首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Background

Deregulated miRNA expression plays a crucial role in carcinogenesis. Recent studies show different mechanisms leading to miRNA deregulation in cancer; however, alterations affecting miRNAs by DNA copy number variations (CNV) remain poorly studied.

Results

Our integrative analysis including data from high resolution SNPs arrays, mRNA expression arrays, and miRNAs expression profiles in 16 myeloid cell lines highlights that CNV are alternative mechanisms to deregulate the expression of miRNAs in acute myeloid leukemia (AML), and represent a novel approach to identify novel candidate genes involved in AML. We found association between the expression levels of 19 miRNAs and CNVs affecting their loci. Functional analysis showed that NF1 is a direct target of miR-370, and that overexpression of miR-370 has similar effects that NF1 inactivation, increasing proliferation and colony formation in AML cells. Moreover, real time RT-PCR showed that NF1 downregulation is a recurrent event in AML (30.8%), and western blot analysis confirmed this result. MiR-370 overexpression and deletions affecting the NF1 locus were identified as alternative mechanisms to downregulate NF1.

Conclusions

NF1 downregulation is a common event in AML, and both deletions in the NF1 locus and overexpression of miR-370 are alternative mechanisms to downregulate NF1 in this disease. Our results suggest a leukemogenic role of miR-370 through NF1 downregulation in AML cells. Since NF1 deficiency leads to RAS activation, patients with AML and overexpression of miR-370 may potentially benefit from additional treatment with either RAS or mTOR inhibitors.  相似文献   

4.
Ataxia telangiectasia mutated kinase (ATM) is a cell cycle checkpoint protein activated in response to DNA damage. We recently reported that ATM plays a protective role in myocardial remodeling following β-adrenergic receptor stimulation. Here we investigated the role of ATM in cardiac remodeling using myocardial infarction (MI) as a model. Methods and Results: Left ventricular (LV) structure, function, apoptosis, fibrosis, and protein levels of apoptosis- and fibrosis-related proteins were examined in wild-type (WT) and ATM heterozygous knockout (hKO) mice 7 days post-MI. Infarct sizes were similar in both MI groups. However, infarct thickness was higher in hKO-MI group. Two dimensional M-mode echocardiography revealed decreased percent fractional shortening (%FS) and ejection fraction (EF) in both MI groups when compared to their respective sham groups. However, the decrease in %FS and EF was significantly greater in WT-MI vs hKO-MI. LV end systolic and diastolic diameters were greater in WT-MI vs hKO-MI. Fibrosis, apoptosis, and α-smooth muscle actin staining was significantly higher in hKO-MI vs WT-MI. MMP-2 protein levels and activity were increased to a similar extent in the infarct regions of both groups. MMP-9 protein levels were increased in the non-infarct region of WT-MI vs WT-sham. MMP-9 protein levels and activity were significantly lower in the infarct region of WT vs hKO. TIMP-2 protein levels similarly increased in both MI groups, whereas TIMP-4 protein levels were significantly lower in the infarct region of hKO group. Phosphorylation of p53 protein was higher, while protein levels of manganese superoxide dismutase were significantly lower in the infarct region of hKO vs WT. In vitro, inhibition of ATM using KU-55933 increased oxidative stress and apoptosis in cardiac myocytes.  相似文献   

5.

Background

The CHADS2/CHA2DS2-VASc scores are used to predict thrombo-embolic/stroke in patients with nonvalvular atrial fibrillation (AF). Nevertheless, limited data are available regarding the association between these risk stratification for stroke and left atrial (LA) remodeling status of AF patients. The purpose of this study was to explore the association between these scores and LA remodeling status assessed quantificationally by echocardiography in AF patients.

