首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel human cytochrome P450, CYP2W1, was cloned and expressed heterologously. No or very low CYP2W1 mRNA levels were detected in fetal and adult human tissues, expression was however seen in 54% of human tumor samples investigated (n=37), in particular colon and adrenal tumors. Western blotting also revealed high expression of CYP2W1 in some human colon tumors. In rat tissues, CYP2W1 mRNA was expressed preferentially in fetal but also in adult colon. The CYP2W1 gene was shown to encompass one functional CpG island in the exon 1-intron 1 region which was methylated in cell lines lacking CYP2W1 expression, but unmethylated in cells expressing CYP2W1. Re-expression of CYP2W1 was seen following demethylation by 5-Aza-2'-deoxycytidine. Transfection of HEK293 cells with CYP2W1 caused the formation of a properly folded enzyme, which was catalytically active with arachidonic acid as a substrate. It is concluded that CYP2W1 represents a tumor-specific P450 isoform with potential importance as a drug target in cancer therapy.  相似文献   

2.
Accumulating evidence has indicated that deregulation of lncRNAs plays essential roles in colorectal cancer (CRC) carcinogenesis. The goal of this study was to analyze the expression of lncRNAs in colorectal cancer and their association with clinicopathological variables. Bioinformatics analysis of published CRC microarray data was performed to identify the important lncRNAs. The expression levels of candidate genes were assessed in the human colon cancer/normal cell lines, CRC, adenomatous colorectal polyps, and their marginal tissues by qRT-PCR. Moreover, the methylation status of the TRPM2-AS1 promoter was studied using qMSP assay. Furthermore, we investigated the molecular mechanisms of these lncRNAs in CRC progression using in silico analysis. Microarray analysis revealed that lncRNAs SNHG6, MIR4435-2HG, and TRPM2-AS1 were upregulated in CRC. These results were validated in colon cell lines. Moreover, qRT-PCR showed that the expression levels of SNHG6 and TRPM2-AS1 were upregulated in the colorectal tumor tissues compared with their paired tissues. Nonetheless, there was no significant increase in MIR4435-2HG expression in CRC samples. Furthermore, we observed a significant hypomethylation of TRPM2-AS1 promoter and its activation in CRC tissues. By in silico analysis, we found that the lncRNAs upregulation could promote proliferation and drug resistance of colorectal cancer cells via miRNAs sponging and modulation of their targets expression. In conclusion, based on our results upregulation of SNHG6 and TRPM2-AS1, and hypomethylation of TRPM2-AS1 promoter might be considered as potential diagnostic biomarkers for CRC initiation and development.  相似文献   

3.
4.
5.
Lu Y  Wang X  Liu Z  Jin B  Chu D  Zhai H  Zhang F  Li K  Ren G  Miranda-Vizuete A  Guo X  Fan D 《Proteomics》2008,8(11):2220-2229
MC3 is a colorectal cancer (CRC)-specific mAb previously prepared in our laboratory that can detect CRC with high sensitivity and specificity. However, the target antigen for MC3 had not been identified due to technological limitations. In the present study, immunocytochemistry and immunohistochemistry revealed the expression patterns of MC3 antigen (MC3-Ag) in colon cancer cell lines and CRC tissues. Western blotting analysis showed that the MC3 antibody reproducibly recognized two approximately 30 kDa proteins in the total cell lysates of human colon carcinoma cell lines SW480 and HT-29. Using a proteomic approach, we identified two MC3 immunoreactive spots as two isoforms of thioredoxin-like 2 (Txl-2) protein. Further paired immunostaining showed that Txl-2 had the same expression profile as probed by the MC3 antibody. Western blotting also showed that both antibodies could detect the same two bands, further verifying that Txl-2 is the antigen of MC3 antibody. Additionally, tissue arrays revealed the expression patterns of Txl-2 in various normal and cancer tissues. Further analysis showed that Txl-2 mRNA was elevated in 18 cases of CRC tissues compared to paracancerous tissues and adjacent normal tissues.  相似文献   

6.
ABSTRACT

Colorectal cancer (CRC) becomes the third leading cause of cancer-related deaths worldwide recently. The prognosis of CRC is still poor in decades, and targeted therapy is still a potential effective treatment. Long non-coding RNAs (lncRNAs) could regulate series of cellular functions and developmental processes. LncRNA-SPRY4-IT1 (GenBank ID AK024556) is derived from an intron of the SPRY4 gene, which was highly expressed in melanoma cells and affected the progression of multiple types of cancers. However, the mechanism of SPRY4-IT1 in CRC progression remains unclear. Herein, we found the high level of SPRY4-IT1 in human colorectal cancer (CRC) tissues and cells, and correlated with patients’ prognosis. We further noticed that SPRY4-IT1 regulated CRC cell growth and glycolysis, and promoting PDK1 expression. Our data further confirmed that SPRY4-IT1 regulated CRC progression targeting PDK1. We therefore thought SPRY4-IT1 could serve as a promising molecular target for the treatment of CRC.  相似文献   

