首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to their excellent biocompatibility, carbon nanoparticles have been widely investigated for prospective biomedical applications. However, their impact on an organism with prolonged exposure is still not well understood. Here, we performed an experiment investigating diamond, graphene oxide and graphite nanoparticles, which were repeatedly administrated intraperitoneally into Wistar rats for four weeks. Some of the animals was sacrificed after the last injection, whereas the rest were sacrificed twelve weeks after the last exposure. We evaluated blood morphology and biochemistry, as well as the redox and inflammatory state of the liver. The results show the retention of nanoparticles within the peritoneal cavity in the form of prominent aggregates in proximity to the injection site, as well as the presence of some nanoparticles in the mesentery. Small aggregates were also visible in the liver serosa, suggesting possible transportation to the liver. However, none of the tested nanoparticles affected the health of animals. This lack of toxic effect may suggest the potential applicability of nanoparticles as drug carriers for local therapies, ensuring accumulation and slow release of drugs into a targeted tissue without harmful systemic side effects.  相似文献   

2.
3.
Yu C  Hu Y  Duan J  Yuan W  Wang C  Xu H  Yang XD 《PloS one》2011,6(9):e24077
MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid) (PLGA) nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt) were conjugated to the particle surface through a DNA spacer. The aptamer conjugated nanoparticles (Apt-NPs) are about 225.3 nm in size with a stable in vitro drug release profile. Using MCF-7 breast cancer cell as a MUC1-overexpressing model, the MUC1 aptamer increased the uptake of nanoparticles into the target cells as measured by flow cytometry. Moreover, the PTX loaded Apt-NPs enhanced in vitro drug delivery and cytotoxicity to MUC1(+) cancer cells, as compared with non-targeted nanoparticles that lack the MUC1 aptamer (P<0.01). The behavior of this novel aptamer-nanoparticle bioconjugates suggests that MUC1 aptamers may have application potential in targeted drug delivery towards MUC1-overexpressing tumors.  相似文献   

4.
Nanotechnologies are emerging platforms that could be useful in measuring, understanding, and manipulating stem cells. Examples include magnetic nanoparticles and quantum dots for stem cell labeling and in vivo tracking; nanoparticles, carbon nanotubes, and polyplexes for the intracellular delivery of genes/oligonucleotides and protein/peptides; and engineered nanometer-scale scaffolds for stem cell differentiation and transplantation. This review examines the use of nanotechnologies for stem cell tracking, differentiation, and transplantation. We further discuss their utility and the potential concerns regarding their cytotoxicity.  相似文献   

5.
Towards the goal of development of a generic nanomaterial delivery system and delivery of the 'as prepared' nanoparticles without 'further surface modification' in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb(3+) was observed after internalization of LaF(3):Tb(3+)(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification.  相似文献   

6.
We have compared some mechanisms involved in the defense against doxorubicin-induced free radical damage in rat hepatoma and glioblastoma cell lines and their doxorubicin-resistant variants presenting an overexpression of the multidrug resistance gene.

Immediate in vivo production of malondialdehyde was minor and was not different in sensitive and resistant cells. Alpha-tocopherol was undetectable in all cell lines. Glutathione levels were not different in sensitive and resistant cells and these levels did not vary upon doxorubicin treatment. Resistant cells exhibited either a 50% decrease (hepatoma) or a 25% increase (glioblastoma) of glutathione-S-transferase activity. Glutathione reductase presented no important change upon acquisition of resistance. In contrast, selenium-dependent glutathione peroxidase activity was consistently 2-6-fold increased in the resistant cells, which suggests a magnification of protection mechanisms against hydroxyle radical formation from H2O2 in resistant cells. Depletion of glutathione levels by buthionine sulfoximine sensitized hepatoma resistant cells to doxorubicin, but had no effect on doxorubicin cytotoxicity to glioblastoma cells.  相似文献   

7.
《Free radical research》2013,47(1-3):137-144
We have compared some mechanisms involved in the defense against doxorubicin-induced free radical damage in rat hepatoma and glioblastoma cell lines and their doxorubicin-resistant variants presenting an overexpression of the multidrug resistance gene.