Methods

One hundred AF patients were divided into 3 groups based on the CHA2DS2-VASc/CHADS2 score: the score of 0 (low stroke risk), the score of 1 (moderate stroke risk) and the score of ≥2 (high stroke risk). All patients were performed through conventional and velocity vector imaging echocardiography. Echocardiographic parameters: maximum LA volume index (LAVImax), LA total emptying fraction (LAEFt) and LA mean strain were obtained to assess quantificationally LA remodeling status.

Results

On categorizing with CHA2DS2-VASc, the score of 1 group showed augment in LAVImax and attenuation in LA mean strain derived from VVI, compared with the score of 0 group (LAVImax: 40.27±21.91 vs. 26.79±7.87, p=0.002; LA mean strain: 15.18±6.36 vs. 22±8.54, p=0.001). On categorizing with the CHADS2 score, similar trends were seen between the score of ≥2 and 1 groups (LAVImax: 43.72±13.77 vs. 31.41±9.50, p<0.001; LA mean strain: 11.01±5.31 vs. 18.63±7.00, p<0.001). With multivariate logistic regression, LAVImax (odds ratio: 0.92 , 95% C=I: 0.85 to 0.98, p= 0.01) and LA mean strain reflecting LA remodeling (odds ratio: 1.10, 95% CI: 1.02 to 1.19, p=0.01) were strongly predictive of the CHA2DS2-VASc score of 0.

Conclusions

The superiority of the CHADS2 score may lay in identifying LA remodeling of AF patients with high stroke risk. Whereas, the CHA2DS2-VASc score was better than the CHADS2 score at identifying LA remodeling of AF patients presenting low stroke risk.  相似文献   

6.
One of the generally recognized factors contributing to the initiation and maintenance of atrial fibrillation (AF) is structural remodeling of the myocardium that affects both atrial cardiomyocytes as well as interstitium. The goal of this study was to characterize morphologically and functionally interstitium of atria in patients with AF or in sinus rhythm (SR) who were indicated to heart surgery. Patient population consisted of 46 subjects (19 with long-term persistent AF, and 27 in SR) undergoing coronary bypass or valve surgery. Peroperative bioptic samples of the left and the right atria were examined using immunohistochemistry to visualize and quantify collagen I, collagen III, elastin, desmin, smooth muscle actin, endothelium and Vascular Endothelial Growth Factor (VEGF). The content of interstitial elastin, collagen I, and collagen III in atrial tissue was similar in AF and SR groups. However, the right atrium was more than twofold more abundant in elastin as compared with the left atrium and similar difference was found for collagen I and III. The right atrium showed also higher VEGF expression and lower microvascular density as compared to the left atrium. No significant changes in atrial extracellular matrix fiber content, microvascular density and angiogenic signaling, attributable to AF, were found in this cohort of patients with structural heart disease. This finding suggests that interstitial fibrosis and other morphological changes in atrial tissue are rather linked to structural heart disease than to AF per se. Significant regional differences in interstitial structure between right and left atrium is a novel observation that deserves further investigation.  相似文献   

7.
Previous animal studies had shown that increasing heat shock protein 70 (Hsp70) using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF). AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC). Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions.  相似文献   

8.

Background

The potential mechanisms of microRNA-1 (miR-1) in the electrical remodeling of atrial fibrillation remain unclear. The purpose of this study was to evaluate the effects of miR-1 on the atrial effective refractory period (AERP) in a right atrial tachypacing model and to elucidate the potential mechanisms.

