首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Neurochemical Research - G protein-coupled receptors modulate the synaptic glutamate and GABA transmission of the claustrum. The work focused on the transmitter–receptor relationships in the...  相似文献   

3.
4.
G protein-coupled receptor (GPR) 30 is a novel estrogen receptor. Recent studies suggest that activation of the GPR30 confers rapid cardioprotection in isolated rat heart. It is unknown whether chronic activation of GPR30 is beneficial or not for heart failure. In this study we investigated the cardiac effect of sustained activation or inhibition of GPR30. Female Sprague–Dawley rats were divided into 7 groups #2Q1: sham surgery (Sham), bilateral ovariectomy (OVX), OVX+estrogen (E2), OVX+isoproterenol (ISO), OVX+ISO+G-1, OVX+ISO+E2+G15, OVX+ISO+E2. ISO (85 mg/kg×17 day, sc) was given to make the heart failure models. G-1(120 µg/kg·d×14 day) was used to activate GPR30 and G15 (190 µg/kg·d×14 day) was used to inhibit GPR30. Concentration of brain natriuretic peptide in serum, masson staining in isolated heart, contractile function and the expression of β1 and β2- adrenergic receptor (AR) of ventricular myocytes were also determined. Our data showed that ISO treatment led to heart failure in OVX rats. G-1 or E2 treatment decreased concentration of brain natriuretic peptide, reduced cardiac fibrosis, and enhanced contraction of the heart. Combined treatment with β1 (CGP20712A) and β2-AR (ICI118551) antagonist abolished the improvement of myocardial function induced by G-1. We also found that chronic treatment with G-1 normalized the expression of β1-AR and increased the expression of β2-AR. Our results indicate that chronic activation of the GPR30 with its agonist G-1 attenuates heart failure by normalizing the expression of β1-AR and increasing the expression of β2-AR.  相似文献   

5.
Nearly every cell type in the mammalian body projects from its cell surface a primary cilium that provides important sensory and signaling functions. Defects in the formation or function of primary cilia have been implicated in the pathogenesis of many human developmental disorders and diseases, collectively termed ciliopathies. Most neurons in the brain possess cilia that are enriched for signaling proteins such as G protein-coupled receptors and adenylyl cyclase type 3, suggesting neuronal cilia sense neuromodulators in the brain and contribute to non-synaptic signaling. Indeed, disruption of neuronal cilia or loss of neuronal ciliary signaling proteins is associated with obesity and learning and memory deficits. As the functions of primary cilia are defined by the signaling proteins that localize to the ciliary compartment, identifying the complement of signaling proteins in cilia can provide important insights into their physiological roles. Here we report for the first time that different GPCRs can colocalize within the same cilium. Specifically, we found the ciliary GPCRs, melanin-concentrating hormone receptor 1 (Mchr1) and somatostatin receptor 3 (Sstr3) colocalizing within cilia in multiple mouse brain regions. In addition, we have evidence suggesting Mchr1 and Sstr3 form heteromers. As GPCR heteromerization can affect ligand binding properties as well as downstream signaling, our findings add an additional layer of complexity to neuronal ciliary signaling.  相似文献   

6.
Activation of opioid or opioid-receptor-like (ORL1 a.k.a. NOP or orphanin FQ) receptors mediates analgesia through inhibition of N-type calcium channels in dorsal root ganglion (DRG) neurons (). Unlike the three types of classical μ, δ, and κ opioid receptors, ORL1 mediates an agonist-independent inhibition of N-type calcium channels. This is mediated via the formation of a physical protein complex between the receptor and the channel, which in turn allows the channel to effectively sense a low level of constitutive receptor activity (). Further inhibition of N-type channel activity by activation of other G protein-coupled receptors is thus precluded. ORL1 receptors, however, also undergo agonist-induced internalization into lysosomes, and channels thereby become cointernalized in a complex with ORL1. This then results in removal of N-type channels from the plasma membrane and reduced calcium entry (). Similar signaling complexes between N-type channels and GABAB receptors have been reported (). Moreover, both L-type and P/Q-type channels appear to be able to associate with certain types of G protein-coupled receptors (). Hence, interactions between receptors and voltage-gated calcium channels may be a widely applicable means to optimize receptor channel coupling.  相似文献   

