hours postinfection (hpi)] the 3’ poly(A) tail on genomic and sgmRNAs is ~65 nucleotides (nt) in length. Surprisingly, this length was found to vary throughout infection from ~45 nt immediately after virus entry (at 0 to 4 hpi) to ~65 nt later on (at 6 h to 9 hpi) and from ~65 nt (at 6 h to 9 hpi) to ~30 nt (at 120-144 hpi). With the same method, poly(U) sequences of the same lengths were simultaneously found on the ligated viral negative-strand RNAs. Functional analyses of poly(A) tail length on specific viral RNA species, furthermore, revealed that translation, in vivo, of RNAs with the longer poly(A) tail was enhanced over those with the shorter poly(A). Although the mechanisms by which the tail lengths vary is unknown, experimental results together suggest that the length of the poly(A) and poly(U) tails is regulated. One potential function of regulated poly(A) tail length might be that for the coronavirus genome a longer poly(A) favors translation. The regulation of coronavirus translation by poly(A) tail length resembles that during embryonal development suggesting there may be mechanistic parallels.  相似文献   

3.
Synthesis of phosphoenolpyruvate (PEP) from oxaloacetate is an absolute requirement for gluconeogenesis from mitochondrial substrates. Generally, this reaction has solely been attributed to the cytosolic isoform of PEPCK (PEPCK-C), although loss of the mitochondrial isoform (PEPCK-M) has never been assessed. Despite catalyzing the same reaction, to date the only significant role reported in mammals for the mitochondrial isoform is as a glucose sensor necessary for insulin secretion. We hypothesized that this nutrient-sensing mitochondrial GTP-dependent pathway contributes importantly to gluconeogenesis. PEPCK-M was acutely silenced in gluconeogenic tissues of rats using antisense oligonucleotides both in vivo and in isolated hepatocytes. Silencing PEPCK-M lowers plasma glucose, insulin, and triglycerides, reduces white adipose, and depletes hepatic glycogen, but raises lactate. There is a switch of gluconeogenic substrate preference to glycerol that quantitatively accounts for a third of glucose production. In contrast to the severe mitochondrial deficiency characteristic of PEPCK-C knock-out livers, hepatocytes from PEPCK-M-deficient livers maintained normal oxidative function. Consistent with its predicted role, gluconeogenesis rates from hepatocytes lacking PEPCK-M are severely reduced for lactate, alanine, and glutamine, but not for pyruvate and glycerol. Thus, PEPCK-M has a direct role in fasted and fed glucose homeostasis, and this mitochondrial GTP-dependent pathway should be reconsidered for its involvement in both normal and diabetic metabolism.  相似文献   

4.
Mitochondria are frequently the target of injury after stresses leading to necrotic and apoptoticcell death. Inhibition of oxidative phosphorylation progresses to uncoupling when opening ofa high conductance permeability transition (PT) pore in the mitochondrial inner membraneabruptly increases the permeability of the mitochondrial inner membrane to solutes of molecularmass up to 1500 Da. Cyclosporin A (CsA) blocks this mitochondrial permeability transition(MPT) and prevents necrotic cell death from oxidative stress, Ca2+ ionophore toxicity,Reye-related drug toxicity, pH-dependent ischemia/reperfusion injury, and other models of cell injury.Confocal fluorescence microscopy directly visualizes onset of the MPT from the movementof green-fluorescing calcein into mitochondria and the simultaneous release from mitochondriaof red-fluorescing tetramethylrhodamine methylester, a membrane potential-indicatingfluorophore. In oxidative stress to hepatocytes induced by tert-butylhydroperoxide, NAD(P)Hoxidation, increased mitochondrial Ca2+, and mitochondrial generation of reactive oxygen speciesprecede and contribute to onset of the MPT. Confocal microscopy also shows directly thatthe MPT is a critical event in apoptosis of hepatocytes induced by tumor necrosis factor-.Progression to necrotic and apoptotic cell killing depends, at least in part, on the effect theMPT has on cellular ATP levels. If ATP levels fall profoundly, necrotic killing ensues. If ATPlevels are at least partially maintained, apoptosis follows the MPT. Cellular features of bothapoptosis and necrosis frequently occur together after death signals and toxic stresses. A newterm, necrapoptosis, describes such death processes that begin with a common stress or deathsignal, progress by shared pathways, but culminate in either cell lysis (necrosis) or programmedcellular resorption (apoptosis) depending on modifying factors such as ATP.  相似文献   

