首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sun WL  Chen J  Wang YP  Zheng H 《Autophagy》2011,7(9):1035-1044
Epirubicin (EPI) is one of the most effective drugs against cancer. But the acquired resistance of cancer cells to EPI is becoming a major obstacle for successful cancer therapy. Recently, some studies have revealed that macroautophagy (here referred to as autophagy) may protect the cancer cell from anticancer drug-induced death, so autophagy might be related to the development of drug resistance to these reagents. However, the relationship between autophagy and drug resistance has yet to be defined. Our study showed that EPI induced autophagy in human breast cancer MCF-7 cells. And the EPI-induced autophagy protected MCF-7 cells from EPI-induced apoptosis. Furthermore, autophagy was elevated in EPI-resistant MCF-7 cells (MCF-7er cells), and inhibition of autophagy restored the sensitivity of MCF-7er cells to EPI. Therefore, autophagy is a prosurvival factor and has a role in the development of EPI-acquired resistance in EPI-treated MCF-7 cells. Also, this finding indicates that the use of clinically applicable autophagy inhibitors might be one of the important strategies for breast cancer therapy.  相似文献   

2.
《Autophagy》2013,9(9):1035-1044
Epirubicin (EPI) is one of the most effective drugs against cancer. But the acquired resistance of cancer cells to EPI is becoming a major obstacle for successful cancer therapy. Recently, some studies have revealed that macroautophagy (here referred to as autophagy) may protect the cancer cell from anticancer drug-induced death, so autophagy might be related to the development of drug resistance to these reagents. However, the relationship between autophagy and drug resistance has yet to be defined. Our study showed that EPI induced autophagy in human breast cancer MCF-7 cells. And the EPI-induced autophagy protected MCF-7 cells from EPI-induced apoptosis. Furthermore, autophagy was elevated in EPI-resistant MCF-7 cells (MCF-7er cells), and inhibition of autophagy restored the sensitivity of MCF-7er cells to EPI. Therefore, autophagy is a prosurvival factor and has a role in the development of EPI-acquired resistance in EPI-treated MCF-7 cells. Also, this finding indicates that the use of clinically applicable autophagy inhibitors might be one of the important strategies for breast cancer therapy.  相似文献   

3.
Epirubicin (EPI) is widely used for triple negative breast cancer (TNBC), but a substantial number of patients develop EPI resistance that is associated with poor outcome. The underlying mechanism for EPI resistance remains poorly understood. We have developed and characterized an EPI-resistant (EPI-R) cell line from parental MDA-MB-231 cells. These EPI-R cells reached stable growth in the medium containing 8 μg/ml of EPI. They overexpressed P-glycoprotein (P-gp) and contained numerous autophagic vacuoles. The suppression of P-gp overexpression and/or autophagy restored the sensitivity of these EPI-R cells to EPI. We further show that autophagy conferred resistance to EPI on MDA cells by blocking the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-mediated pro-apoptotic signals. Together, these results reveal a synergistic role of P-gp, autophagy, and NF-κB pathways in the development of EPI resistance in TNBC cells. They also suggest that blocking the P-gp overexpression and autophagy may be an effective means of reducing EPI resistance.  相似文献   