7.
Glucose is the preferred carbon and energy source in prokaryotes, unicellular eukaryotes, and metazoans. However, excess of glucose has been associated with several diseases, including diabetes and the less understood process of aging. On the contrary, limiting glucose (i.e., calorie restriction) slows aging and age-related diseases in most species. Understanding the mechanism by which glucose limits life span is therefore important for any attempt to control aging and age-related diseases. Here, we use the yeast Schizosaccharomyces pombe as a model to study the regulation of chronological life span by glucose. Growth of S. pombe at a reduced concentration of glucose increased life span and oxidative stress resistance as reported before for many other organisms. Surprisingly, loss of the Git3 glucose receptor, a G protein-coupled receptor, also increased life span in conditions where glucose consumption was not affected. These results suggest a role for glucose-signaling pathways in life span regulation. In agreement, constitutive activation of the Gα subunit acting downstream of Git3 accelerated aging in S. pombe and inhibited the effects of calorie restriction. A similar pro-aging effect of glucose was documented in mutants of hexokinase, which cannot metabolize glucose and, therefore, are exposed to constitutive glucose signaling. The pro-aging effect of glucose signaling on life span correlated with an increase in reactive oxygen species and a decrease in oxidative stress resistance and respiration rate. Likewise, the anti-aging effect of both calorie restriction and the Δgit3 mutation was accompanied by increased respiration and lower reactive oxygen species production. Altogether, our data suggest an important role for glucose signaling through the Git3/PKA pathway to regulate S. pombe life span.  相似文献   

8.
9.
Schistosomiasis is a major endemic disease known for excessive mortality and morbidity in developing countries. Because praziquantel is the only drug available for its treatment, the risk of drug resistance emphasizes the need to discover new drugs for this disease. Cathepsin SmCL1 is the critical target for drug design due to its essential role in the digestion of host proteins for growth and development of Schistosoma mansoni. Inhibiting the function of SmCL1 could control the wide spread of infections caused by S. mansoni in humans. With this objective, a homology modeling approach was used to obtain theoretical three-dimensional (3D) structure of SmCL1. In order to find the potential inhibitors of SmCL1, a plethora of in silico techniques were employed to screen non-peptide inhibitors against SmCL1 via structure-based drug discovery protocol. Receiver operating characteristic (ROC) curve analysis and molecular dynamics (MD) simulation were performed on the results of docked protein-ligand complexes to identify top ranking molecules against the modelled 3D structure of SmCL1. MD simulation results suggest the phytochemical Simalikalactone-D as a potential lead against SmCL1, whose pharmacophore model may be useful for future screening of potential drug molecules. To conclude, this is the first report to discuss the virtual screening of non-peptide inhibitors against SmCL1 of S. mansoni, with significant therapeutic potential. Results presented herein provide a valuable contribution to identify the significant leads and further derivatize them to suitable drug candidates for antischistosomal therapy.  相似文献   

10.
Nephrotic syndrome, characterized by massive proteinuria, is caused by a large group of diseases including membranous nephropathy (MN) and focal segmental glomerulosclerosis (FSGS). Although the underlying mechanisms are beginning to unravel, therapy is unspecific and far from efficient. It has been suggested that adrenocorticotropic hormone (ACTH) has beneficial effects in patients with MN and possibly in other nephrotic diseases. We have previously reported that ACTH may act directly on podocytes through the melanocortin 1 receptor (MC1R). In the present study, we evaluate the effect of highly specific MC1R agonists in two different nephrotic disease models. Experimental MN: Passive Heymann nephritis (PHN) was induced in rats that were treated for four weeks with MS05, a selective MC1R agonist, or saline. The degree of albuminuria was significantly reduced over time and the effect was sustained one week after treatment withdrawal (p<0.05). Experimental FSGS: Based on a dose-response study, two doses of adriamycin were used for induction of nephropathy in Balb/c mice. Mice were treated with either a synthetic MC1R agonist (BMS-470539), with α-melanocyte stimulating hormone (α-MSH) or with saline. There was no beneficial effect of treatment. In summary, MC1R agonists reduce albuminuria and improve morphology in experimentally induced MN whereas they have no effect in experimental FSGS. The results illustrate the differences in these podocytopathies in terms of signaling mechanisms underlying proteinuria, and progression of disease.  相似文献   

11.

Background

Dysbindin, a cytoplasmic protein long known to function in the biogenesis of specialized lysosome-related organelles (LROs), has been reported to reduce surface expression of D2 dopamine receptors in neurons. Dysbindin is broadly expressed, and dopamine receptors are members of the large family of G protein-coupled receptors (GPCRs) that function in diverse cell types. Thus we asked if dysbindin regulates receptor number in non-neural cells, and further investigated the cellular basis of this regulation.