Methods and Results

QRT-PCR and western blot were used to detect the expression of the miR-1, KCNE1, and KCNB2 genes after 1-week of right atrial tachypacing in New Zealand white rabbits. The AERP was measured using a programmable multichannel stimulator, and atrial fibrillation was induced by burst stimulation in vivo. The slowly activating delayed rectifier potassium current (IKs) and AERP in atrial cells were measured by whole cell patch clamp in vitro. Right atrial tachypacing upregulated miR-1 expression and downregulated KCNE1 and KCNB2 in this study, while the AERP was decreased and the atrial IKs increased. The downregulation of KCNE1 and KCNB2 levels was greater when miR-1 was further upregulated through in vivo lentiviral infection. Electrophysiological tests indicated a shorter AERP, a great increase in the IKs and a higher atrial fibrillation inducibility. In addition, similar results were found when the levels of KCNE1 and KCNB2 were downregulated by small interfering RNA while keeping miR-1 level unaltered. Conversely, knockdown of miR-1 by anti-miR-1 inhibitor oligonucleotides alleviated the downregulation of KCNE1 and KCNB2, the shortening of AERP, and the increase in the IKs. KCNE1 and KCNB2 as the target genes for miR-1 were confirmed by luciferase activity assay.

Conclusions

These results indicate that miR-1 accelerates right atrial tachypacing-induced AERP shortening by targeting potassium channel genes, which further suggests that miR-1 plays an important role in the electrical remodeling of atrial fibrillation and exhibits significant clinical relevance as a potential therapeutic target for atrial fibrillation.  相似文献   

9.
Many Escherichia coli K-12 strains display an intrinsic resistance to the peptide antibiotic microcin J25. In this study, we present results showing that the leucine-responsive regulatory protein, Lrp, is involved in this phenotype by acting as a positive regulator of YojI, a chromosomally encoded efflux pump which expels microcin out of cells. Exogenous leucine antagonizes the effect of Lrp, leading to a diminished expression of the pump and an increased susceptibility to microcin J25.  相似文献   

10.
11.
目的:探讨颈部低度迷走神经刺激对老年房颤患者血清C 反应蛋白(CRP)、肿瘤坏死因子-alpha(TNF-alpha)及基质金属蛋白酶-9 (MMP-9)、基质金属蛋白酶抑制剂-1(TIMP-1)的影响。方法:选取我院收治的老年房颤患者126 例,根据治疗方法的不同分为两 组。对照组63 例,予常规治疗,日1 次,7 天为1 个疗程,治疗2 个疗程;实验组63 例,在对照组的基础上加以颈部低度迷走神经 刺激术。治疗后,观察并比较两组患者的CRP、TNF-alpha及MMP-9、TIMP-1 的变化情况。结果:治疗后,两组患者的血清CRP、TNF -alpha、MMP-9及TIMP-1 均较治疗前显著降低,且实验组显著低于对照组,差异均有统计学意义(P<0.05)。实验组治疗后6个月内房 颤的发生率显著降低,差异均有统计学意义(P<0.05)。结论:颈部低度迷走神经刺激能够有效降低老年房颤患者的复发率,这可能 与其降低血清CRP、TNF-alpha,MMP-9、TIMP-1 的水平有关。  相似文献   

12.
Obligate biotrophs, such as the powdery mildew pathogens, deliver effectors to the host cell and obtain nutrients from the infection site. The interface between the plant host and the biotrophic pathogen thus represents a major battleground for plant-pathogen interactions. Increasing evidence shows that cellular trafficking plays an important role in plant immunity. Here, we report that Arabidopsis thaliana ENHANCED DISEASE RESISTANCE4 (EDR4) plays a negative role in resistance to powdery mildew and that the enhanced disease resistance in edr4 mutants requires salicylic acid signaling. EDR4 mainly localizes to the plasma membrane and endosomal compartments. Genetic analyses show that EDR4 and EDR1 function in the same genetic pathway. EDR1 and EDR4 accumulate at the penetration site of powdery mildew infection, and EDR4 physically interacts with EDR1, recruiting EDR1 to the fungal penetration site. In addition, EDR4 interacts with CLATHRIN HEAVY CHAIN2 (CHC2), and edr4 mutants show reduced endocytosis rates. Taken together, our data indicate that EDR4 associates with CHC2 and modulates plant immunity by regulating the relocation of EDR1 in Arabidopsis.  相似文献   