4.
5.
Recently, using a co-culture system, we demonstrated that MCF7 epithelial cancer cells induce oxidative stress in adjacent cancer-associated fibroblasts, resulting in the autophagic/lysosomal degradation of stromal caveolin-1 (Cav-1). However, the detailed signaling mechanism(s) underlying this process remain largely unknown. Here, we show that hypoxia is sufficient to induce the autophagic degradation of Cav-1 in stromal fibroblasts, which is blocked by the lysosomal inhibitor chloroquine. Concomitant with the hypoxia-induced degradation of Cav-1, we see the upregulation of a number of well-established autophagy/mitophagy markers, namely LC3, ATG16L, BNIP3, BNIP3L, HIF-1α and NFκB. In addition, pharmacological activation of HIF-1α drives Cav-1 degradation, while pharmacological inactivation of HIF-1 prevents the downregulation of Cav-1. Similarly, pharmacological inactivation of NFκB—another inducer of autophagy—prevents Cav-1 degradation. Moreover, treatment with an inhibitor of glutathione synthase, namely BSO, which induces oxidative stress via depletion of the reduced glutathione pool, is sufficient to induce the autophagic degradation of Cav-1. Thus, it appears that oxidative stress mediated induction of HIF1- and NFκB-activation in fibroblasts drives the autophagic degradation of Cav-1. In direct support of this hypothesis, we show that MCF7 cancer cells activate HIF-1α- and NFκB-driven luciferase reporters in adjacent cancer-associated fibroblasts, via a paracrine mechanism. Consistent with these findings, acute knockdown of Cav-1 in stromal fibroblasts, using an siRNA approach, is indeed sufficient to induce autophagy, with the upregulation of both lysosomal and mitophagy markers. How does the loss of stromal Cav-1 and the induction of stromal autophagy affect cancer cell survival? Interestingly, we show that a loss of Cav-1 in stromal fibroblasts protects adjacent cancer cells against apoptotic cell death. Thus, autophagic cancer-associated fibroblasts, in addition to providing recycled nutrients for cancer cell metabolism, also play a protective role in preventing the death of adjacent epithelial cancer cells. We demonstrate that cancer-associated fibroblasts upregulate the expression of TIGAR in adjacent epithelial cancer cells, thereby conferring resistance to apoptosis and autophagy. Finally, the mammary fat pads derived from Cav-1 (−/−) null mice show a hypoxia-like response in vivo, with the upregulation of autophagy markers, such as LC3 and BNIP3L. Taken together, our results provide direct support for the “autophagic tumor stroma model of cancer metabolism”, and explain the exceptional prognostic value of a loss of stromal Cav-1 in cancer patients. Thus, a loss of stromal fibroblast Cav-1 is a biomarker for chronic hypoxia, oxidative stress and autophagy in the tumor microenvironment, consistent with its ability to predict early tumor recurrence, lymph node metastasis and tamoxifen-resistance in human breast cancers. Our results imply that cancer patients lacking stromal Cav-1 should benefit from HIF-inhibitors, NFκB-inhibitors, anti-oxidant therapies, as well as autophagy/lysosomal inhibitors. These complementary targeted therapies could be administered either individually or in combination, to prevent the onset of autophagy in the tumor stromal compartment, which results in a “lethal” tumor microenvironment.Key words: caveolin-1, autophagy, BNIP3, cancer-associated fibroblasts, HIF1, hypoxia, LC3, mitophagy, NFκB, oxidative stress, predictive biomarker, TIGAR, tumor stroma  相似文献   

6.
7.
Recently we have shown that the mitogen-activated protein kinase (MAPK) MAPK14/p38α is involved in resistance of colon cancer cells to camptothecin-related drugs. Here we further investigated the cellular mechanisms involved in such drug resistance and showed that, in HCT116 human colorectal adenocarcinoma cells in which TP53 was genetically ablated (HCT116-TP53KO), overexpression of constitutively active MAPK14/p38α decreases cell sensitivity to SN-38 (the active metabolite of irinotecan), inhibits cell proliferation and induces survival-autophagy. Since autophagy is known to facilitate cancer cell resistance to chemotherapy and radiation treatment, we then investigated the relationship between MAPK14/p38α, autophagy and resistance to irinotecan. We demonstrated that induction of autophagy by SN38 is dependent on MAPK14/p38α activation. Finally, we showed that inhibition of MAPK14/p38α or autophagy both sensitizes HCT116-TP53KO cells to drug therapy. Our data proved that the two effects are interrelated, since the role of autophagy in drug resistance required the MAPK14/p38α. Our results highlight the existence of a new mechanism of resistance to camptothecin-related drugs: upon SN38 induction, MAPK14/p38α is activated and triggers survival-promoting autophagy to protect tumor cells against the cytotoxic effects of the drug. Colon cancer cells could thus be sensitized to drug therapy by inhibiting either MAPK14/p38 or autophagy.  相似文献   