Immediate in vivo production of malondialdehyde was minor and was not different in sensitive and resistant cells. Alpha-tocopherol was undetectable in all cell lines. Glutathione levels were not different in sensitive and resistant cells and these levels did not vary upon doxorubicin treatment. Resistant cells exhibited either a 50% decrease (hepatoma) or a 25% increase (glioblastoma) of glutathione-S-transferase activity. Glutathione reductase presented no important change upon acquisition of resistance. In contrast, selenium-dependent glutathione peroxidase activity was consistently 2-6-fold increased in the resistant cells, which suggests a magnification of protection mechanisms against hydroxyle radical formation from H2O2 in resistant cells. Depletion of glutathione levels by buthionine sulfoximine sensitized hepatoma resistant cells to doxorubicin, but had no effect on doxorubicin cytotoxicity to glioblastoma cells.  相似文献   

8.
This review highlights the properties of nanoparticles used in targeted drug delivery, including delivery to cells as well as organelle targets, some of the known pharmacokinetic properties of nanoparticles, and their typical modifications to allow for therapeutic delivery. Nanoparticles exploit biological pathways to achieve payload delivery to cellular and intracellular targets, including transport past the blood-brain barrier. As illustrative examples of their utility, the evaluation of targeted nanoparticles in the treatment of cancers and diseases of the central nervous system, such as glioblastoma multiforme, neurovascular disorders, and neurodegenerative diseases, is discussed.  相似文献   

9.
The aim of the present study was to study the trypanocidal activity of nanoparticles loaded with nifurtimox in comparison with the free drug against Trypanosoma cruzi, responsible for Chagas' disease. Ethylcyanoacrylate nanoparticles acted as the delivery system into cells. As the obligate replicative intracellular form is amastigote, in vitro studies were performed on this form of parasite as well as on cell culture derived trypomastigotes. The fluorescence method used here was very useful as it allowed for the simultaneous study of trypanocide activity and cytotoxicity by determining living or dead parasites within living or dead host cells. According to these results, the greatest trypanocide activity on cell culture-derived trypomastigotes was recorded for nifurtimox-loaded nanoparticles with a 50% inhibitory concentration (IC50) twenty times less than that of the free drug. The cytotoxicity of unloaded nanoparticles at low concentrations was similar to that obtained by free drug when evaluated on Vero cells. Furthermore, nifurtimox-loaded nanoparticles showed increased trypanocide activity on intracellular amastigotes with an IC50 thirteen times less than that of nifurtimox. We also observed that the unloaded nanoparticles possess the previously-described trypanocide activity, similar to the standard solution of nifurtimox, although the mechanism for this has not yet been elucidated. In conclusion, it was possible to establish in vitro conditions using nifurtimox encapsulated nanoparticles in order to decrease the doses of the drug and thus to obtain high trypanocidal activity on both free trypomastigotes and intracellular amastigotes with low cytotoxicity for the host cell.  相似文献   

10.
脂质体作为一种药物基因载体已得到广泛应用,然而其仍然具有物理化学稳定性差、易发生团聚、难以多功能化等缺点.通过使用合成的双亲性高分子共轭亚油酸修饰聚赖氨酸(PC)代替小分子磷脂制备的高分子脂质体(PLs),不仅保留了脂质体的优势,并且克服了上述缺点;通过对高分子进行聚乙二醇(PEG)修饰,可使制备的高分子脂质体具有长循环性.结果表明,高分子脂质体粒径为纳米级,具有药物缓释性能、较低的细胞毒性及较高的细胞内吞效率.  相似文献   