7.
Al-Mulla F  Bitar MS  Feng J  Park S  Yeung KC 《PloS one》2012,7(1):e29532
Therapeutic resistance remains the most challenging aspect of treating cancer. Raf kinase inhibitory protein (RKIP) emerged as a molecule capable of sensitizing cancerous cells to radio- and chemotherapy. Moreover, this small evolutionary conserved molecule, endows significant resistance to cancer therapy when its expression is reduced or lost. RKIP has been shown to inhibit the Raf-MEK-ERK, NFκB, GRK and activate the GSK3β signaling pathways. Inhibition of Raf-MEK-ERK and NFκB remains the most prominent pathways implicated in the sensitization of cells to therapeutic drugs. Our purpose was to identify a possible link between RKIP-KEAP 1-NRF2 and drug resistance. To that end, RKIP-KEAP 1 association was tested in human colorectal cancer tissues using immunohistochemistry. RKIP miRNA silencing and its inducible overexpression were employed in HEK-293 immortalized cells, HT29 and HCT116 colon cancer cell lines to further investigate our aim. We show that RKIP enhanced Kelch-like ECH-associated protein1 (KEAP 1) stability in colorectal cancer tissues and HT29 CRC cell line. RKIP silencing in immortalized HEK-293 cells (termed HEK-499) correlated significantly with KEAP 1 protein degradation and subsequent NRF2 addiction in these cells. Moreover, RKIP depletion in HEK-499, compared to control cells, bestowed resistance to supra physiological levels of H(2)O(2) and Cisplatin possibly by upregulating NF-E2-related nuclear factor 2 (NRF2) responsive genes. Similarly, we observed a direct correlation between the extent of apoptosis, after treatment with Adriamycin, and the expression levels of RKIP/KEAP 1 in HT29 but not in HCT116 CRC cells. Our data illuminate, for the first time, the NRF2-KEAP 1 pathway as a possible target for personalized therapeutic intervention in RKIP depleted cancers.  相似文献   

8.
9.
Deregulated miRNAs participate in colorectal carcinogenesis. In this study, miR-218 was found to be downregulated in human colorectal cancer (CRC) by miRNA profile assay. miR-218 was silenced or downregulated in all five colon cancer cells (Caco2, HT29, SW620, HCT116 and LoVo) relative to normal colon tissues. miR-218 expression was significantly lower in 46 CRC tumor tissues compared with their adjacent normal tissues (P < 0.001). Potential target genes of miR-218 were predicted and BMI1 polycomb ring finger oncogene (BMI-1), a polycomb ring finger oncogene, was identified as one of the potential targets. Upregulation of BMI-1 was detected in CRC tumors compared with adjacent normal tissues (P < 0.001) and in all five colon cancer cell lines. Transfection of miR-218 in colon cancer cell lines (HCT116, HT29) significantly reduced luciferase activity of the wild-type construct of BMI-1 3′ untranslated region (3′UTR) (P < 0.001), whereas this effect was not seen in the construct with mutant BMI-1 3′UTR, indicating a direct and specific interaction of miR-218 with BMI-1. Ectopic expression of miR-218 in HCT116 and HT29 cells suppressed BMI-1 mRNA and protein expression. In addition, miR-218 suppressed protein expression of BMI-1 downstream targets of cyclin-dependent kinase 4, a cell cycle regulator, while upregulating protein expression of p53. We further revealed that miR-218 induced apoptosis (P < 0.01), inhibited cell proliferation (P < 0.05) and promoted cell cycle arrest in the G2 phase (P < 0.01). In conclusion, miR-218 plays a pivotal role in CRC development through inhibiting cell proliferation and cycle progression and promoting apoptosis by downregulating BMI-1.  相似文献   

