共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hong Yang Elias W. Krumholz Evan D. Brutinel Nagendra P. Palani Michael J. Sadowsky Andrew M. Odlyzko Jeffrey A. Gralnick Igor G. L. Libourel 《PLoS computational biology》2014,10(9)
Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions. 相似文献
3.
4.
Several methods have been applied to EEG or MEG signals to detect functional networks. In recent works using MEG/EEG and fMRI data, temporal ICA analysis has been used to extract spatial maps of resting-state networks with or without an atlas-based parcellation of the cortex. Since the links between the fMRI signal and the electromagnetic signals are not fully established, and to avoid any bias, we examined whether EEG alone was able to derive the spatial distribution and temporal characteristics of functional networks. To do so, we propose a two-step original method: 1) An individual multi-frequency data analysis including EEG-based source localisation and spatial independent component analysis, which allowed us to characterize the resting-state networks. 2) A group-level analysis involving a hierarchical clustering procedure to identify reproducible large-scale networks across the population. Compared with large-scale resting-state networks obtained with fMRI, the proposed EEG-based analysis revealed smaller independent networks thanks to the high temporal resolution of EEG, hence hierarchical organization of networks. The comparison showed a substantial overlap between EEG and fMRI networks in motor, premotor, sensory, frontal, and parietal areas. However, there were mismatches between EEG-based and fMRI-based networks in temporal areas, presumably resulting from a poor sensitivity of fMRI in these regions or artefacts in the EEG signals. The proposed method opens the way for studying the high temporal dynamics of networks at the source level thanks to the high temporal resolution of EEG. It would then become possible to study detailed measures of the dynamics of connectivity. 相似文献
5.
Recent development of high-throughput analytical techniques has made it possible to qualitatively identify a number of metabolites simultaneously. Correlation and multivariate analyses such as principal component analysis have been widely used to analyse those data and evaluate correlations among the metabolic profiles. However, these analyses cannot simultaneously carry out identification of metabolic reaction networks and prediction of dynamic behaviour of metabolites in the networks. The present study, therefore, proposes a new approach consisting of a combination of statistical technique and mathematical modelling approach to identify and predict a probable metabolic reaction network from time-series data of metabolite concentrations and simultaneously construct its mathematical model. Firstly, regression functions are fitted to experimental data by the locally estimated scatter plot smoothing method. Secondly, the fitted result is analysed by the bivariate Granger causality test to determine which metabolites cause the change in other metabolite concentrations and remove less related metabolites. Thirdly, S-system equations are formed by using the remaining metabolites within the framework of biochemical systems theory. Finally, parameters including rate constants and kinetic orders are estimated by the Levenberg–Marquardt algorithm. The estimation is iterated by setting insignificant kinetic orders at zero, i.e., removing insignificant metabolites. Consequently, a reaction network structure is identified and its mathematical model is obtained. Our approach is validated using a generic inhibition and activation model and its practical application is tested using a simplified model of the glycolysis of Lactococcus lactis MG1363, for which actual time-series data of metabolite concentrations are available. The results indicate the usefulness of our approach and suggest a probable pathway for the production of lactate and acetate. The results also indicate that the approach pinpoints a probable strong inhibition of lactate on the glycolysis pathway. 相似文献
6.
Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties. 相似文献
7.
8.
Natalie J. Stanford Timo Lubitz Kieran Smallbone Edda Klipp Pedro Mendes Wolfram Liebermeister 《PloS one》2013,8(11)
The quantitative effects of environmental and genetic perturbations on metabolism can be studied in silico using kinetic models. We present a strategy for large-scale model construction based on a logical layering of data such as reaction fluxes, metabolite concentrations, and kinetic constants. The resulting models contain realistic standard rate laws and plausible parameters, adhere to the laws of thermodynamics, and reproduce a predefined steady state. These features have not been simultaneously achieved by previous workflows. We demonstrate the advantages and limitations of the workflow by translating the yeast consensus metabolic network into a kinetic model. Despite crudely selected data, the model shows realistic control behaviour, a stable dynamic, and realistic response to perturbations in extracellular glucose concentrations. The paper concludes by outlining how new data can continuously be fed into the workflow and how iterative model building can assist in directing experiments. 相似文献
9.
