首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
神经干细胞是一类具有自我更新能力和多向分化潜能的干细胞。在特定条件下,神经干细胞可分化为神经元、少突胶质细胞和星形胶质细胞从而参与神经功能的修复过程,该过程称为神经发生。一直以来,人们认为神经发生主要发生在哺乳动物胚胎时期,而成体是不存在神经发生的。然而近年的研究表明,成体神经发生在哺乳动物中枢神经系统中是终生存在的,且通过多种信号通路来调控。现就成年哺乳动物神经发生的研究进展展开论述。  相似文献   

2.
The molecular mechanisms of prion-induced cytotoxicity remain largely obscure. Currently, only a few cell culture models have exhibited the cytopathic changes associated with prion infection. In this study, we introduced a cell culture model based on differentiated neurosphere cultures isolated from the brains of neonatal prion protein (PrP)-null mice and transgenic mice expressing murine PrP (dNP0 and dNP20 cultures). Upon exposure to mouse Chandler prions, dNP20 cultures supported the de novo formation of abnormal PrP and the resulting infectivity, as assessed by bioassays. Furthermore, this culture was susceptible to various prion strains, including mouse-adapted scrapie, bovine spongiform encephalopathy, and Gerstmann-Sträussler-Scheinker syndrome prions. Importantly, a subset of the cells in the infected culture that was mainly composed of astrocyte lineage cells consistently displayed late-occurring, progressive signs of cytotoxicity as evidenced by morphological alterations, decreased cell viability, and increased lactate dehydrogenase release. These signs of cytotoxicity were not observed in infected dNP0 cultures, suggesting the requirement of endogenous PrP expression for prion-induced cytotoxicity. Degenerated cells positive for glial fibrillary acidic protein accumulated abnormal PrP and exhibited features of apoptotic death as assessed by active caspase-3 and terminal deoxynucleotidyltransferase nick-end staining. Furthermore, caspase inhibition provided partial protection from prion-mediated cell death. These results suggest that differentiated neurosphere cultures can provide an in vitro bioassay for mouse prions and permit the study of the molecular basis for prion-induced cytotoxicity at the cellular level.  相似文献   

3.
Adult Neurogenesis in Drosophila   总被引:1,自引:0,他引:1  
  相似文献   

4.
Adult neurogenesis appears very well conserved among mammals. It was, however, not until recently that quantitative data on the extent of this process became available in humans, largely because of methodological challenges to study this process in man. There is substantial hippocampal neurogenesis in adult humans, but humans appear unique among mammals in that there is no detectable olfactory bulb neurogenesis but continuous addition of new neurons in the striatum.There has been an enormous expansion in the knowledge regarding adult neurogenesis in experimental animals over the last two decades. A strong motivation in this research field has been that similar processes are likely to operate in humans, and that alterations in adult neurogenesis could underlie neurological or psychiatric diseases. Moreover, many have hoped that the potential of resident neural stem cells could be harnessed to promote the generation of new neurons for cell replacement in neurological diseases. A seminal study by Eriksson, Gage and colleagues (Eriksson et al. 1998), in which they were able to show the presence of 5-bromo-2-deoxyuridine (BrdU) in hippocampal neurons of cancer patients who had received the label for diagnostic purposes, established the presence of adult-born neurons in the human hippocampus. This study was exceptionally important in that it provided strong evidence for the presence of adult neurogenesis in humans. However, it did not enable any quantitative estimates, and a lingering question has been whether adult neurogenesis decreased with primate evolution, and whether the extent of this process in humans is sufficient to have any functional impact (Rakic 1985; Kempermann 2012).  相似文献   

5.
成年海马中神经发生及影响因素   总被引:1,自引:0,他引:1  
动物成年后在其中枢神经系统内仍有神经发生。成年神经发生的主要区域是海马齿状回的颗粒下层和脑室下区的侧脑室外侧壁。目前认为成年后的海马神经发生参与记忆的形成,尤其对癫痫和神经退行性疾病的缓解和治疗具有重要意义。成年海马的神经发生受多种生理、病理因素的调控。我们就近年来成年海马神经发生的影响因素及其可能机制进行综述。  相似文献   

6.
Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ). Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte proliferation during differentiation, but they generated normal percentages of neuronal cells. Neuronal fate commitment therefore appears to be controlled through a non-clock function of BMAL1. This study provides insight into how cell autonomous circadian clocks and clock genes regulate adult neural stem cells with implications for treating neurodegenerative disorders and impaired brain functions by manipulating neurogenesis.  相似文献   