5.
Biochemistry (Moscow) - Poly(ADP-ribosyl)ation is a post-translational modification of proteins that performs an essential regulatory function in the cellular response to DNA damage. The key enzyme...  相似文献   

6.
Gallie DR  Caldwell C  Pitto L 《Plant physiology》1995,108(4):1703-1713
The effect of heat shock on translational efficiency and message stability of a reporter mRNA was examined in carrot (Daucus carota). Heat shock of short duration resulted in an increase in protein yield, whereas repression was observed following extended exposure to the stress. Regardless of the duration of the heat shock, a loss in the function of the 5[prime] cap [m7G(5[prime])ppp(5[prime])N, where N represents any nucleotide] and the 3[prime] poly(A) tail, two regulatory elements that work in concert to establish an efficient level of translation, was observed. This apparent paradox was resolved upon examination of the mRNA half-life following thermal stress, in which increases up to 10-fold were observed. Message stability increased as a function of the severity of the heat shock so that following a mild to moderate stress the increase in message stability more than compensated for the reduction in cap and poly(A) tail function. Following a severe heat shock, the increased mRNA half-life was not sufficient to overcome the virtual loss in cap and poly(A) tail function. No stimulation of protein synthesis was observed following a heat shock in Chinese hamster ovary cells, data suggesting that the heat-induced increases in mRNA stability may be unique to the heat-shock response in plants.  相似文献   