Methodology/Principal Findings

We used RNA interference to deplete endogenous dysbindin in HEK293 and HeLa cells, then used immunochemical and biochemical methods to assess expression and endocytic trafficking of epitope-tagged GPCRs. Dysbindin knockdown up-regulated surface expression of D2 receptors compared to D1 receptors, as reported previously in neurons. This regulation was not mediated by a change in D2 receptor endocytosis. Instead, dysbindin knockdown specifically reduced the subsequent trafficking of internalized D2 receptors to lysosomes. This distinct post-endocytic sorting function explained the minimal effect of dysbindin depletion on D1 receptors, which recycle efficiently and traverse the lysosomal pathway to only a small degree. Moreover, dysbindin regulated the delta opioid receptor, a more distantly related GPCR that is also sorted to lysosomes after endocytosis. Dysbindin was not required for lysosomal trafficking of all signaling receptors, however, as its depletion did not detectably affect down-regulation of the EGF receptor tyrosine kinase. Dysbindin co-immunoprecipitated with GASP-1 (or GPRASP-1), a cytoplasmic protein shown previously to modulate lysosomal trafficking of D2 dopamine and delta opioid receptors by direct interaction, and with HRS that is a core component of the conserved ESCRT machinery mediating lysosome biogenesis and sorting.

Conclusions/Significance

These results identify a distinct, and potentially widespread function of dysbindin in promoting the sorting of specific GPCRs to lysosomes after endocytosis.  相似文献   

12.
Neutrophil proteinases released at sites of inflammation can affect tissue function by either activating or disarming signal transduction mediated by proteinase-activated receptors (PARs). Because PAR1 is expressed at sites where abundant neutrophil infiltration occurs, we hypothesized that neutrophil-derived enzymes might also regulate PAR1 signaling. We report here that both neutrophil elastase and proteinase-3 cleave the human PAR1 N terminus at sites distinct from the thrombin cleavage site. This cleavage results in a disarming of thrombin-activated calcium signaling through PAR1. However, the distinct non-canonical tethered ligands unmasked by neutrophil elastase and proteinase-3, as well as synthetic peptides with sequences derived from these novel exposed tethered ligands, selectively stimulated PAR1-mediated mitogen-activated protein kinase activation. This signaling was blocked by pertussis toxin, implicating a Gαi-triggered signal pathway. We conclude that neutrophil proteinases trigger biased PAR1 signaling and we describe a novel set of tethered ligands that are distinct from the classical tethered ligand revealed by thrombin. We further demonstrate the function of this biased signaling in regulating endothelial cell barrier integrity.  相似文献   

13.
Abstract: Radiolabeled analogues of neuromedin N have been prepared by acylation of the α, ε1, and ε2 amino groups of [Lys2]neuromedin N (Lys-Lys-Pro-Tyr-Ile-Leu) either with the 125I-labeled Bolton-Hunter reagent or with N -succinimidyl[2,3-3H]propionate. The binding properties of the purified analogues toward newborn mouse brain homogenate or toward membranes of cells transitorily (COS) or permanently (AA1) transfected with the cloned rat brain neurotensin receptor cDNA were evaluated and compared with those of radiolabeled neurotensin. The α-modified analogue of [Lys2]neuromedin N behaves exactly like neurotensin in these binding experiments, whereas the ε1- and ε2-modified analogues selectively recognize the fraction of neurotensin binding sites that is sensitive to GTPγS. The proportion of neurotensin receptors coupled to GTP binding proteins is ∼50% in membranes of newborn mouse brain or of AA1 cells that respond to neurotensin by an increase of the intracellular inositol trisphosphate concentration. By contrast, membranes of transitorily transfected COS cells that do not respond to neurotensin exhibit very low levels of GTP-sensitive receptors labeled with the ε1- or ε2-modified analogues. These radiolabeled peptides offer new tools to selectively detect active neurotensin receptors.  相似文献   

14.
15.
Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown to be a proton sensing receptor in vitro. We have shown that OGR1 functions as a tumor metastasis suppressor gene when it is over-expressed in human prostate cancer cells in vivo. To examine the physiological functions of OGR1, we generated conditional OGR1 deficient mice by homologous recombination. OGR1 deficient mice were viable and upon gross-inspection appeared normal. Consistent with in vitro studies showing that OGR1 is involved in osteoclastogenesis, reduced osteoclasts were detected in OGR1 deficient mice. A pH-dependent osteoclasts survival effect was also observed. However, overall abnormality in the bones of these animals was not observed. In addition, melanoma cell tumorigenesis was significantly inhibited in OGR1 deficient mice. OGR1 deficient mice in the mixed background produced significantly less peritoneal macrophages when stimulated with thioglycolate. These macrophages also showed altered extracellular signal-regulated kinases (ERK) activation and nitric oxide (NO) production in response to lipopolysaccharide. OGR1-dependent pH responses assessed by cAMP production and cell survival in macrophages or brown fat cells were not observed, presumably due to the presence of other proton sensing receptors in these cells. Our results indicate that OGR1''s role in osteoclastogenesis is not strong enough to affect overall bone development and its role in tumorigenesis warrants further investigation. The mice generated can be potentially used for several disease models, including cancers or osteoclast-related diseases.  相似文献   