13.
OBJECTIVE:: This purpose of this consensus conference was to determine whether surgical atrial fibrillation (AF) ablation during cardiac surgery improves clinical and resource outcomes compared with cardiac surgery alone in adults undergoing cardiac surgery for valve or coronary artery bypass grafting. METHODS:: Before the consensus conference, the consensus panel reviewed the best available evidence, whereby systematic reviews, randomized trials, and nonrandomized trials were considered in descending order of validity and importance. Evidence-based statements were created, and consensus processes were used to determine the ensuing recommendations. The American Heart Association/American College of Cardiology system was used to label the level of evidence and class of recommendation. RESULTS:: The consensus panel agreed on the following statements in patients with AF undergoing cardiac surgery concomitant surgical ablation: CONCLUSIONS:: Given these evidence-based statements, the consensus panel stated that, in patients with persistent and permanent AF undergoing cardiac surgery, concomitant surgical ablation is recommended to increase incidence of sinus rhythm at short- and long-term follow-up (class 1, level A); to reduce the risk of stroke and thromboembolic events (class 2a, level B); to improve EF (class 2a, level A); and to exercise tolerance (class 2a, level A) and long-term survival (class 2a, level B).  相似文献   

14.

Background

Several studies have examined the link between atrial fibrillation (AF) and various echocardiographic measures of cardiac structure and function in whites and other racial groups but not in blacks. Exploring AF risk factors in blacks is important given that the lower incidence of AF in this racial group despite higher risk factors, is not completely explained.

Methods

We examined the association of echocardiographic measures with AF incidence in 2283 blacks (64.5% women, mean age 58.8 years) free of diagnosed AF and enrolled in the Jackson cohort of Atherosclerosis Risk in Communities (ARIC) study, a prospective study of cardiovascular disease. Echocardiography was performed in 1993–1995, and incident AF was determined by electrocardiograms at a follow-up study exam, hospitalization discharge codes and death certificates through the end of 2009. Cox proportional hazards regression was used to estimate hazard ratios and 95% confidence intervals for AF associated with the echocardiographic measures, adjusting for age, sex, and known AF risk factors.

Results

During an average follow-up of 13.5 years, 191 (8.4%) individuals developed AF. Left ventricular (LV) internal diameter 2-D (diastole) and percent fractional shortening of LV diameter displayed a U-shaped relationship with risk of AF, while left atrial diameter displayed a J-shaped nonlinear association. LV mass index was associated positively with AF. E/A ratio <0.7 or >1.5 and ejection fraction (EF <50%) were also associated with higher AF risk. These measures improved risk stratification for AF in addition to traditional risk factors, although not significantly {C-statistic of 0.767 (0.714–0.819) vs. 0.744 (0.691–0.797)}.

Conclusions

In a community-based population of blacks, echocardiographic measures of cardiac structure and function are significantly associated with an increased risk of AF.  相似文献   

15.
Statins, 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors, are associated with the prevention of atrial fibrillation (AF) by pleiotropic effects. Recent clinical trial studies have demonstrated conflicting results on anti-arrhythmia between lipophilic and hydrophilic statins. However, the underlying mechanisms responsible for anti-arrhythmogenic effects of statins are largely unexplored. In this study, we evaluated the different roles of lipophilic and hydrophilic statins (simvastatin and pravastatin, respectively) in acetylcholine (100 µM)-activated K+ current (IKACh, recorded by nystatin-perforated whole cell patch clamp technique) which are important for AF initiation and maintenance in mouse atrial cardiomyocytes. Our results showed that simvastatin (1–10 µM) inhibited both peak and quasi-steady-state IKACh in a dose-dependent manner. In contrast, pravastatin (10 µM) had no effect on IKACh. Supplementation of substrates for the synthesis of cholesterol (mevalonate, geranylgeranyl pyrophosphate or farnesyl pyrophosphate) did not reverse the effect of simvastatin on IKACh, suggesting a cholesterol-independent effect on IKACh. Furthermore, supplementation of phosphatidylinositol 4,5-bisphosphate, extracellular perfusion of phospholipase C inhibitor or a protein kinase C (PKC) inhibitor had no effect on the inhibitory activity of simvastatin on I KACh. Simvastatin also inhibits adenosine activated IKACh, however, simvastatin does not inhibit IKACh after activated by intracellular loading of GTP gamma S. Importantly, shortening of the action potential duration by acetylcholine was restored by simvastatin but not by pravastatin. Together, these findings demonstrate that lipophilic statins but not hydrophilic statins attenuate IKACh in atrial cardiomyocytes via a mechanism that is independent of cholesterol synthesis or PKC pathway, but may be via the blockade of acetylcholine binding site. Our results may provide important background information for the use of statins in patients with AF.  相似文献   