7.
8.
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.  相似文献   

9.
10.
11.
Poly(A) tails of mRNAs are synthesized in the cell nucleus with a defined length, ∼250 nucleotides in mammalian cells. The same type of length control is seen in an in vitro polyadenylation system reconstituted from three proteins: poly(A) polymerase, cleavage and polyadenylation specificity factor (CPSF), and the nuclear poly(A)-binding protein (PABPN1). CPSF, binding the polyadenylation signal AAUAAA, and PABPN1, binding the growing poly(A) tail, cooperatively stimulate poly(A) polymerase such that a complete poly(A) tail is synthesized in one processive event, which terminates at a length of ∼250 nucleotides. We report that PABPN1 is required to restrict CPSF binding to the AAUAAA sequence and to permit the stimulation of poly(A) polymerase by AAUAAA-bound CPSF to be maintained throughout the elongation reaction. The stimulation by CPSF is disrupted when the poly(A) tail has reached a length of ∼250 nucleotides, and this terminates processive elongation. PABPN1 measures the length of the tail and is responsible for disrupting the CPSF-poly(A) polymerase interaction.The poly(A) tails present at the 3′ end of almost all eukaryotic mRNAs have two major functions. The first function is in the control of mRNA decay; degradation of the poly(A) tail by a 3′ exonuclease (deadenylation) is the first step in both of the two main pathways of mRNA decay, and the completion of deadenylation triggers the second step, either cap hydrolysis or further 3′–5′ degradation. Because the rate of deadenylation is governed by sequence elements in the mRNA, it is specific for each mRNA species and serves as a major determinant of mRNA half-life (13). Obviously, a control of mRNA stability by the rate of deadenylation requires a defined poly(A) length as a starting point. The second function of the poly(A) tail is in the initiation of translation; the cytoplasmic poly(A)-binding protein associated with the poly(A) tail promotes the initiation of translation by an interaction with the initiation factor eIF4G and probably through additional mechanisms (47). In this process, poly(A) tail length can also be important. For example, gene regulation during oocyte maturation and early embryonic development of animals depends on translational regulation of maternal mRNAs, and changes in poly(A) tail lengths of specific mRNAs, determined both by deadenylation and by regulated cytoplasmic poly(A) extension, play a major role in this translational regulation. Long poly(A) tails favor translation, whereas a shortening of the tail promotes translational inactivation of the message (8, 9). Similar mechanisms seem to operate in neurons (10, 11) and possibly in other somatic cells (12).Because the length of the poly(A) tail is important for its function, it is not surprising that poly(A) tails are generally synthesized with a defined length, which is species-specific, ∼70–90 nucleotides in Saccharomyces cerevisiae (13, 14) and ∼250 nucleotides in mammalian cells (15). Subtle differences between newly made poly(A) tails of different mRNAs have been described (13), and there is even a class of mRNAs that never receives more than an oligo(A) tail (16, 17). However, the heterogeneous length distribution seen in the steady-state mRNA population is the result of cytoplasmic shortening starting from a relatively well defined initial tail length; heterogeneity of tail length reflects age differences of the mRNA molecules. The oligo(A) tails present on inactive mRNAs in oocytes or embryos are also generated by shortening of full-length tails made in the cell nucleus (18).The poly(A) tail is added during 3′ end processing of mRNA precursors in the cell nucleus (1921). This reaction consists of two steps: an endonucleolytic cleavage followed by the addition of the poly(A) tail to the upstream cleavage product. Whereas a large protein machinery of some 20 or more polypeptides (22) is required for the cleavage reaction, subsequent polyadenylation has much simpler protein requirements. In the mammalian system, it can be reconstituted from three proteins: poly(A) polymerase, the enzyme catalyzing primer-dependent polymerization of AMP using ATP as a precursor (2325); the cleavage and polyadenylation specificity factor (CPSF),6 which binds the cleavage and polyadenylation signal AAUAAA (26, 27); and the nuclear poly(A)-binding protein (PABPN1), which binds the growing poly(A) tail (28, 29). Note that PABPN1 is distinct from the family of cytoplasmic poly(A)-binding proteins (30). Roles of poly(A) polymerase and CPSF in polyadenylation in vivo have been most clearly demonstrated by genetic analysis of the orthologues in S. cerevisiae (21, 31). PABPN1 has no functional orthologue in budding yeast (32); its function in polyadenylation has been confirmed in mammalian cells (33) and in Drosophila (34).Whereas PABPN1 and poly(A) polymerase are monomeric proteins, CPSF is a hetero-oligomer, which has not yet been reconstituted from recombinant proteins (22, 26, 3540). Poly(A) polymerase on its own is barely active because of a low affinity for its RNA substrate and thus acts distributively, i.e. it dissociates from the RNA after each polymerization step, and presumably often before it has incorporated any nucleotide; the enzyme also has no significant sequence specificity and will elongate any RNA with a free 3′ OH (24). Both CPSF and PABPN1 enhance the activity of the polymerase by recruiting the enzyme to its substrate through direct interactions (38, 41). Sequence specificity of poly(A) addition reflects the RNA binding specificities of the two stimulatory factors: CPSF recruits the polymerase to RNAs containing the AAUAAA sequence in the vicinity of their 3′ ends (24, 42, 43), and PABPN1 recruits the enzyme to substrate RNAs carrying a terminal oligo(A) tract (29). Each factor alone endows the polymerase with modest processivity, such that it can incorporate maybe two to five nucleotides before dissociating (44). RNAs containing both the AAUAAA sequence and an oligo(A) tail and thus resembling intermediates of the polyadenylation reaction support a cooperative or synergistic stimulation of poly(A) polymerase by both CPSF and PABPN1. Under these conditions, addition of the poly(A) tail occurs in a processive manner, i.e. without intermittent dissociation of the protein complex from its substrate RNA (29, 44).Interestingly, the reconstituted polyadenylation reaction also shows proper length control, generating poly(A) tails of the same length as seen in vivo; tails grow to a relatively well defined length of 250–300 nucleotides in a rapid, processive reaction (29, 44). Length control is due to termination of this processive elongation; extension beyond 250 A residues is largely distributive and therefore slow (45). These kinetics of in vitro poly(A) tail synthesis are fully consistent with the in vivo kinetics derived from pulse-labeling studies (46). In vitro, poly(A) tail elongation rates beyond 250 A residues are similar when either CPSF or PABPN1 or both are present. In other words, substrates with long poly(A) tails no longer support the cooperative stimulation of poly(A) polymerase by both CPSF and PABPN1 that is the basis of processive elongation (45). The termination of processive elongation must be mediated by a change in the RNA-protein complex that remains to be defined. When RNAs carrying poly(A) tails of different lengths are used as substrates for polyadenylation, the tails are always elongated processively to 250 nucleotides, independently of the initial length, whereas extension of a tail of 250 or more nucleotides in length is slow and distributive from the start of the reaction. Thus, poly(A) tail length control is based on some kind of AMP residue counting or length measurement, not on a kinetic mechanism (45).In this paper, we address the two problems outlined above: first, how does the polyadenylation complex change to terminate processive poly(A) tail elongation, and second, how is the length of the tail measured? We provide evidence that PABPN1 is the active component in the mechanism of length control. The protein promotes the interaction between CPSF and poly(A) polymerase when bound to a short poly(A) tail. PABPN1 no longer promotes or even actively disrupts this interaction when bound to a poly(A) tail of 250 nucleotides or longer and thereby terminates the cooperative, processive elongation reaction in a poly(A) tail length-dependent manner. Only poly(A) sequences are counted as part of the tail. Because this reflects the binding specificity of PABPN1 and because disruption of the CPSF-poly(A) polymerase interaction requires complete coverage of the poly(A) tail by this protein, PABPN1 is also the protein that measures the length of the tail.  相似文献   