10.
Intratumoral expression of genes encoding Cytochrome P450 enzymes (CYP) might play a critical role not only in cancer development but also in the metabolism of anticancer drugs. The purpose of this study was to compare the mRNA expression patterns of seven representative CYPs in paired tumor and normal tissue of child patients with rabdomyosarcoma (RMS). Using real time quantitative RT-PCR, the gene expression pattern of CYP1A1, CYP1A2, CYP1B1, CYP2E1, CYP2W1, CYP3A4, and CYP3A5 were analyzed in tumor and adjacent non-tumor tissues from 13 child RMS patients. Protein concentration of CYPs was determined using Western blot. The expression levels were tested for correlation with the clinical and pathological data of the patients. Our data showed that the expression levels of CYP1A1 and CYP1A2 were negligible. Elevated expression of CYP1B1 mRNA and protein was detected in most RMS tumors and adjacent normal tissues. Most cancerous samples exhibit higher levels of both CYP3A4 and CYP3A5 compared with normal tissue samples. Expression of CYP2E1 mRNA was found to be significantly higher in tumor tissue, however no relation was found with protein levels. CYP2W1 mRNA and/or protein are mainly expressed in tumors. In conclusion, we defined the CYP gene expression profile in tumor and paired normal tissue of child patients with RMS. The overexpression of CYP2W1, CYP3A4 and CYP3A5 in tumor tissues suggests that they may be involved in RMS chemoresistance; furthermore, they may be exploited for the localized activation of anticancer prodrugs.  相似文献   

11.

Background

The cytochrome P450 CYP1A1 and CYP1B1 enzymes are involved in carcinogenesis via activation of pro-carcinogenic compounds to carcinogenic metabolites. CYP1A1 and CYP1B1 have shown elevated levels in human tumors as determined by qRT-PCR and immunohistochemical studies. However studies that have examined CYP1 expression by enzyme activity assays are limited.

Results

In the current study the expression of CYP1A1 and CYP1B1 was investigated in a panel of human tumors of bladder and colorectal origin by qRT-PCR and enzyme activity assays. The results demonstrated that 35% (7/20) of bladder tumors and 35% (7/20) of colon tumors overexpressed active CYP1 enzymes. CYP1B1 mRNA was overexpressed in 65% and 60% of bladder and colon tumors respectively, whereas CYP1A1 was overexpressed in 65% and 80% of bladder and colon tumors. Mean mRNA levels of CYP1B1 and CYP1A1 along with mean CYP1 activity were higher in bladder and colon tumors compared to normal tissues (p<0.05). Statistical analysis revealed CYP1 expression levels to be independent of TNM status. Moreover, incubation of tumor microsomal protein in 4 bladder and 3 colon samples with a CYP1B1 specific antibody revealed a large reduction (72.5 ± 5.5 % for bladder and 71.8 ± 7.2% for colon) in catalytic activity, indicating that the activity was mainly attributed to CYP1B1 expression.

Conclusions

The study reveals active CYP1 overexpression in human tumors and uncovers the potential use of CYP1 enzymes and mainly CYP1B1 as targets for cancer therapy.  相似文献   

12.
13.
The water-soluble duocarmycin B1 prodrugs such as glycoside 3, phosphate 4 and carbamate 5 were synthesized for improving biological and pharmaceutical profiles of duocarmycin. Among these prodrugs, N-methylpiperazinylcarbamoyl derivative 5 exhibited potent antitumor activity against several human tumors in vivo.  相似文献   

14.
15.
Circular RNAs (circRNAs) have been demonstrated to be important regulators in human malignant tumors, including colorectal cancer (CRC). While the role circ-ZEB1 played in CRC remains unclear. In this study, we aim to explore the biological function and the underlying mechanism of circ-ZEB1 in CRC. RNAscope was used to analyze the expression and localization of circ-ZEB1 in CRC tissues. Loss of function experiments were conducted, including CCK-8, transwell assays, flow cytometry analysis, and murine xenograft models, so as to detect the effect of circ-ZEB1 on CRC cells. IC50 assay was used to evaluate the influence of circ-ZEB1 on the chemoresistance of CRC cells. Epithelial-mesenchymal transition (EMT) related markers were detected. The relationship between circ-ZEB1 and miR-200c-5p was investigated by FISH, dual-luciferase reporter assay, and RIP assay. We found in our study that circ-ZEB1 was significantly upregulated in CRC tissues. Downregulation of circ-ZEB1 inhibited cell proliferation, colony formation, as well as cell migration and invasion abilities of CRC cell lines. In vivo experiments indicated that knockdown of circ-ZEB1 suppressed tumorigenesis and distant metastasis of CRC cells in nude mice. What's more, EMT and chemoresistance of CRC cells were also attenuated following circ-ZEB1 knockdown. Mechanistically, we proved that circ-ZEB1 could directly bind with miR-200c and functioned as miR-200c sponge to exert its biological functions in CRC cells. In conclusion, circ-ZEB1 could promote CRC cells progression, EMT, and chemoresistance via acting on miR-200c, elucidating a potential therapeutic target to inhibit CRC progression.  相似文献   

