首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Calpain-3 deficiency causes oxidative and nitrosative stress-induced damage in skeletal muscle of LGMD2A patients, but mitochondrial respiratory chain function and anti-oxidant levels have not been systematically assessed in this clinical population previously.

Methods

We identified 14 patients with phenotypes consistent with LGMD2A and performed CAPN3 gene sequencing, CAPN3 expression/autolysis measurements, and in silico predictions of pathogenicity. Oxidative damage, anti-oxidant capacity, and mitochondrial enzyme activities were determined in a subset of muscle biopsies.

Results

Twenty-one disease-causing variants were detected along the entire CAPN3 gene, five of which were novel (c.338 T>C, c.500 T>C, c.1525-1 G>T, c.2115+4 T>G, c.2366 T>A). Protein- and mRNA-based tests confirmed in silico predictions and the clinical diagnosis in 75% of patients. Reductions in antioxidant defense mechanisms (SOD-1 and NRF-2, but not SOD-2), coupled with increased lipid peroxidation and protein ubiquitination, were observed in calpain-3 deficient muscle, indicating a redox imbalance primarily affecting non-mitochondrial compartments. Although ATP synthase levels were significantly lower in LGMD2A patients, citrate synthase, cytochrome c oxidase, and complex I+III activities were not different from controls.

Conclusions

Despite significant oxidative damage and redox imbalance in cytosolic/myofibrillar compartments, mitochondrial respiratory chain function is largely maintained in skeletal muscle of LGMD2A patients.  相似文献   

2.
Glutathione, the most abundant low-molecular weight thiol in the skin, has been shown to protect the skin from both photobiological and chemical injury. The thiols, glutathione in particular, have also been shown to be crucially involved in defence against contact allergens. Since the levels of extracellular thiol concentrations are important determinants of intracellular thiol status, we have compared the normal concentrations and the redox status of the main low-molecular weight thiol components in the extracellular fluid at the dermo-epidermal junction with the corresponding plasma levels. In their sulfhydryl form, all three thiols, i.e. glutathione, cysteine and homocysteine, were more abundant in experimental skin blister fluid than in plasma, as were the free disulfides of glutathione and homocysteine, whereas the free disulfides of cysteine were about the same in blister fluid and in plasma. Protein mixed disulfide levels were higher in plasma than in blister fluid. The present results provide information concerning the extracellular defence in the skin.  相似文献   

3.
4.
A kinase interacting protein 1 (AKIP1) is a molecular regulator of protein kinase A and nuclear factor kappa B signalling. Recent evidence suggests AKIP1 is increased in response to cardiac stress, modulates acute ischemic stress response, and is localized to mitochondria in cardiomyocytes. The mitochondrial function of AKIP1 is, however, still elusive. Here, we investigated the mitochondrial function of AKIP1 in a neonatal cardiomyocyte model of phenylephrine (PE)-induced hypertrophy. Using a seahorse flux analyzer we show that PE stimulated the mitochondrial oxygen consumption rate (OCR) in cardiomyocytes. This was partially dependent on PE mediated AKIP1 induction, since silencing of AKIP1 attenuated the increase in OCR. Interestingly, AKIP1 overexpression alone was sufficient to stimulate mitochondrial OCR and in particular ATP-linked OCR. This was also true when pyruvate was used as a substrate, indicating that it was independent of glycolytic flux. The increase in OCR was independent of mitochondrial biogenesis, changes in ETC density or altered mitochondrial membrane potential. In fact, the respiratory flux was elevated per amount of ETC, possibly through enhanced ETC coupling. Furthermore, overexpression of AKIP1 reduced and silencing of AKIP1 increased mitochondrial superoxide production, suggesting that AKIP1 modulates the efficiency of electron flux through the ETC. Together, this suggests that AKIP1 overexpression improves mitochondrial function to enhance respiration without excess superoxide generation, thereby implicating a role for AKIP1 in mitochondrial stress adaptation. Upregulation of AKIP1 during different forms of cardiac stress may therefore be an adaptive mechanism to protect the heart.  相似文献   