Matthew N. Benedict Michael B. Mundy Christopher S. Henry Nicholas Chia Nathan D. Price 《PLoS computational biology》2014,10(10)
Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genes and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary to obtain a more accurate network. All described workflows are implemented as part of the DOE Systems Biology Knowledgebase (KBase) and are publicly available via API or command-line web interface. 相似文献
10.
Sampling the solution space of genome-scale models is generally conducted to determine the feasible region for metabolic flux distribution. Because the region for actual metabolic states resides only in a small fraction of the entire space, it is necessary to shrink the solution space to improve the predictive power of a model. A common strategy is to constrain models by integrating extra datasets such as high-throughput datasets and C13-labeled flux datasets. However, studies refining these approaches by performing a meta-analysis of massive experimental metabolic flux measurements, which are closely linked to cellular phenotypes, are limited. In the present study, experimentally identified metabolic flux data from 96 published reports were systematically reviewed. Several strong associations among metabolic flux phenotypes were observed. These phenotype-phenotype associations at the flux level were quantified and integrated into a Saccharomyces cerevisiae genome-scale model as extra physiological constraints. By sampling the shrunken solution space of the model, the metabolic flux fluctuation level, which is an intrinsic trait of metabolic reactions determined by the network, was estimated and utilized to explore its relationship to gene expression noise. Although no correlation was observed in all enzyme-coding genes, a relationship between metabolic flux fluctuation and expression noise of genes associated with enzyme-dosage sensitive reactions was detected, suggesting that the metabolic network plays a role in shaping gene expression noise. Such correlation was mainly attributed to the genes corresponding to non-essential reactions, rather than essential ones. This was at least partially, due to regulations underlying the flux phenotype-phenotype associations. Altogether, this study proposes a new approach in shrinking the solution space of a genome-scale model, of which sampling provides new insights into gene expression noise. 相似文献
11.
Yilin Fang Michael J. Wilkins Steven B. Yabusaki Mary S. Lipton Philip E. Long 《Applied and environmental microbiology》2012,78(24):8735-8742
Accurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within an in silico model using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model of Geobacter metallireducens—specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment. 相似文献
12.
13.
Jonathan M. Dreyfuss Jeremy D. Zucker Heather M. Hood Linda R. Ocasio Matthew S. Sachs James E. Galagan 《PLoS computational biology》2013,9(7)
The filamentous fungus Neurospora crassa played a central role in the development of twentieth-century genetics, biochemistry and molecular biology, and continues to serve as a model organism for eukaryotic biology. Here, we have reconstructed a genome-scale model of its metabolism. This model consists of 836 metabolic genes, 257 pathways, 6 cellular compartments, and is supported by extensive manual curation of 491 literature citations. To aid our reconstruction, we developed three optimization-based algorithms, which together comprise Fast Automated Reconstruction of Metabolism (FARM). These algorithms are: LInear MEtabolite Dilution Flux Balance Analysis (limed-FBA), which predicts flux while linearly accounting for metabolite dilution; One-step functional Pruning (OnePrune), which removes blocked reactions with a single compact linear program; and Consistent Reproduction Of growth/no-growth Phenotype (CROP), which reconciles differences between in silico and experimental gene essentiality faster than previous approaches. Against an independent test set of more than 300 essential/non-essential genes that were not used to train the model, the model displays 93% sensitivity and specificity. We also used the model to simulate the biochemical genetics experiments originally performed on Neurospora by comprehensively predicting nutrient rescue of essential genes and synthetic lethal interactions, and we provide detailed pathway-based mechanistic explanations of our predictions. Our model provides a reliable computational framework for the integration and interpretation of ongoing experimental efforts in Neurospora, and we anticipate that our methods will substantially reduce the manual effort required to develop high-quality genome-scale metabolic models for other organisms. 相似文献
14.