8.
Hypopharyngeal squamous cell carcinoma (HSCC) has the worst prognosis among head and neck cancers. Cisplatin (DDP)-based chemotherapy is an important part of multimodal treatments. However, resistance to DDP severely impairs the effectiveness of chemotherapy for HSCC. Chloroquine (CQ) has been reported to enhance the effectiveness of chemotherapy and radiotherapy in liver, pancreas, breast, prostate and colon tumors, but it is unclear whether CQ could increase the efficacy of DDP for treating HSCC. We inoculated BALB/c nude mice with a subcutaneous injection of human hypopharyngeal FaDu cells to generate our animal model. Mice were randomly divided into 4 groups and treated with vehicle control, CQ (60 mg/kg/day), DDP (5 mg/kg/6 days), or a combination of DDP and CQ. Tumor growth and survival of the mice were monitored. We found that CQ inhibited autophagy and increased DDP-induced apoptosis in the xenograft mouse model. CQ enhanced the efficacy of DDP, resulting in decreased tumor growth and prolonged survival of the mice. To test whether blocking autophagy enhanced the efficacy of DDP, FaDu cells were infected with lentiviral shRNA to Beclin-1 and inoculated into the flanks of nude mice. Inhibition of autophagy markedly enhanced the DDP-induced antitumor effect. Our study suggests that the addition of CQ to DDP-based chemotherapy could be a potential therapeutic strategy for treating HSCC, and the inhibition of autophagy may contribute to chemotherapy sensitization in HSCC.  相似文献   

9.
Fas/Fas ligand (FasL)-mediated cell apoptosis involves a variety of physiological and pathological processes including chronic hepatic diseases, and hepatocytes apoptosis contributes to the development of liver fibrosis following various causes. However, the mechanism of the Fas/FasL signaling and hepatocytes apoptosis in liver fibrogenesis remains unclear. The Fas/FasL signaling and hepatocytes apoptosis in liver samples from both human sections and mouse models were investigated. NF-κBp65 wild-type mice (p65f/f), hepatocytes specific NF-κBp65 deletion mice (p65Δhepa), p53-upregulated modulator of apoptosis (PUMA) wild-type (PUMA-WT) and PUMA knockout (PUMA-KO) littermate models, and primary hepatic stellate cells (HSCs) were also used. The mechanism underlying Fas/FasL-regulated hepatocytes apoptosis to drive HSCs activation in fibrosis was further analyzed. We found Fas/FasL promoted PUMA-mediated hepatocytes apoptosis via regulating autophagy signaling and NF-κBp65 phosphorylation, while inhibition of autophagy or PUMA deficiency attenuated Fas/FasL-modulated hepatocytes apoptosis and liver fibrosis. Furthermore, NF-κBp65 in hepatocytes repressed PUMA-mediated hepatocytes apoptosis via regulating the Bcl-2 family, while NF-κBp65 deficiency in hepatocytes promoted PUMA-mediated hepatocytes apoptosis and enhanced apoptosis-linked inflammatory response, which contributed to the activation of HSCs and liver fibrogenesis. These results suggest that Fas/FasL contributes to NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to enhance liver fibrogenesis, and this network could be a potential therapeutic target for liver fibrosis.Subject terms: Apoptosis, Extracellular signalling molecules  相似文献   

10.
11.
These days, cancer can still not be effectively cured because cancer cells readily develop resistance to anticancer drugs. Therefore, an effective combination of drugs with different mechanisms to prevent drug resistance has become a very important issue. Furthermore, the BH3‐only protein BNIP3 is involved in both apoptotic and autophagic cell death. In this study, lung cancer cells were treated with a chemotherapy drug alone or in combination to identify the role of BNIP3 and autophagy in combination chemotherapy for treating cancer. Our data revealed that various combinational treatments of two drugs could increase cancer cell death and cisplatin in combination with rapamycin or LBH589, which triggered the cell cycle arrest at the S phase. Cells with autophagosome and pEGFP‐LC3 puncta increased when treated with drugs. To confirm the role of autophagy, cancer cells were pre‐treated with the autophagy inhibitor 3‐methyladenine (3‐MA). 3‐MA sensitized cancer cells to chemotherapy drug treatments. These results suggest that autophagy may be responsible for cell survival in combination chemotherapy for lung cancer. Moreover, BNIP3 was induced and localized in mitochondria when cells were treated with drugs. The transfection of a dominant negative transmembrane deletion construct of BNIP3 (BNIP3ΔTM) and treatment of a reactive oxygen species (ROS) inhibitor suppressed chemo drug‐induced cell death. These results indicate that BNIP3 and ROS may be involved in combination chemo drug‐induced cell death. However, chemo drug‐induced autophagy may protect cancer cells from drug cytotoxicity. As a result, inhibiting autophagy may improve the effects of combination chemotherapy when treating lung cancer.  相似文献   