16.
Human neutrophils are a type of white blood cell, which forms an early line of defense against bacterial infections. Neutrophils are highly responsive to the chemokine, interleukin-8 (IL-8) due to the abundant distribution of CXCR1, one of the IL-8 receptors on the neutrophil cell surface. As a member of the GPCR family, CXCR1 plays a crucial role in the IL-8 signal transduction pathway in neutrophils. We sequenced the complete coding region of the CXCR1 gene in worldwide human populations and five representative nonhuman primate species. Our results indicate accelerated protein evolution in the human lineage, which was likely caused by Darwinian positive selection. The sliding window analysis and the codon-based neutrality test identified signatures of positive selection at the N-terminal ligand/receptor recognition domain of human CXCR1. [Reviewing Editor: Dr. Manyuan Long] The GenBank accession numbers of sequences reported herein are AY916760–AY916773.  相似文献   

17.
18.
A sequence analysis and comparison of transmembrane helices in bacteriorhodopsin (BR) and G protein-coupled receptors (GPCRs) is presented to identify potential regions of homology across protein families. The results show a common pattern of residues is conserved within the interhelical contact regions of BR that fit a knob-into-hole structural motif previously postulated for globular proteins and photosynthetic reaction centers. Based on an alignment of conserved prolines in transmembrane helices, it is inferred that analogous helix packing arrangements are possible in the rhodopsin-like GPCRs. Molecular models of GPCR helices V and VI indicate these interactions occur between aromatic and hydrophobic residues flanking the highly conserved prolines in these sequences. A similar packing arrangement is shown to occur in the X-ray structure of the melittin which also displays a unique pairing of proline-linked helices. The contact pattern identified is further applied to predict the packing of pairs of proline-containing helices in the pheromone-like and cAMP GPCRs. A potential role in stabilizing structure formation is also suggested for the contacts. The results and conclusions are supported by recent biophysical studies of zinc binding to kappa-opioid receptor mutants.  相似文献   

19.
The development of new analytical methods, aimed at profiling G protein-coupled receptor (GPCR) ligands, regardless of the G protein-coupling pattern of their respective receptor, remains a key goal in drug discovery. Considerable evidence has recently revived the central role that could be played by extracellular-signal-regulated kinase (ERK), the cornerstone protein kinase of the first tyrosine kinase receptor-mediated pathway identified, in response to the activation of various types of GPCRs. Here we reveal a conceptual study in which the potential of ERK phosphorylation is evaluated as a generic readout in response to three different receptors activating three main classes of G proteins: Gαs, Gαi and Gα q. GPCR-mediated ERK phosphorylation was compared with different readouts such as GTPγ S, CAMP, or Ca2 +. We propose the measurement of GPCR-activated ERK phosphorylation as an alternative assay to better understand the molecular pharmacology of ligands of promiscuous GPCRs.  相似文献   

20.
A sequence analysis and comparison of transmembrane helices in bacteriorhodopsin (BR) and G protein-coupled receptors (GPCRs) is presented to identify potential regions of homology across protein families. The results show a common pattern of residues is conserved within the interhelical contact regions of BR that fit a knob-into-hole structural motif previously postulated for globular proteins and photosynthetic reaction centers. Based on an alignment of conserved prolines in transmembrane helices, it is inferred that analogous helix packing arrangements are possible in the rhodopsin-like GPCRs. Molecular models of GPCR helices V and VI indicate these interactions occur between aromatic and hydrophobic residues flanking the highly conserved prolines in these sequences. A similar packing arrangement is shown to occur in the X-ray structure of the melittin which also displays a unique pairing of proline-linked helices. The contact pattern identified is further applied to predict the packing of pairs of proline-containing helices in the pheromone-like and cAMP GPCRs. A potential role in stabilizing structure formation is also suggested for the contacts. The results and conclusions are supported by recent biophysical studies of zinc binding to kappa-opioid receptor mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号