One ultimate goal of metabolic network modeling is the rational redesign of biochemical networks to optimize the production of certain compounds by cellular systems. Although several constraint-based optimization techniques have been developed for this purpose, methods for systematic enumeration of intervention strategies in genome-scale metabolic networks are still lacking. In principle, Minimal Cut Sets (MCSs; inclusion-minimal combinations of reaction or gene deletions that lead to the fulfilment of a given intervention goal) provide an exhaustive enumeration approach. However, their disadvantage is the combinatorial explosion in larger networks and the requirement to compute first the elementary modes (EMs) which itself is impractical in genome-scale networks.We present MCSEnumerator, a new method for effective enumeration of the smallest MCSs (with fewest interventions) in genome-scale metabolic network models. For this we combine two approaches, namely (i) the mapping of MCSs to EMs in a dual network, and (ii) a modified algorithm by which shortest EMs can be effectively determined in large networks. In this way, we can identify the smallest MCSs by calculating the shortest EMs in the dual network. Realistic application examples demonstrate that our algorithm is able to list thousands of the most efficient intervention strategies in genome-scale networks for various intervention problems. For instance, for the first time we could enumerate all synthetic lethals in E.coli with combinations of up to 5 reactions. We also applied the new algorithm exemplarily to compute strain designs for growth-coupled synthesis of different products (ethanol, fumarate, serine) by E.coli. We found numerous new engineering strategies partially requiring less knockouts and guaranteeing higher product yields (even without the assumption of optimal growth) than reported previously. The strength of the presented approach is that smallest intervention strategies can be quickly calculated and screened with neither network size nor the number of required interventions posing major challenges. 相似文献
15.
Zhixiong Zhou Lin Chen Chuanju Dong Wenzhu Peng Shengnan Kong Jinsheng Sun Fei Pu Baohua Chen Jianxin Feng Peng Xu 《Marine biotechnology (New York, N.Y.)》2018,20(5):573-583
Common carp (Cyprinus carpio) is one of the most widely studied fish species due to its great economic value and strong environmental adaptability. Scattered scale, a typical phenotype of the mirror carp that is derived from Europe, has never been observed in the Yellow River carp previously. We recently identified approximately one fourth of the F1 progenies displaying scattered scale in a full-sib Yellow River carp family in our breeding program, despite both parents that showed wild type with normal scale patterns. This family provides us unique materials to investigate the genetic basis underlying the abnormal scale mutant in Yellow River carp population. Genome-wide association study (GWAS) and association mapping were performed based on genome-wide single nucleotide polymorphisms (SNP) genotyped with common carp 250 K SNP genotyping array in 82 samples of the Yellow River carp family. We identified a 1.4 Mb genome region that was significantly associated with abnormal scattered scale patterns. We further identified a deletion mutation in fibroblast growth factor receptor 1 a1 (fgfr1a1) gene within this genome region. Amplification and sequencing analysis of this gene revealed a 311-bp deletion in intron 10 and exon 11, which proved that fgfr1a1 could be the causal gene responsible for abnormal scattered scale in the Yellow River carp family. Since similar fragment mutation with 306-bp and 310-bp deletions had been previously reported as causal mutation of scattered scale patterns in the mirror carp, we speculate that either the deletion mutation was introduced from Europe-derived mirror carp or the deletion independently occurred in the mutation hotspot in fgfr1a1 gene. The results provided insights into the genetic basis of scale pattern mutant in Yellow River carp population, which would help us to eliminate the recessive allele of the abnormal scale patterns in Yellow River carp population by molecular marker-assisted breeding. 相似文献
16.