12.
We report that polycyclic aromatic hydrocarbon (PAH)-inducible CYP1B1 is targeted to mitochondria by sequence-specific cleavage at the N terminus by a cytosolic Ser protease (polyserase 1) to activate the cryptic internal signal. Site-directed mutagenesis, COS-7 cell transfection, and in vitro import studies in isolated mitochondria showed that a positively charged domain at residues 41–48 of human CYP1B1 is part of the mitochondrial (mt) import signal. Ala scanning mutations showed that the Ser protease cleavage site resides between residues 37 and 41 of human CYP1B1. Benzo[a]pyrene (BaP) treatment induced oxidative stress, mitochondrial respiratory defects, and mtDNA damage that was attenuated by a CYP1B1-specific inhibitor, 2,3,4,5-tetramethoxystilbene. In support, the mitochondrial CYP1B1 supported by mitochondrial ferredoxin (adrenodoxin) and ferredoxin reductase showed high aryl hydrocarbon hydroxylase activity. Administration of benzo[a]pyrene or 2,3,7,8-tetrachlorodibenzodioxin induced similar mitochondrial functional abnormalities and oxidative stress in the lungs of wild-type mice and Cyp1a1/1a2-null mice, but the effects were markedly blunted in Cyp1b1-null mice. These results confirm a role for CYP1B1 in inducing PAH-mediated mitochondrial dysfunction. The role of mitochondrial CYP1B1 was assessed using A549 lung epithelial cells stably expressing shRNA against NADPH-cytochrome P450 oxidoreductase or mitochondrial adrenodoxin. Our results not only show conservation of the endoprotease cleavage mechanism for mitochondrial import of family 1 CYPs but also reveal a direct role for mitochondrial CYP1B1 in PAH-mediated oxidative and chemical damage to mitochondria.  相似文献   

13.
In eukaryotes, the poly(A) tail added at the 3′ end of an mRNA precursor is essential for the regulation of mRNA stability and the initiation of translation. Poly(A) polymerase (PAP) is the enzyme that catalyzes the poly(A) addition reaction. Multiple isoforms of PAP have been identified in vertebrates, which originate from gene duplication, alternative splicing or post-translational modifications. The complexity of PAP isoforms suggests that they might play different roles in the cell. Phylogenetic studies indicate that vertebrate PAPs are grouped into three clades termed α, β and γ, which originated from two gene duplication events. To date, all the available PAP structures are from the PAPα clade. Here, we present the crystal structure of the first representative of the PAPγ clade, human PAPγ bound to cordycepin triphosphate (3′dATP) and Ca2 +. The structure revealed that PAPγ closely resembles its PAPα ortholog. An analysis of residue conservation reveals a conserved catalytic binding pocket, whereas residues at the surface of the polymerase are more divergent.  相似文献   

14.
15.
Muscular dystrophies (MDs) such as Duchenne muscular dystrophy (DMD), sarcoglycanopathy (Sgpy) and dysferlinopathy (Dysfy) are recessive genetic neuromuscular diseases that display muscle degeneration. Although these MDs have comparable endpoints of muscle pathology, the onset, severity and the course of these diseases are diverse. Different mechanisms downstream of genetic mutations might underlie the disparity in these pathologies. We surmised that oxidative damage and altered antioxidant function might contribute to these differences. The oxidant and antioxidant markers in the muscle biopsies from patients with DMD (n = 15), Sgpy (n = 15) and Dysfy (n = 15) were compared to controls (n = 10). Protein oxidation and lipid peroxidation was evident in all MDs and correlated with the severity of pathology, with DMD, the most severe dystrophic condition showing maximum damage, followed by Sgpy and Dysfy. Oxidative damage in DMD and Sgpy was attributed to the depletion of glutathione (GSH) and lowered antioxidant activities while loss of GSH peroxidase and GSH-S-transferase activities was observed in Dysfy. Lower GSH level in DMD was due to lowered activity of gamma-glutamyl cysteine ligase, the rate limiting enzyme in GSH synthesis. Similar analysis in cardiotoxin (CTX) mouse model of MD showed that the dystrophic muscle pathology correlated with GSH depletion and lipid peroxidation. Depletion of GSH prior to CTX exposure in C2C12 myoblasts exacerbated oxidative damage and myotoxicity. We deduce that the pro and anti-oxidant mechanisms could be correlated to the severity of MD and might influence the dystrophic pathology to a different extent in various MDs. On a therapeutic note, this could help in evolving novel therapies that offer myoprotection in MD.  相似文献   