12.
13.
Although it is known that tumor necrosis factor-related apoptosis-inducing ligand (TNFSF10/TRAIL) induces autophagy, the mechanism by which autophagy is activated by TNFSF10 is still elusive. In this report, we show evidence that TRAF2- and RIPK1-mediated MAPK8/JNK activation is required for TNFSF10-induced cytoprotective autophagy. TNFSF10 activated autophagy rapidly in cancer cell lines derived from lung, bladder and prostate tumors. Blocking autophagy with either pharmacological inhibitors or siRNAs targeting the key autophagy factors BECN1/Beclin 1 or ATG7 effectively increased TNFSF10-induced apoptotic cytotoxicity, substantiating a cytoprotective role for TNFSF10-induced autophagy. Blocking MAPK8 but not NFκB effectively blocked autophagy, suggesting that MAPK8 is the main pathway for TNFSF10-induced autophagy. In addition, blocking MAPK8 effectively inhibited degradation of BCL2L1/Bcl-xL and reduction of the autophagy-suppressing BCL2L1–BECN1complex. Knockdown of TRAF2 or RIPK1 effectively suppressed TNFSF10-induced MAPK8 activation and autophagy. Furthermore, suppressing autophagy inhibited expression of antiapoptosis factors BIRC2/cIAP1, BIRC3/cIAP2, XIAP and CFLAR/c-FLIP and increased the formation of TNFSF10-induced death-inducing signaling complex (DISC). These results reveal a critical role for the MAPK8 activation pathway through TRAF2 and RIPK1 for TNFSF10-induced autophagy that blunts apoptosis in cancer cells. Thus, suppression of MAPK8-mediated autophagy could be utilized for sensitizing cancer cells to therapy with TNFSF10.  相似文献   

14.
NF-κB signaling plays an important role in tumor cell proliferation, cell survival, angiogenesis, invasion, metastasis and drug/radiation resistance. Combination therapy involving NF-κB pathway inhibition is an attractive strategy for the treatment of advanced forms of thyroid cancer. This study was designed to test the efficacy of NF-κB pathway inhibition in combination with cytotoxic chemotherapy, using docetaxel and ionizing radiation in in vitro models of thyroid cancer. We found that while both docetaxel and ionizing radiation activated NF-κB signaling in thyroid cancer cells, there was no synergistic effect on cell proliferation and/or programmed cell death with either genetic (transduction of a dominant negative mutant form of IκBα) or pharmacologic (proteasome inhibitor bortezomib and IKKβ inhibitor GO-Y030) inhibition of the NF-κB pathway in thyroid cancer cell lines BCPAP, 8505C, THJ16T and SW1736. Docetaxel plus bortezomib synergistically decreased in vitro invasion of 8505C cells, but not in the other cell lines. Screening of a panel of clinically relevant targeted therapies for synergy with genetic NF-κB inhibition in a proliferation/cytotoxicity assay identified the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) as a potential candidate. However, the synergistic effect was confirmed only in the BCPAP cells. These results indicate that NF-κB inhibitors are unlikely to be beneficial as combination therapy with taxane cytotoxic chemotherapy, external radiation therapy or radioiodine therapy. There may be unique circumstances where NF-κB inhibitors may be considered in combination with docetaxel to reduce tumor invasion or in combination with HDAC inhibitors to reduce tumor growth, but this does not appear to be a combination therapy that could be broadly applied to patients with advanced thyroid cancer. Further research may identify which subsets of patients/tumors may respond to this therapeutic approach.  相似文献   