11.
Monocyte-based gene therapies in cancer have been hampered by either the resistance of these cells to non-viral molecular delivery methods or their poor trafficking to the tumor site after their ex vivo manipulations. Magnetic nanoparticles (MNP)-loaded genetically engineered monocytes can efficiently delivered to tumor site by external magnetic field, but they are not ideal delivery tools due to their spherical shape. Hence, we have investigated the cellular uptake efficiency and cytotoxicity of fluorescein isothiocyanate (FITC)-labelled magnetic carbon nanotubes (FITC-mCNT) in human monocytic leukemia cell line THP-1 for application in cell-based gene therapy against cancer. Uptake of FITC-mCNT into THP-1 cells reached 100% only 1 h after the delivery. Confocal imaging confirmed that FITC-mCNT entered the cell cytoplasm and even into the nucleus. FITC-mCNT uptake did not compromise cell viability. This delivery system might therefore enhance cell-based cancer gene therapies.  相似文献   

12.
目的:考察蛙凝素(Odorranalectin,OL)修饰对聚谷氨酸苄酯-聚乙二醇纳米粒(PBLG-PEG-NPs)材料的Calu-3细胞(人肺腺癌细胞)毒性和细胞摄取作用的影响。方法:碘氧化法制备蛙凝素修饰聚合物材料;以姜黄素(curcumin,Cur)为模型药物,采用乳化溶媒蒸发法制备聚谷氨酸苄酯-聚乙二醇纳米粒(PBLG-PEG-NPs)和蛙凝素修饰聚谷氨酸苄酯-聚乙二醇纳米粒(OL-PBLG-PEG-NPs);MTT法考察三种纳米粒对Calu-3的细胞毒性;采用激光共聚焦显微镜对两种纳米粒的Calu-3细胞摄取作用进行定性观察。结果:给予高浓度(2 mg·mL-1)纳米粒培养Calu-3细胞时,细胞存活率大于75%。蛙凝素修饰纳米粒后其被细胞摄取的量从62.7%增加到了81.2%。结论:OL可用于黏膜给药载体的修饰,OL-PBLG-PEG-NPs细胞毒性低、生物相容性好,有望成为一种鼻腔粘膜给药优良载体。  相似文献   

13.
Targeted drug delivery approaches have been implementing significant therapeutic gain for cancer treatment since last decades. Aptamers are one of the mostly used and highly selective targeting agents for cancer cells. Herein, we address a nano-sized targeted drug delivery approach adorned with A-172 glioblastoma cell-line-specific single stranded DNA (ssDNA) aptamer in which the chemotherapeutic agent Doxorubicin (DOX) had been conjugated. DNA aptamer, GMT-3, was previously selected for specific recognition of glioblastoma and represented many advantageous characteristics for drug targeting purposes. Flow cytometry analysis proved the binding efficiency of the specific aptamer to tumour cell lines. Cell-type-specific toxicity of GMT-3:DOX complex was showed by XTT assay and terminated cytotoxic effects were screened for both target cell and a control breast cancer cell line. The result of this contribution demonstrated the potential utility of GMT-3 aptamer-mediated therapeutic drug transportation in the treatment of gliomas specifically. It was concluded that aptamer-mediated drug delivery can be applied successfully for clinical use.  相似文献   

14.
Mesoporous silica nanoparticles (MSNs) are a versatile drug delivery system that can be used for loading of different guest molecules such as peptides, proteins, anticancer agents, and genetic material. MSNs are considered promising drug carriers due to their tuneable particle size, pore structure, and surface functionalization. Thus, MSNs provide opportunities for their effective application in a wide variety of fields. In the current review, we discuss both conventional and advanced MSNs synthesis methods, including their applications for drug delivery, gatekeepers, and biosensors. In addition, the research progress in biocompatibility, cytotoxicity, and internalization mechanisms is reported.  相似文献   