16.
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the western world. In this study, we evaluated the expression of matrix metalloproteinase 2 gene (MMP2) in CRC and analyzed its correlation with clinicopathological features. We found that the expression of MMP2 was significantly higher in CRC tissues than in the colorectal tissues. In addition, high levels of MMP2 protein were positively correlated with the status of tumor size, lymph node metastasis, distant metastasis, Dukes' stage, and tumor invasion. Moreover, patients with higher MMP2 levels had markedly shorter overall survivals than those with low MMP2 levels. Multivariate analysis results suggested that the level of MMP2 expression is an independent prognostic indicator for the survival of patients with CRC. Silencing MMP2 expression in CRC cell lines with lentiviral-mediated shRNA markedly suppressed cell proliferation, colony formation, and invasion. Furthermore, we observed that vascular endothelial growth factor (VEGF) and membrane type 1 (MT1)-MMP protein levels were decreased in MMP2-down-regulated colorectal cells. Therefore, our study demonstrated that MMP2 is an important factor related to carcinogenesis and metastasis of CRC, and MMP2 promotes CRC cell growth and invasion by up-regulating VEGF and MT1-MMP expression, which makes this pathway a potential target for cancer treatment.  相似文献   

17.
目的:研究鸟嘌呤核苷酸解离抑制因子2(Rho GDI2)在结直肠癌(CRC)组织中的表达及其与临床侵袭转移的关系。方法:收集本院于2015年1月至2015年12月收治的80例CRC患者手术切除的原发灶组织和正常癌旁组织。采用免疫组化法检测各组织标本中Rho GDI2的表达情况,并分析其表达量与临床病理特征的相关性。结果:(1)Rho GDI2主要表达于CRC癌细胞胞浆中,在肿瘤原发灶和正常癌旁组织中的阳性表达率分别为26.25%和0.00%,差异具有统计学意义(P0.05);(2)肿瘤原发灶中Rho GDI2的阳性表达率与患者的性别、年龄、肿瘤位置、大小、数量、组织学分级、原发灶分期、血管浸润、神经浸润间均不存在相关关系(P0.05),而与淋巴结转移及远端转移有关(P0.05)。结论:Rho GDI2在CRC肿瘤原发灶中呈阳性表达,且其高表达可促进CRC的侵袭转移,可作为CRC治疗的作用靶点。  相似文献   

18.
19.
Colorectal cancer (CRC) is the second leading cause of death of malignant tumors worldwide. Recent studies point to a role for the adiponectin-receptor axis in colorectal carcinogenesis, and in particular to the oncosuppressive properties of the T-cadherin receptor. In addition, the loss of T-cadherin expression in tumor tissues has been linked to cancer progression and attributed to aberrant methylation of its promoter. Recognizing the pivotal role of microRNAs in CRC, this study explores their possible contribution to the downregulation of T-cadherin. A systematic bioinformatics analysis, restricted by microRNA expression data in the colon or in cultured colorectal cell lines, predicted twelve top-ranking target miRNA sites within the 3ʹ UTR of T-cadherin. Experimental validation analyses based on luciferase reporter constructs and miRNA mimic or miRNA inhibitor transfections toward colorectal adenocarcinoma cell lines indicated that miR-377-3p was able to directly bind to the T-cadherin sequence, and thus downregulating its expression. Given the oncogenic activity of miR-377 and the oncosuppressive activity of T-cadherin in CRC, the regulatory circuit highlighted in this study may add new insights into molecular mechanisms driving colorectal carcinogenesis, and perspectively it could be exploited to identify novel biomarkers and therapeutic targets.  相似文献   

20.
Tazarotene-induced gene 1 (TIG1) is considered to be a tumor suppressor gene that is highly expressed in normal or well-differentiated colon tissues, while downregulation of TIG1 expression occurs in poorly differentiated colorectal cancer (CRC) tissues. However, it is still unclear how TIG1 regulates the tumorigenesis of CRC. Polo-like kinases (Plks) are believed to play an important role in regulating the cell cycle. The performance of PLK2 in CRC is negatively correlated with the differentiation status of CRC tissues. Here, we found that PLK2 can induce the growth of CRC cells and that TIG1 can prevent PLK2 from promoting the proliferation of CRC cells. We also found that the expression of PLK2 in CRC cells was associated with low levels of Fbxw7 protein and increased expression of cyclin E1. When TIG1 was coexpressed with PLK2, the changes in Fbxw7/cyclin E1 levels induced by PLK2 were reversed. In contrast, silencing TIG1 promoted the proliferation of CRC, and when PLK2 was also silenced, the proliferation of CRC cells induced by TIG1 silencing was significantly inhibited. The above research results suggest that TIG1 can regulate the tumorigenesis of CRC by regulating the activity of PLK2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号