15.
Inflammation critically contributes to the development of various metabolic diseases. However, the effects of inhibiting inflammatory signaling on hepatic steatosis and insulin resistance, as well as the underlying mechanisms remain obscure. In the current study, male C57BL/6J mice were fed a chow diet or high-fat diet (HFD) for 8 weeks. HFD-fed mice were respectively treated with p65 siRNA, non-silence control siRNA or vehicle every 4th day for the last 4 weeks. Vehicle-treated (HF) and non-silence siRNA-treated (HFNS) mice displayed overt inflammation, hepatic steatosis and insulin resistance compared with chow-diet-fed (NC) mice. Upon treatment with NF-κB p65 siRNA, HFD-fed (HFPS) mice were protected from hepatic steatosis and insulin resistance. Furthermore, Atg7 and Beclin1 expressions and p-AMPK were increased while p-mTOR was decreased in livers of HFPS mice in relative to HF and HFNS mice. These results suggest a crosslink between NF-κB signaling pathway and liver AMPK/mTOR/autophagy axis in the context of hepatic steatosis and insulin resistance.  相似文献   

16.
SZ Lin  WT Wei  H Chen  KJ Chen  HF Tong  ZH Wang  ZL Ni  HB Liu  HC Guo  DL Liu 《PloS one》2012,7(8):e42146

Background

Emodin has been showed to induce apoptosis of pancreatic cancer cells and inhibit tumor growth in our previous studies. This study was designed to investigate whether emodin could inhibit the angiogenesis of pancreatic cancer tissues and its mechanism.

Methodology/Principal Finding

In accordance with our previous study, emodin inhibited pancreatic cancer cell growth, induced apoptosis, and enhanced the anti-tumor effect of gemcitabine on pancreatic caner cells in vitro and in vivo by inhibiting the activity of NF-κB. Here, for the first time, we demonstrated that emodin inhibited tumor angiogenesis in vitro and in implanted pancreatic cancer tissues, decreased the expression of angiogenesis-associated factors (NF-κB and its regulated factors VEGF, MMP-2, MMP-9, and eNOS), and reduced eNOS phosphorylation, as evidenced by both immunohistochemistry and western blot analysis of implanted tumors. In addition, we found that emodin had no effect on VEGFR expression in vivo.

Conclusions/Significance

Our results suggested that emodin has potential anti-tumor effect on pancreatic cancer via its dual role in the promotion of apoptosis and suppression of angiogenesis, probably through regulating the expression of NF-κB and NF-κB-regulated angiogenesis-associated factors.  相似文献   

17.

Background

Recruitment of bone marrow derived endothelial progenitor cells (BMDEPCs) alleviates multiple organ injury (MOI) and improves outcomes. However, mechanisms mediating BMDEPC recruitment following septic MOI remain largely unknown. This study characterized the kinetics of BMDEPC recruitment and proliferation and defined the role of NF-κB in regulating BMDEPC recruitment and proliferation.

Methods and Main Findings

Chimeric mice with an intact or disrupted NF-κB p50 gene and BMDEPC-restricted expression of green fluorescent protein were created and injected with LPS (2 mg/kg, i.p.). BMDEPC recruitment and proliferation in multiple organs were quantified. BMDEPC recruitment and proliferation are highly organ-dependent. Lungs had the highest number of BMDEPC recruitment, whereas heart, liver and kidney had only a small fraction of the number of BMDEPCs in lungs. Number of proliferating BMDEPCs was several-fold higher in lungs than in other 3 organs. Kinetically, BMDEPC recruitment into different organs showed different time course profiles. NF-κB plays obligatory roles in mediating BMDEPC recruitment and proliferation. Universal deletion of NF-κB p50 gene inhibited LPS-induced BMDEPC recruitment and proliferation by 95% and 69% in heart. However, the contribution of NF-κB to these regulations varies significantly between organs. In liver, universal p50 gene deletion reduced LPS-induced BMDEPC recruitment and proliferation only by 49% and 35%. NF-κB activities in different tissue compartments play distinct roles. Selective p50 gene deletion either in stromal/parenchymal cells or in BM/blood cells inhibited BMDEPC recruitment by a similar extent. However, selective p50 gene deletion in BM/blood cells inhibited, but in stromal/parenchymal cells augmented BMDEPC proliferation.