15.
The application of nanotechnology in medicine, known as nanomedicine, has introduced a plethora of nanoparticles of variable chemistry and design considerations for cancer diagnosis and treatment. One of the most important field is the design and development of pharmaceutical drugs, based on targeted drug delivery system (TDDS). Being inspired by physio-chemical properties of nanoparticles, TDDS are designed to safely reach their targets and specifically release their cargo at the site of disease for enhanced therapeutic effects, thereby increasing the drug tissue bioavailability. Nanoparticles have the advantage of targeting cancer by simply being accumulated and entrapped in cancer cells. However, even after rapid growth of nanotechnology in nanomedicine, designing an effective targeted drug delivery system is still a challenging task. In this review, we reveal the recent advances in drug delivery approach with a particular focus on gold nanoparticles. We seek to expound on how these nanomaterials communicate in the complex environment to reach the target site, and how to design the effective TDDS for complex environments and simultaneously monitor the toxicity on the basis of designing such delivery complexes. Hence, this review will shed light on the research, opportunities and challenges for engineering nanomaterials with cancer biology and medicine to develop effective TDDS for treatment of cancer.  相似文献   

16.
Biodegradable polymer nanoparticle drug delivery systems provide targeted drug delivery, improved pharmacokinetic and biodistribution, enhanced drug stability and fewer side effects. These drug delivery systems are widely used for delivering cytotoxic agents. In the present study, we synthesized GC/5-FU nanoparticles by combining galactosylated chitosan (GC) material with 5-FU, and tested its effect on liver cancer in vitro and in vivo. The in vitro anti-cancer effects of this sustained release system were both dose- and time-dependent, and demonstrated higher cytotoxicity against hepatic cancer cells than against other cell types. The distribution of GC/5-FU in vivo revealed the greatest accumulation in hepatic cancer tissues. GC/5-FU significantly inhibited tumor growth in an orthotropic liver cancer mouse model, resulting in a significant reduction in tumor weight and increased survival time in comparison to 5-FU alone. Flow cytometry and TUNEL assays in hepatic cancer cells showed that GC/5-FU was associated with higher rates of G0–G1 arrest and apoptosis than 5-FU. Analysis of apoptosis pathways indicated that GC/5-FU upregulates p53 expression at both protein and mRNA levels. This in turn lowers Bcl-2/Bax expression resulting in mitochondrial release of cytochrome C into the cytosol with subsequent caspase-3 activation. Upregulation of caspase-3 expression decreased poly ADP-ribose polymerase 1 (PARP-1) at mRNA and protein levels, further promoting apoptosis. These findings indicate that sustained release of GC/5-FU nanoparticles are more effective at targeting hepatic cancer cells than 5-FU monotherapy in the mouse orthotropic liver cancer mouse model.  相似文献   

17.
磁性纳米粒子,是一类智能型的纳米材料,因其特有的性质,被广泛应用于生物医学领域,在肝癌的治疗方面也有大量的实验性研究和成果。研究和探索磁性纳米粒子治疗肝癌的新方法和途径,有着很大的现实意义。本文就磁性纳米粒子作用于肝癌细胞的生物学效应的研究现状和进展进行总结整理,从三个方面进行了综述:磁性纳米粒子直接作用于肝癌细胞,探索磁性纳米粒子的生物相容性、在肝癌细胞的分布方式以及磁性纳米粒子本身对肝癌细胞的生物学效应的影响;磁性纳米粒子协同外加磁场(稳恒磁场、极低频交变磁场和高频交变磁场)作用于肝癌细胞;磁性纳米粒子外加修饰(磁性白蛋白纳米颗粒、纳米磁流体、磁性脂质体等),作为药物载体作用于肝癌细胞。  相似文献   