16.
17.
Duchenne Muscular Dystrophy (DMD) is caused by mutations in the DMD gene resulting in an absence of dystrophin in neurons and muscle. Respiratory failure is the most common cause of mortality and previous studies have largely concentrated on diaphragmatic muscle necrosis and respiratory failure component. Here, we investigated the integrity of respiratory control mechanisms in the mdx mouse model of DMD. Whole body plethysmograph in parallel with phrenic nerve activity recordings revealed a lower respiratory rate and minute ventilation during normoxia and a blunting of the hypoxic ventilatory reflex in response to mild levels of hypoxia together with a poor performance on a hypoxic stress test in mdx mice. Arterial blood gas analysis revealed low PaO2 and pH and high PaCO2 in mdx mice. To investigate chemosensory respiratory drive, we analyzed the carotid body by molecular and functional means. Dystrophin mRNA and protein was expressed in normal mice carotid bodies however, they are absent in mdx mice. Functional analysis revealed abnormalities in Dejours test and the early component of the hypercapnic ventilatory reflex in mdx mice. Together, these results demonstrate a malfunction in the peripheral chemosensory drive that would be predicted to contribute to the respiratory failure in mdx mice. These data suggest that investigating and monitoring peripheral chemosensory drive function may be useful for improving the management of DMD patients with respiratory failure.  相似文献   

18.
Luo  Jian-Sheng  Ning  Jia-Qi  Chen  Zhuo-Ya  Li  Wen-Jing  Zhou  Rui-Ling  Yan  Ru-Yu  Chen  Meng-Jie  Ding  Ling-Ling 《Neurochemical research》2022,47(8):2158-2172

Type 2 diabetes (T2DM) is a well known risk factor for Alzheimer’s disease. Mitochondria are the center of intracellular energy metabolism and the main source of reactive oxygen species. Mitochondrial dysfunction has been identified as a key factor in diabetes-associated brain alterations contributing to neurodegenerative events. Defective insulin signaling may act in concert with neurodegenerative mechanisms leading to abnormalities in mitochondrial structure and function. Mitochondrial dysfunction triggers neuronal energy exhaustion and oxidative stress, leading to brain neuronal damage and cognitive impairment. The normality of mitochondrial function is basically maintained by mitochondrial quality control mechanisms. In T2DM, defects in the mitochondrial quality control pathway in the brain have been found to lead to mitochondrial dysfunction and cognitive impairment. Here, we discuss the association of mitochondrial dysfunction with T2DM and cognitive impairment. We also review the molecular mechanisms of mitochondrial quality control and impacts of mitochondrial quality control on the progression of cognitive impairment in T2DM.

  相似文献   

19.
Poly(A), poly(A) binding protein and the regulation of mRNA stability   总被引:48,自引:0,他引:48  
This review has focused on the possibility that interactions between mRNA sequences and the poly(A)-nucleoprotein complex play important roles in mRNA turnover. It is important to stress that additional genetic and biochemical tests are necessary to characterize how PABP interacts with mRNA in cells and to determine whether the poly(A) protection hypothesis is accurate. Moreover, there may be a significant number of mRNAs whose half-lives are independent of polyadenylation. For example, the stabilities of poly(A)-containing and deadenylated alpha 2u-globulin and interferon mRNAs are similar in microinjected oocytes. Thus, an important challenge in this field will be to analyse the complex and interactive factors that determine the half-lives of specific mRNAs.  相似文献   

20.
The algebraic sum of the R and S waves (R-S) in the V1 lead of the electrocardiogram has been found to be significantly greater in female carriers of X-linked Duchenne muscular dystrophy (but not in women with limb-girdle muscular dystrophy) compared with normal women of comparable age. A similar E.C.G. abnormality is found in affected boys, and possibly certain carriers have a latent cardiomyopathy and may even be predisposed to cardiac failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号