5.
Mitochondria have roles in many cellular processes, from energy metabolism and calcium homeostasis to control of cellular lifespan and programmed cell death. These processes affect and are affected by the redox status of and ATP production by mitochondria. Here, we describe the use of two ratiometric, genetically encoded biosensors that can detect mitochondrial redox state and ATP levels at subcellular resolution in living yeast cells. Mitochondrial redox state is measured using redox-sensitive Green Fluorescent Protein (roGFP) that is targeted to the mitochondrial matrix. Mito-roGFP contains cysteines at positions 147 and 204 of GFP, which undergo reversible and environment-dependent oxidation and reduction, which in turn alter the excitation spectrum of the protein. MitGO-ATeam is a Förster resonance energy transfer (FRET) probe in which the ε subunit of the FoF1-ATP synthase is sandwiched between FRET donor and acceptor fluorescent proteins. Binding of ATP to the ε subunit results in conformation changes in the protein that bring the FRET donor and acceptor in close proximity and allow for fluorescence resonance energy transfer from the donor to acceptor.  相似文献   

6.
7.
Titanium dioxide (TiO2) nanoparticles are one of the most highly manufactured and employed nanomaterials in the world with applications in copious industrial and consumer products. The liver is a major accumulation site for many nanoparticles, including TiO2, directly through intentional exposure or indirectly through unintentional ingestion via water, food or animals and increased environmental contamination. Growing concerns over the current usage of TiO2 coupled with the lack of mechanistic understanding of its potential health risk is the motivation for this study. Here we determined the toxic effect of three different TiO2 nanoparticles (commercially available rutile, anatase and P25) on primary rat hepatocytes. Specifically, we evaluated events related to hepatocyte functions and mitochondrial dynamics: (1) urea and albumin synthesis using colorimetric and ELISA assays, respectively; (2) redox signaling mechanisms by measuring reactive oxygen species (ROS) production, manganese superoxide dismutase (MnSOD) activity and mitochondrial membrane potential (MMP); (3) OPA1 and Mfn-1 expression that mediates the mitochondrial dynamics by PCR; and (4) mitochondrial morphology by MitoTracker Green FM staining. All three TiO2 nanoparticles induced a significant loss (p < 0.05) in hepatocyte functions even at concentrations as low as 50 ppm with commercially used P25 causing maximum damage. TiO2 nanoparticles induced a strong oxidative stress in primary hepatocytes. TiO2 nanoparticles exposure also resulted in morphological changes in mitochondria and substantial loss in the fusion process, thus impairing the mitochondrial dynamics. Although this study demonstrated that TiO2 nanoparticles exposure resulted in substantial damage to primary hepatocytes, more in vitro and in vivo studies are required to determine the complete toxicological mechanism in primary hepatocytes and subsequently liver function.  相似文献   

8.
9.

Background

Recent findings suggest that NADH-dependent enzymes of the plasma membrane redox system (PMRS) play roles in the maintenance of cell bioenergetics and oxidative state. Neurons and tumor cells exhibit differential vulnerability to oxidative and metabolic stress, with important implications for the development of therapeutic interventions that promote either cell survival (neurons) or death (cancer cells).

Methods and Findings

Here we used human neuroblastoma cells with low or high levels of the PMRS enzyme NADH-quinone oxidoreductase 1 (NQO1) to investigate how the PMRS modulates mitochondrial functions and cell survival. Cells with elevated NQO1 levels exhibited higher levels of oxygen consumption and ATP production, and lower production of reactive oxygen species. Cells overexpressing NQO1 were more resistant to being damaged by the mitochondrial toxins rotenone and antimycin A, and exhibited less oxidative/nitrative damage and less apoptotic cell death. Cells with basal levels of NQO1 resulted in increased oxidative damage to proteins and cellular vulnerability to mitochondrial toxins. Thus, mitochondrial functions are enhanced and oxidative stress is reduced as a result of elevated PMRS activity, enabling cells to maintain redox homeostasis under conditions of metabolic and energetic stress.