18.
The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Interestingly pharmaceutical sciences are using nanoparticles to reduce toxicity and side effects of drugs and up to recently did not realize that carrier systems themselves may impose risks to the patient. The kind of hazards that are introduced by using nanoparticles for drug delivery are beyond that posed by conventional hazards imposed by chemicals in classical delivery matrices. For nanoparticles the knowledge on particle toxicity as obtained in inhalation toxicity shows the way how to investigate the potential hazards of nanoparticles. The toxicology of particulate matter differs from toxicology of substances as the composing chemical(s) may or may not be soluble in biological matrices, thus influencing greatly the potential exposure of various internal organs. This may vary from a rather high local exposure in the lungs and a low or neglectable exposure for other organ systems after inhalation. However, absorbed species may also influence the potential toxicity of the inhaled particles. For nanoparticles the situation is different as their size opens the potential for crossing the various biological barriers within the body. From a positive viewpoint, especially the potential to cross the blood brain barrier may open new ways for drug delivery into the brain. In addition, the nanosize also allows for access into the cell and various cellular compartments including the nucleus. A multitude of substances are currently under investigation for the preparation of nanoparticles for drug delivery, varying from biological substances like albumin, gelatine and phospholipids for liposomes, and more substances of a chemical nature like various polymers and solid metal containing nanoparticles. It is obvious that the potential interaction with tissues and cells, and the potential toxicity, greatly depends on the actual composition of the nanoparticle formulation. This paper provides an overview on some of the currently used systems for drug delivery. Besides the potential beneficial use also attention is drawn to the questions how we should proceed with the safety evaluation of the nanoparticle formulations for drug delivery. For such testing the lessons learned from particle toxicity as applied in inhalation toxicology may be of use. Although for pharmaceutical use the current requirements seem to be adequate to detect most of the adverse effects of nanoparticle formulations, it can not be expected that all aspects of nanoparticle toxicology will be detected. So, probably additional more specific testing would be needed.  相似文献   

19.
PURPOSE: Nanoparticles are able to enhance drug or DNA stability for purposes of optimised deposition to targeted tissues. Surface modifications can mediate drug targeting. The suitability of nanoparticles synthesised out of porcine gelatin, human serum albumin, and polyalkylcyanoacrylate as drug and gene carriers for pulmonary application was investigated in vitro on primary airway epithelium cells and the cell line 16HBE14o-. METHODS: The uptake of nanoparticles into these cells was examined by confocal laser scan microscopy (CLSM) and flow cytometry (FACS). Further the cytotoxicity of nanoparticles was evaluated by an LDH-release-test and the inflammatory potential of the nanoparticles was assessed by measuring IL-8 release. RESULTS: CLSM and FACS experiments showed that the nanoparticles were incorporated into bronchial epithelial cells provoking little or no cytotoxicity and no inflammation as measured by IL-8 release. CONCLUSIONS: Based on their low cytotoxicity and the missing inflammatory potential in combination with an efficient uptake in human bronchial epithelial cells, protein-based nanoparticles are suitable drug and gene carriers for pulmonary application.  相似文献   

20.
A self-assembled nanoparticulate system composed of a folate-conjugated heparin-poly(β-benzyl-l-aspartate) (HP) amphiphilic copolymer was proposed for targeted delivery of the antineoplastic drug paclitaxel (PTX). PTX was incorporated into three types of heparin-based nanoparticles, including HP, folate-conjugated HP (FHP), and folate-polyethylene glycol (PEG)-conjugated HP (FPHP), using a simple dialysis method. The PTX-loaded nanoparticles were then characterized according to particle size (140-190 nm) and size distribution, drug-loading content and efficiency, and in vitro release behavior. In the cellular uptake study using KB cells positive for the folate-receptor (FR), FHP and FPHP nanoparticles showed a much higher cellular uptake than did unconjugated HP nanoparticles. Specifically, when the PEG spacer was inserted between the folate ligand and heparin backbone, FPHP nanoparticles had a greater cellular uptake than did FHP nanoparticles. The in vitro cytotoxicity of PTX-loaded HP, FHP, and FPHP nanoparticles was studied in KB cells and FR-negative A549 cells. Compared with the cytotoxicity in A549 cells, PTX-loaded FHP and FPHP nanoparticles exhibited more potent cytotoxicity in KB cells than did PTX-loaded HP nanoparticles and free-PTX, suggesting that the presence of folate enhanced intracellular uptake via FR-mediated endocytosis. In addition, FPHP nanoparticles exhibited much greater cytotoxicity in KB cells than did FHP nanoparticles. These results suggest that PTX-loaded folate-conjugated HP nanoparticles are a potentially useful delivery system for cancer cells positive for the folate-receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号