7.
Neurogenesis in the Adult Mammalian Brain   总被引:1,自引:0,他引:1  
The concept of the CNS cell composition stability has recently undergone significant changes. It was earlier believed that neurogenesis in the mammalian CNS took place only during embryonic and early postnatal development. New approaches make it possible to prove that neurogenesis takes part even in the adult brain. The present review summarizes the data about the neural stem cell. It has been demonstrated that new neurons are constantly formed in adult mammals, including man. In two brain zones, subventricular zone and dentate gyrus, neurogenesis appears to proceed throughout the entire life of mammals, including man. The newly arising neurons are essential for some important processes, such as memory and learning. Stem cells were found in the subependymal and/or ependymal layer. They express nestin and have a low mitotic activity. During embryogenesis, the stem cell divides asymmetrically: one daughter cell resides as the stem cell in the ependymal layer and another migrates to the subventricular zone. There it gives rise to a pool of dividing precursors, from which neural and glial cells differentiate and migrate to the sites of final localization. The epidermal and fibroblast growth factors act as mitogens for the neural stem cell. The neural stem cell gives rise to the cells of all germ layers in vitro and has a wide potential for differentiation in the adult organism. Hence, it can be used as a source of various cell types of the nervous tissue necessary for cellular transplantation therapy.  相似文献   

8.
9.
Circadian rhythms modulate many physiologic processes and behaviors. Therefore, their disruption causes a variety of potential adverse effects in humans and animals. Circadian disruption induced by constant light exposure has been discovered to produce pathophysiologic consequences after brain injury. However, the underlying mechanisms that lead to more severe impairment and disruption of neurophysiologic processes are not well understood. Here, we evaluated the effect of constant light exposure on the neurobehavioral impairment and survival of neurons in rats after traumatic brain injury (TBI). Sixty adult male Sprague–Dawley rats were subjected to a weight-drop model of TBI and then exposed to either a standard 12-/12-h light/dark cycle or a constant 24-h light/light cycle for 14 days. Our results showed that 14 days of constant light exposure after TBI significantly worsened the sensorimotor and cognitive deficits, which were associated with decreased body weight, impaired water and food intake, increased cortical lesion volume, and decreased neuronal survival. Furthermore, environmental circadian disruption inhibited cell proliferation and newborn cell survival and decreased immature cell production in rats subjected to the TBI model. We conclude that circadian disruption induced by constant light exposure worsens histologic and neurobehavioral impairment and inhibits neurogenesis in adult TBI rats. Our novel findings suggest that light exposure should be decreased and circadian rhythm reestablished in hospitalized TBI patients and that drugs and strategies that maintain circadian rhythm would offer a novel therapeutic option.  相似文献   