Conclusion

These findings suggest that NQO1 is a potential target for the development of therapeutic agents for either preventing neuronal degeneration or promoting the death of neural tumor cells.  相似文献   

10.
11.
We investigated effects of two doses of Tenoxicam, a type 2 cyclooxygenase inhibitor, administration on lipid peroxidation and antioxidant redox system in cortex of the brain in rats. Twenty-two male Wistar rats were randomly divided into three groups. First group was used as control. 10 and 20 mg/kg body weight Tenoxicam were intramuscularly administrated to rats constituting the second and third groups for 10 days, respectively. Both dose of Tenoxicam administration resulted in significant increase in the glutathione peroxidase activity, reduced glutathione and vitamins C and E of cortex of the brain. The lipid peroxidation levels in the cortex of the brain were significantly decreased by the administration. Vitamin A and β-carotene concentration was not affected by the administration. There was no statistical difference in all values between 10 and 20 mg Tenoxicam administrated groups. In conclusion, treatment of brain with 10 and 20 mg Tenoxicam has protective effects on the oxidative stress by inhibiting free radical and supporting antioxidant redox system.  相似文献   

12.
A low glycemic response (LGR) vs. high glycemic response (HGR) diet helps curtail the development of obesity and diabetes, though the mechanisms are unknown. We hypothesized that consumption of a HGR vs. a LGR diet would lead to a more oxidized circulating redox state and predicted that a HGR diet would increase fat accumulation, reduce insulin sensitivity, and impair metabolic acclimation to a high fat diet in a mouse model. Hence, male C57BL/6 mice consumed a HGR or LGR diet for 16 weeks and a subset of the mice subsequently consumed a high fat diet for 4 weeks. We found that body mass increased at a faster rate for those consuming the HGR diet. Percent body fat was greater and percent lean mass was lesser in the HGR group starting at 12 weeks. However, the groups did not differ in terms of glucose tolerance at week 14 and metabolic parameters (respiratory exchange ratio, heat production, activity) at weeks 4 or 15. Moreover, mice on either diet did not show differences in metabolic acclimation to the high fat leg of the study. At the termination of the study, the groups did not differ in terms of redox pairs (lactate/pyruvate and β-hydroxybutyrate/acetoacetate) or thioredoxin reductase activity in blood. Also, total and oxidized glutathione levels and lipid peroxidation were similar in blood and liver. Correlations between baseline measures, longitudinal parameters, environmental conditions, and terminal metrics revealed that individual mice have innate propensities to metabolic regulation that may be difficult to perturb with diet alone; for example, starting mass correlated negatively with energy expenditure 4 weeks into the study and total hepatic glutathione at the end of the study. In conclusion, these data suggest that the mechanism by which HGR carbohydrates contributes to obesity is not via prolonged oxidation of the circulating redox state.  相似文献   

13.
14.
We developed a Raman spectroscopy-based approach for simultaneous study of redox changes in c-and b-type cytochromes and for a semiquantitative estimation of the amount of oxygenated myoglobin in a perfused rat heart. Excitation at 532 nm was used to obtain Raman scattering of the myocardial surface of the isolated heart at normal and hypoxic conditions. Raman spectra of the heart under normal pO2 demonstrate unique peaks attributable to reduced c-and b-type cytochromes and oxymyoglobin (oMb). The cytochrome peaks decreased in intensity upon FCCP treatment, as predicted from uncoupling mitochondrial respiration. Conversely, transient hypoxia causes the reversible increase in the intensity of peaks assigned to cytochromes c and c1, reflecting electron stacking proximal to cytochrome oxidase due to the lack of terminal electron acceptor O2. Intensities of peaks assigned to oxy- and deoxyhemoglobin were used for the semiquantitative estimation of oMb deoxygenation that was found to be of approximately 50 under hypoxia conditions.  相似文献   