16.
Atrial fibrillation (AF) is the most common disorder of cardiac rhythm and is responsible for substantial morbidity and mortality in general population. A recent community-based observational study revealed that diabetes and/or hypertension were associated with the development of AF. However, there is no definite evidence to show that patients with type 1 diabetes have an increased risk for the development of AF. These findings suggest that hyperglycemia per se may not explain the positive association between diabetes and AF. Growing body of evidence supports the presence of insulin resistance as the fundamental pathophysiological disturbance responsible for the metabolic syndrome, a constellation of metabolic disorders such as hypertension, dyslipidemia, and obesity that raise the risk for diabetes mellitus and cardiovascular diseases. Further, several clinical trials have shown that the renin-angiotensin system (RAS) plays an important role in the pathogenesis of insulin resistance. These observations suggest that insulin resistance could account for the increased risk for AF in the patients with diabetes and/or hypertension and that the interruption of the RAS may be a promising therapeutic strategy for preventing the development of AF. In the first part of this paper, we review clinical studies to support the concept that angiotensin II type 1 receptor blockers (ARBs) could prevent the development of AF in insulin resistant patients and discuss the possible underlying mechanisms. In the second part, we discuss the potential utility of telmisartan, a unique ARB with peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-modulating activity, for blocking the development of AF in patients with insulin resistance.  相似文献   

17.
18.
To investigate the contribution of peptidergic intraepidermal nerve fibers (IENFs) to nociceptive responses after depletion of the thermal-sensitive receptor, transient receptor potential vanilloid subtype 1 (TRPV1), we took advantage of a resiniferatoxin (RTX)-induced neuropathy which specifically affected small-diameter dorsal root ganglion (DRG) neurons and their corresponding nerve terminals in the skin. Thermal hypoalgesia (p<0.001) developed from RTX-treatment day 7 (RTXd7) and became normalized from RTXd56 to RTXd84. Substance P (SP)(+) and TRPV1(+) neurons were completely depleted (p = 0.0001 and p<0.0001, respectively), but RTX had a relatively minor effect on calcitonin gene-related peptide (CGRP)(+) neurons (p = 0.029). Accordingly, SP(+) (p<0.0001) and TRPV1(+) (p = 0.0008) IENFs were permanently depleted, but CGRP(+) IENFs (p = 0.012) were only transiently reduced and had recovered by RTXd84 (p = 0.83). The different effects of RTX on peptidergic neurons were attributed to the higher co-localization ratio of TRPV1/SP than of TRPV1/CGRP (p = 0.029). Thermal hypoalgesia (p = 0.0018) reappeared with an intraplantar injection of botulinum toxin type A (botox), and the temporal course of withdrawal latencies in the hot-plate test paralleled the innervation of CGRP(+) IENFs (p = 0.0003) and CGRP contents in skin (p = 0.01). In summary, this study demonstrated the preferential effects of RTX on depletion of SP(+) IENFs which caused thermal hypoalgesia. In contrast, the skin was reinnervated by CGRP(+) IENFs, which resulted in a normalization of nociceptive functions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号