10.
11.
12.
13.
New neurons are added throughout the forebrain of adult birds. The song-control system is a model to investigate the addition of new long-projection neurons to a cortical circuit that regulates song, a learned sensorimotor behavior. Neuroblasts destined for the song nucleus HVC arise in the walls of the lateral ventricle, and wander through the pallium to reach HVC. The survival of new HVC neurons is supported by gonadally secreted testosterone and its downstream effectors including neurotrophins, vascularization, and electrical activity of postsynaptic neurons in nucleus RA (robust nucleus of the arcopallium). In seasonal species, the HVC→RA circuit degenerates in nonbreeding birds, and is reconstructed by the incorporation of new projection neurons in breeding birds. There is a functional linkage between the death of mature HVC neurons and the birth of new neurons. Various hypotheses for the function of adult neurogenesis in the song system can be proposed, but this remains an open question.Song behavior in oscine birds is regulated by a network of pallial and striatal nuclei. The song-control system shows extensive plasticity in adults, including ongoing neurogenesis in several nuclei (Brenowitz 2008). The addition of new neurons to the adult brain of higher vertebrates was first suggested by the pioneering studies of Altman and Das (1965) and Kaplan and Hinds (1977). They reported that labeled cells were present in the dentate gyrus (DG) of rats following the injection of 3H-thymidine. Their claims, however, met with skepticism and the neuronal identity of the new cells that they observed was called into question (Gross 2000). In an influential study, Rakic (1985) injected adult rhesus monkeys with 3H-thymidine and reported that, “all neurons of the rhesus monkey brain are generated during prenatal and early postnatal life.” The study of neuronal addition to the adult brain, was subsequently dropped for ∼20 years in the face of the dogma that neurogenesis was largely completed by birth (Gross 2000). This prevailing view only started to be overturned when Nottebohm and colleagues published a series of studies showing that new cells are added to the cortical-like song nucleus HVC (Fig. 1) of adult canaries (Serinus canarius) (Goldman and Nottebohm 1983). These new cells have neuronal morphology, some of these cells fire action potentials in response to sound (Paton and Nottebohm 1984), receive synaptic input (Burd and Nottebohm 1985), may synapse on neurons in the efferent robust nucleus of the arcopallium (RA) (Alvarez-Buylla et al. 1990), and express neuron-specific proteins (Barami et al. 1995). Together, these studies in songbirds showed that new neurons are born and incorporated into functional circuits in the brains of adults of higher vertebrates (Nottebohm 2004). This research on adult neurogenesis in songbirds stimulated investigators to re-examine this topic in mammals. It soon became clear that new neurons are added throughout life to the DG and olfactory bulb of mammals including humans (Cameron and Gould 1994; Gould et al. 1997, 1999a; Lim et al. 1997; Eriksson et al. 1998). Because of these initial confirmatory reports, there has been explosive growth in study of the mechanisms and functions of adult neurogenesis in the mammalian DG and olfactory bulb.Open in a separate windowFigure 1.A schematic of the neurogenic regions in the avian brain overlaid on the avian song circuits. Neurogenic regions are shown in red. Note the proximity of HVC (and hippocampus [HC]) to the ventricular zone (VZ). A schematic version of the motor pathway for song production is shown in blue. A schematic of the ascending auditory pathway is shown in green. The dotted line indicates an indirect route through many nuclei of the ascending auditory pathway leading to field L in the telencephalon. The anterior forebrain circuit for song learning and plasticity is shown in yellow. NCM, Caudomedial nidopallium; RA, arcopallium; LMAN, lateral magnocellular nucleus of the anterior neostriatum; OB, olfactory bulb; DLM, dorsolateral medial; PAm, parambigualis; RAm, retroambigualisBirds continue to be a productive model for the study of neurogenesis in the adult brain, as discussed below. In this article, we will focus on neurogenesis in the song-control system as this is the most intensively studied model in birds. (For a review of neurogenesis in the avian hippocampus [HC], see Barnea and Pravosudov 2011.) We will discuss the mechanisms of neurogenesis in the song system, intrinsic and extrinsic factors that influence neuronal addition, a linkage between cell death and neurogenesis, seasonal plasticity, and consider potential functions of adult neurogenesis.  相似文献   

14.
The Role of Notch Signaling in Adult Neurogenesis   总被引:1,自引:0,他引:1  
Neurogenesis occurs throughout adulthood in the mammalian brain. Newly born neurons are incorporated into the functional networks of both the olfactory bulb and the hippocampal dentate gyrus, and there is growing evidence that adult neurogenesis is important for various brain functions. Continuous neurogenesis is achieved by the coordinated proliferation and differentiation of adult neural stem cells. In this review, we discuss the recent findings concerning the roles of Notch signaling in adult neural stem cells.  相似文献   

15.

Background

Adult neurogenesis occurs in specific regions of the mammalian brain such as the dentate gyrus of the hippocampus. In the neurogenic region, neural progenitor cells continuously divide and give birth to new neurons. Although biological properties of neurons and glia in the hippocampus have been demonstrated to fluctuate depending on specific times of the day, it is unclear if neural progenitors and neurogenesis in the adult brain are temporally controlled within the day.

Methodology/Principal Findings

Here we demonstrate that in the dentate gyrus of the adult mouse hippocampus, the number of M-phase cells shows a day/night variation throughout the day, with a significant increase during the nighttime. The M-phase cell number is constant throughout the day in the subventricular zone of the forebrain, another site of adult neurogenesis, indicating the daily rhythm of progenitor mitosis is region-specific. Importantly, the nighttime enhancement of hippocampal progenitor mitosis is accompanied by a nighttime increase of newborn neurons.