15.
The relationship of mitochondrial dynamics and function to pluripotency are rather poorly understood aspects of stem cell biology. Here we show that growth factor erv1-like (Gfer) is involved in preserving mouse embryonic stem cell (ESC) mitochondrial morphology and function. Knockdown (KD) of Gfer in ESCs leads to decreased pluripotency marker expression, embryoid body (EB) formation, cell survival, and loss of mitochondrial function. Mitochondria in Gfer-KD ESCs undergo excessive fragmentation and mitophagy, whereas those in ESCs overexpressing Gfer appear elongated. Levels of the mitochondrial fission GTPase dynamin-related protein 1 (Drp1) are highly elevated in Gfer-KD ESCs and decreased in Gfer-overexpressing cells. Treatment with a specific inhibitor of Drp1 rescues mitochondrial function and apoptosis, whereas expression of Drp1-dominant negative resulted in the restoration of pluripotency marker expression in Gfer-KD ESCs. Altogether, our data reveal a novel prosurvival role for Gfer in maintaining mitochondrial fission–fusion dynamics in pluripotent ESCs.  相似文献   

16.
17.
18.
Atrazine is currently the most widely used herbicide in agriculture with lots of adverse effects on human health. Curcumin is a polyphenol known for its antioxidant, anti‐inflammatory, and anticancer properties. In the present study, the protective effect of curcumin on atrazin‐intoxicated rats is evaluated. Toxicity was induced by oral administration of atrazine (400 mg/kg/day) for 3 weeks. Curcumin at a dose of 400 mg/kg/day was given simultaneously by oral route. Redox status, mitochondrial function, 8‐hydroxydeoxyguanosine (8‐OHdG) level by immunoassay, and caspace‐3 expression by immunohistochemistry were evaluated. Curcumin showed significant cardiac protection with improvement of redox status, mitochondrial function, 8‐OHdG level, caspase‐3 immunoreactivity, and cardiac muscle degeneration. From this current study, it can be concluded that administration of curcumin improved atrazine‐induced cardiotoxicity through its modulatory effect on redox status, mitochondrial function, and caspase‐3 expression.  相似文献   

19.
The skeletal muscle mitochondria contain two isoforms of uncoupling protein, UCP2 and mainly UCP3, which had been shown to be activated by free fatty acids and inhibited by purine nucleotides in reconstituted systems. On the contrary in isolated mitochondria, the protonophoretic action of muscle UCPs had failed to be demonstrated in the absence of superoxide production. We showed here for the first time that muscle UCPs were activated in state 3 respiration by linoleic acid and dissipated energy from oxidative phosphorylation by decreasing the ADP/O ratio. The efficiency of UCPs in mitochondrial uncoupling increased when the state 3 respiratory rate decreased. The inhibition of the linoleic acid-induced uncoupling by a purine nucleotide (GTP), was not observed in state 4 respiration, in uninhibited state 3 respiration, as well as in state 3 respiration inhibited by complex III inhibitors. On the contrary, the progressive inhibition of state 3 respiration by n -butyl malonate, which inhibits the uptake of succinate, led to a full inhibitory effect of GTP. Therefore, as the inhibitory effect of GTP was observed only when the reduced state of coenzyme Q was decreased, we propose that the coenzyme Q redox state could be a metabolic sensor that modulates the purine nucleotide inhibition of FFA-activated UCPs in muscle mitochondria.  相似文献   