Widely Targeted Metabolomics Based on Large-Scale MS/MS Data for Elucidating Metabolite Accumulation Patterns in Plants 总被引:1,自引:1,他引:1
Sawada Yuji; Akiyama Kenji; Sakata Akane; Kuwahara Ayuko; Otsuki Hitomi; Sakurai Tetsuya; Saito Kazuki; Hirai Masami Yokota 《Plant & cell physiology》2009,50(1):37-47
Metabolomics is an omics approach that aims toanalyze all metabolites in a biological sample comprehensively.The detailed metabolite profiling of thousands of plant sampleshas great potential for directly elucidating plant metabolicprocesses. However, both a comprehensive analysis and a highthroughput are difficult to achieve at the same time due tothe wide diversity of metabolites in plants. Here, we have establisheda novel and practical metabolomics methodology for quantifyinghundreds of targeted metabolites in a high-throughput manner.Multiple reaction monitoring (MRM) using tandem quadrupole massspectrometry (TQMS), which monitors both the specific precursorions and product ions of each metabolite, is a standard techniquein targeted metabolomics, as it enables high sensitivity, reproducibilityand a broad dynamic range. In this study, we optimized the MRMconditions for specific compounds by performing automated flowinjection analyses with TQMS. Based on a total of 61,920 spectrafor 860 authentic compounds, the MRM conditions of 497 compoundswere successfully optimized. These were applied to high-throughputautomated analysis of biological samples using TQMS coupledwith ultra performance liquid chromatography (UPLC). By thisanalysis, approximately 100 metabolites were quantified in eachof 14 plant accessions from Brassicaceae, Gramineae and Fabaceae.A hierarchical cluster analysis based on the metabolite accumulationpatterns clearly showed differences among the plant families,and family-specific metabolites could be predicted using a batch-learningself-organizing map analysis. Thus, the automated widely targetedmetabolomics approach established here should pave the way forlarge-scale metabolite profiling and comparative metabolomics. 相似文献
17.
Anand K. Gavai Farahaniza Supandi Hannes Hettling Paul Murrell Jack A. M. Leunissen Johannes H. G. M. van Beek 《PloS one》2015,10(3)
Predicting the distribution of metabolic fluxes in biochemical networks is of major interest in systems biology. Several databases provide metabolic reconstructions for different organisms. Software to analyze flux distributions exists, among others for the proprietary MATLAB environment. Given the large user community for the R computing environment, a simple implementation of flux analysis in R appears desirable and will facilitate easy interaction with computational tools to handle gene expression data. We extended the R software package BiGGR, an implementation of metabolic flux analysis in R. BiGGR makes use of public metabolic reconstruction databases, and contains the BiGG database and the reconstruction of human metabolism Recon2 as Systems Biology Markup Language (SBML) objects. Models can be assembled by querying the databases for pathways, genes or reactions of interest. Fluxes can then be estimated by maximization or minimization of an objective function using linear inverse modeling algorithms. Furthermore, BiGGR provides functionality to quantify the uncertainty in flux estimates by sampling the constrained multidimensional flux space. As a result, ensembles of possible flux configurations are constructed that agree with measured data within precision limits. BiGGR also features automatic visualization of selected parts of metabolic networks using hypergraphs, with hyperedge widths proportional to estimated flux values. BiGGR supports import and export of models encoded in SBML and is therefore interoperable with different modeling and analysis tools. As an application example, we calculated the flux distribution in healthy human brain using a model of central carbon metabolism. We introduce a new algorithm termed Least-squares with equalities and inequalities Flux Balance Analysis (Lsei-FBA) to predict flux changes from gene expression changes, for instance during disease. Our estimates of brain metabolic flux pattern with Lsei-FBA for Alzheimer’s disease agree with independent measurements of cerebral metabolism in patients. This second version of BiGGR is available from Bioconductor. 相似文献
18.