Conclusions

BMDEPC recruitment and proliferation display different kinetics in different organs following endotoxemic MOI. NF-κB plays obligatory and organ-dependent roles in regulating BMDEPC recruitment and proliferation. NF-κB activities in different tissue compartments play distinct roles in regulating BMDEPC proliferation.  相似文献   

18.
Lee ST  Wong PF  Cheah SC  Mustafa MR 《PloS one》2011,6(4):e18915

Background

Alpha-tomatine (α-tomatine) is the major saponin in tomato (Lycopersicon esculentum). This study investigates the chemopreventive potential of α-tomatine on androgen-independent human prostatic adenocarcinoma PC-3 cells.

Methodology/Principal Findings

Treatment of highly aggressive human prostate cancer PC-3 cells with α-tomatine resulted in a concentration-dependent inhibition of cell growth with a half-maximal efficient concentration (EC50) value of 1.67±0.3 µM. It is also less cytotoxic to normal human liver WRL-68 cells and normal human prostate RWPE-1 cells. Assessment of real-time growth kinetics by cell impedance-based Real-Time Cell Analyzer (RTCA) showed that α-tomatine exhibited its cytotoxic effects against PC-3 cells as early as an hour after treatment. The inhibitory effect of α-tomatine on PC-3 cancer cell growth was mainly due to induction of apoptosis as evidenced by positive Annexin V staining and decreased in mitochondrial membrane potential but increased in nuclear condensation, polarization of F-actin, cell membrane permeability and cytochrome c expressions. Results also showed that α-tomatine induced activation of caspase-3, -8 and -9, suggesting that both intrinsic and extrinsic apoptosis pathways are involved. Furthermore, nuclear factor-kappa B (NF-κB) nuclear translocation was inhibited, which in turn resulted in significant decreased in NF-κB/p50 and NF-κB/p65 in the nuclear fraction of the treated cells compared to the control untreated cells. These results provide further insights into the molecular mechanism of the anti-proliferative actions of α-tomatine.

Conclusion/Significance

α-tomatine induces apoptosis and inhibits NF-κB activation on prostate cancer cells. These results suggest that α-tomatine may be beneficial for protection against prostate cancer development and progression.  相似文献   

19.
20.
Many recent efforts have focused on targeting cell death pathways for discovering new cancer therapies. The relative resistance of liver cancer cells to ionizing radiation (IR) and chemotherapeutic agents due to autophagic response limits the available treatment options for this type of cancer. In this study, 3-methyladenine (3-MA), an autophagy inhibitor, was investigated for its potential to enhance radio-sensitivity under radio-resistant conditions both in vitro and in vivo. Hep3B and HepG2 cells were used to examine the radio-resistance of liver cancer cells. The results show that Hep3B cells respond to irradiation with increased apoptotic cell death and that HepG2 is radio-resistant due to the IR-induced autophagy, as verified by DNA fragmentation, electron microscopy, acidic vesicular organelle formation, and Western blot analysis. Application of IR with 3-MA to inhibit autophagy simultaneously suppressed the expression of LC3 and enhanced cell death. The tumor xenograft model in nude mice verified the synergistic cytotoxic effect of 3-MA and IR, which resulted in significant repression of tumor growth. The results demonstrate that IR-induced autophagy provides a self-protective mechanism against radiotherapy in HepG2 cells. In addition, 3-MA enhances the cytotoxicity of IR in cell models and suppresses tumor growth in animal models. Based on the results, application of 3-MA, or other autophagy inhibitors, could be used as an adjuvant for radiotherapy when radio-resistance develops as a result of autophagy response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号