20.
Thomas D. Fox 《Genetics》2012,192(4):1203-1234
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.TO think about how mitochondrial proteins are synthesized, imported, and assembled, it is useful to have a clear picture of the organellar structures that they, along with membrane lipids, compose and the functions that they carry out. As almost every schoolchild learns, mitochondria carry out oxidative phosphorylation, the controlled burning of nutrients coupled to ATP synthesis. Since Saccharomyces cerevisiae prefers to ferment sugars, respiration is a dispensable function and nonrespiring mutants are viable [although they cannot undergo meiosis (Jambhekar and Amon 2008)]. However, mitochondria themselves are not dispensable. A substantial fraction of intermediary metabolism occurs in mitochondria (Strathern et al. 1982), and at least one of these pathways, iron–sulfur cluster assembly, is essential for growth (Kispal et al. 2005). Thus, any mutation that prevents the biogenesis of mitochondria by, for example, preventing the import of protein constituents from the cytoplasm, is lethal (Baker and Schatz 1991).The mitochondria of S. cerevisiae are tubular structures at the cell cortex. While the number of distinct compartments can range from 1 to ∼50 depending upon conditions (Stevens 1981; Pon and Schatz 1991), continual fusion and fission events among them effectively form a single dynamic network (Nunnari et al. 1997). The outer membrane surrounds the tubules. The inner membrane has a boundary domain closely juxtaposed beneath the outer membrane and cristae domains that project internally from the boundary into the matrix (Figure 1A). The matrix is the aqueous compartment surrounded by the inner membrane. The aqueous intermembrane space lies between the membranes and is continuous with the space within cristae.Open in a separate windowFigure 1 Overview of mitochondrial structure in yeast. (A) Schematic of compartments comprising mitochondrial tubules. The outer membrane surrounds the organelle. The inner membrane surrounds the matrix and consists of two domains, the inner boundary membrane and the cristae membranes, which are joined at cristae junctions. The intermembrane space lies between the outer membrane and inner membrane. (B) Electron tomograph image of a highly contracted yeast mitochondrion observed en face (a) with the outer membrane (red) and (b) without the outer membrane. Reprinted by permission from John Wiley & Sons from Mannella et al. (2001).Inner membrane cristae are often depicted as baffles emanating from the boundary domain. However, electron tomography of mitochondria from several species, including yeast, shows that cristae actually emanate from the boundary membrane as narrow tubular structures at sites termed “crista junctions” and expand as they project into the matrix (Frey and Mannella 2000; Mannella et al. 2001) (Figure 1B). It seems clear that the boundary and cristae domains of the inner membrane have distinct compositions with respect to the respiratory complexes that are embedded preferentially in the cristae membrane domains, as well as other components (Vogel et al. 2006; Wurm and Jakobs 2006; Rabl et al. 2009; Suppanz et al. 2009; Zick et al. 2009; Davies et al. 2011).The outer and inner boundary membranes are connected at multiple contact sites, at least some of which are involved in protein translocation and may be transient (Pon and Schatz 1991). In addition, there appear to be firm contact sites, not directly involved with protein translocation, preferentially colocalized with crista junctions (Harner et al. 2011a).Overall, there appear to be ∼1000 distinct proteins in yeast mitochondria (Premsler et al. 2009). One series of proteomic studies on highly purified organelles identified 851 proteins thought to represent 85% of the total number of species (Sickmann et al. 2003; Reinders et al. 2006; Zahedi et al. 2006). Another study identified an additional 209 candidates (Prokisch et al. 2004). A computationally driven search for candidates involved in yeast mitochondrial function, coupled with experiments to assay respiratory function and maintenance of mitochondrial DNA (mtDNA), identified 109 novel candidates, although many of these may not be mitochondrial per se (Hess et al. 2009). Taking the boundary and cristae domains together, the inner membrane is the most protein-rich mitochondrial compartment, followed by the matrix (Daum et al. 1982).Only eight of the yeast mitochondrial proteins detected in proteomic studies are encoded by mtDNA and synthesized within the organelle. They are hydrophobic subunits of respiratory complexes III (bc1 complex or ubiquinol-cytochrome c reductase), IV (cytochrome c oxidase), and V (ATP synthase), as well as a hydrophilic mitochondrial small subunit ribosomal protein. The remaining ∼99% of yeast mitochondrial proteins are encoded by nuclear genes, synthesized in cytoplasmic ribosomes, and imported into the organelle.An overview of known nuclearly encoded mitochondrial protein functions (Figure 2) reveals that ∼25% of them are involved directly in genome maintenance and expression of the eight major mitochondrial genes (Schmidt et al. 2010). The functions of ∼20% of the proteins are not known. Fifteen percent are involved in the well-known processes of energy metabolism. Protein translocation, folding, and turnover functions occupy ∼10% of mitochondrial proteins.Open in a separate windowFigure 2 Classification of identified mitochondrial proteins according to function. Reprinted by permission from Nature Publishing Group from Schmidt et al. (2010).The following discussion reviews our understanding of the biogenesis of mitochondria starting on the outside, the cytoplasm, and working inward through the mitochondrial compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号