Katsunori Yoshikawa Shimpei Aikawa Yuta Kojima Yoshihiro Toya Chikara Furusawa Akihiko Kondo Hiroshi Shimizu 《PloS one》2015,10(12)
Arthrospira (Spirulina) platensis is a promising feedstock and host strain for bioproduction because of its high accumulation of glycogen and superior characteristics for industrial production. Metabolic simulation using a genome-scale metabolic model and flux balance analysis is a powerful method that can be used to design metabolic engineering strategies for the improvement of target molecule production. In this study, we constructed a genome-scale metabolic model of A. platensis NIES-39 including 746 metabolic reactions and 673 metabolites, and developed novel strategies to improve the production of valuable metabolites, such as glycogen and ethanol. The simulation results obtained using the metabolic model showed high consistency with experimental results for growth rates under several trophic conditions and growth capabilities on various organic substrates. The metabolic model was further applied to design a metabolic network to improve the autotrophic production of glycogen and ethanol. Decreased flux of reactions related to the TCA cycle and phosphoenolpyruvate reaction were found to improve glycogen production. Furthermore, in silico knockout simulation indicated that deletion of genes related to the respiratory chain, such as NAD(P)H dehydrogenase and cytochrome-c oxidase, could enhance ethanol production by using ammonium as a nitrogen source. 相似文献
19.
Phosphoribosylamine (PRA) is an intermediate in the biosynthetic pathway that is common to thiamine and purines. Glutamine phosphoribosyl pyrophosphate (PRPP) amidotransferase is the product of the purF gene in Salmonella enterica and catalyzes the synthesis of PRA from PRPP and glutamine. Strains lacking PurF require exogenous addition of purines for growth. However, under some growth conditions or with specific secondary mutations these strains grow in the absence of exogenous thiamine. Mutant alleles of hisA, which encodes 1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino) methylideneamino] imidazole-4-carboxamide (ProFAR) isomerase, allowed PurF-independent PRA formation. The alleles of hisA that suppressed the requirement for exogenous thiamine resulted in proteins with reduced enzymatic activity. Data presented here showed that decreased activity of HisA altered metabolite pools and allowed PRA formation from ProFAR. Possible mechanisms of this conversion were proposed. The results herein emphasize the plasticity of the metabolic network and specifically highlight the potential for chemical syntheses to contribute to network robustness. 相似文献
20.
Wout Megchelenbrink Sergio Rossell Martijn A. Huynen Richard A. Notebaart Elena Marchiori 《PloS one》2015,10(10)
MotivationGenome-scale metabolic networks can be modeled in a constraint-based fashion. Reaction stoichiometry combined with flux capacity constraints determine the space of allowable reaction rates. This space is often large and a central challenge in metabolic modeling is finding the biologically most relevant flux distributions. A widely used method is flux balance analysis (FBA), which optimizes a biologically relevant objective such as growth or ATP production. Although FBA has proven to be highly useful for predicting growth and byproduct secretion, it cannot predict the intracellular fluxes under all environmental conditions. Therefore, alternative strategies have been developed to select flux distributions that are in agreement with experimental “omics” data, or by incorporating experimental flux measurements. The latter, unfortunately can only be applied to a limited set of reactions and is currently not feasible at the genome-scale. On the other hand, it has been observed that micro-organisms favor a suboptimal growth rate, possibly in exchange for a more “flexible” metabolic network. Instead of dedicating the internal network state to an optimal growth rate in one condition, a suboptimal growth rate is used, that allows for an easier switch to other nutrient sources. A small decrease in growth rate is exchanged for a relatively large gain in metabolic capability to adapt to changing environmental conditions.ResultsHere, we propose Maximum Metabolic Flexibility (MMF) a computational method that utilizes this observation to find the most probable intracellular flux distributions. By mapping measured flux data from central metabolism to the genome-scale models of Escherichia coli and Saccharomyces cerevisiae we show that i) indeed, most of the measured fluxes agree with a high adaptability of the network, ii) this result can be used to further reduce the space of feasible solutions iii) this reduced space improves the quantitative predictions made by FBA and contains a significantly larger fraction of the measured fluxes compared to the flux space that was reduced by a uniform sampling approach and iv) MMF can be used to select reactions in the network that contribute most to the steady-state flux space. Constraining the selected reactions improves the quantitative predictions of FBA considerably more than adding an equal amount of flux constraints, selected using a more naïve approach. Our method can be applied to any cell type without requiring prior information.AvailabilityMMF is freely available as a MATLAB plugin at: http://cs.ru.nl/~wmegchel/mmf. 相似文献