Conclusions/Significance

These results indicate that neurogenesis in the adult hippocampus occurs in a time-of-day-dependent fashion, which may dictate daily modifications of dentate gyrus physiology.  相似文献   

16.
The fact that continuous proliferation of stem cells and progenitors, as well as the production of new neurons, occurs in the adult mammalian central nervous system (CNS) raises several basic questions concerning the number of neurons required in a particular system. Can we observe continued growth of brain regions that sustain neurogenesis? Or does an elimination mechanism exist to maintain a constant number of cells? If so, are old neurons replaced, or are the new neurons competing for limited network access among each other? What signals support their survival and integration and what factors are responsible for their elimination? This review will address these and other questions regarding regulatory mechanisms that control cell-death and cell-survival mechanisms during neurogenesis in the intact adult mammalian brain.  相似文献   

17.
Studies of adult neurogenesis have greatly expanded in the last decade, largely as a result of improved tools for detecting and quantifying neurogenesis. In this review, we summarize and critically evaluate detection methods for neurogenesis in mammalian and human brain tissue. Besides thymidine analog labeling, cell-cycle markers are discussed, as well as cell stage and lineage commitment markers. Use of these histological tools is critically evaluated in terms of their strengths and limitations, as well as possible artifacts. Finally, we discuss the method of radiocarbon dating for determining cell and tissue turnover in humans.Detection of neurogenesis in vivo requires the ability to image at a cellular resolution, which currently precludes noninvasive imaging approaches, such as magnetic resonance imaging (MRI). In vivo microscopy, using deeply penetrating UV illumination with multiphoton microscopy, or by the recently available endoscopic confocal microscopy, may provide new opportunities for longitudinal studies of neurogenesis in the living animal with single-cell resolution. These newer microscopy approaches are particularly compelling when coupled with transgenic mice expressing phenotype-specific fluorescent reporter genes. Additionally, an advanced method using 14C carbon dating of postmortem DNA from specific cell populations of the brain revealed insights into adult human neurogenesis. Nevertheless, at present, the predominant approach for studying neurogenesis relies on traditional histological methods of fixation, production of tissue sections, staining, and microscopic analysis.This review discusses methodological considerations for detection of neurogenesis in the adult brain according to our current state of knowledge. This will include the use of exogenous or endogenous markers of cell cycle, as well as phenotype markers that contribute to resolving stages of neuronal lineage commitment. The accurate analysis of cell phenotype will be discussed, including suggestions for accurate detection and reliable quantification of cell numbers. Finally, we will present the newly developed 14C carbon dating of nuclear DNA for quantitative analysis of neurogenesis in human tissue.  相似文献   

18.
We develop an approach to find an energy-optimal stimulus that entrains an ensemble of uncertain, uncoupled limit cycle oscillators. Furthermore, when entrainment occurs, the phase shift between oscillators is constrained to be less than a predetermined amount. This approach is illustrated for a model of Drosophila circadian activity, for which it performs better than a standard 24-h light-dark cycle. Because this method explicitly accounts for uncertainty in a given system and only requires information that is experimentally obtainable, it is well suited for experimental implementation and could ultimately represent what is believed to be a novel treatment for patients suffering from advanced/delayed sleep-phase syndrome.  相似文献   

19.
We develop an approach to find an energy-optimal stimulus that entrains an ensemble of uncertain, uncoupled limit cycle oscillators. Furthermore, when entrainment occurs, the phase shift between oscillators is constrained to be less than a predetermined amount. This approach is illustrated for a model of Drosophila circadian activity, for which it performs better than a standard 24-h light-dark cycle. Because this method explicitly accounts for uncertainty in a given system and only requires information that is experimentally obtainable, it is well suited for experimental implementation and could ultimately represent what is believed to be a novel treatment for patients suffering from advanced/delayed sleep-phase syndrome.  相似文献   

20.
Findings over the past decades demonstrating persistent neurogenesis in the adult brain havechallenged the view of a fixed circuitry in normally functioning brain and raised hopes for self-renewalfollowing brain injury. In addition to providing insights for repair, studying adult neurogenesis mayimprove our understanding of embryonic development assuming that fundamental mechanisms aresimilar. It is argued here, using examples of cell:cell communication, that parallels can be drawnbetween adult and embryonic neurogenesis. Paradoxically, cell:cell communication in neurogenicregions resembles that in a mature neuroglial network. This suggests that differences in the integrativeproperties of cells and the extracellular matrix molecules may constitute a neurogenic environment or“niche”. While reasons for persistent adult neurogenesis in humans remains obscure, recent findingsregarding the environmental and activity-driven control of neurogenesis reinforce the original conceptof a role for neurogenesis in motor memory formation and refinement of information processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号