首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dominant Vγ2Vδ2 T-cell subset exist only in primates, and recognize phosphoantigen from selected pathogens including M. tuberculosis(Mtb). In vivo function of Vγ2Vδ2 T cells in tuberculosis remains unknown. We conducted mechanistic studies to determine whether earlier expansion/differentiation of Vγ2Vδ2 T cells during Mtb infection could increase immune resistance to tuberculosis in macaques. Phosphoantigen/IL-2 administration specifically induced major expansion and pulmonary trafficking/accumulation of phosphoantigen-specific Vγ2Vδ2 T cells, significantly reduced Mtb burdens and attenuated tuberculosis lesions in lung tissues compared to saline/BSA or IL-2 controls. Expanded Vγ2Vδ2 T cells differentiated into multifunctional effector subpopulations capable of producing anti-TB cytokines IFNγ, perforin and granulysin, and co-producing perforin/granulysin in lung tissue. Mechanistically, perforin/granulysin-producing Vγ2Vδ2 T cells limited intracellular Mtb growth, and macaque granulysin had Mtb-bactericidal effect, and inhibited intracellular Mtb in presence of perforin. Furthermore, phosphoantigen/IL2-expanded Vγ2Vδ2 T effector cells produced IL-12, and their expansion/differentiation led to enhanced pulmonary responses of peptide-specific CD4+/CD8+ Th1-like cells. These results provide first in vivo evidence implicating that early expansion/differentiation of Vγ2Vδ2 T effector cells during Mtb infection increases resistance to tuberculosis. Thus, data support a rationale for conducting further studies of the γδ T-cell-targeted treatment of established TB, which might ultimately help explore single or adjunctive phosphoantigen expansion of Vγ2Vδ2 T-cell subset as intervention of MDR-tuberculosis or HIV-related tuberculosis.  相似文献   

2.
Little is known about the in vivo kinetics of T-cell responses in smallpox/monkeypox. We showed that macaque Vγ2Vδ2 T cells underwent 3-week-long expansion after smallpox vaccine immunization and displayed simple reexpansion in association with sterile anti-monkeypox virus (anti-MPV) immunity after MPV challenge. Virus-activated Vγ2Vδ2 T cells exhibited gamma interferon-producing effector function after phosphoantigen stimulation. Surprisingly, like αβ T cells, suboptimally primed Vγ2Vδ2 T cells in vaccinia virus/cidofovir-covaccinated macaques mounted major recall-like expansion after MPV challenge. Finally, Vγ2Vδ2 T cells localized in inflamed lung tissues for potential regulation. Our studies provide the first in vivo evidence that viruses, despite their inability to produce exogenous phosphoantigen, can induce expansion, reexpansion, and recall-like expansion of Vγ2Vδ2 T cells and stimulate their antimicrobial cytokine response.Human γδ T cells appear to contribute to both innate and adaptive immune responses (4, 6, 10, 19). Vγ2Vδ2 T cells exist only in primates, and in humans, they constitute 60 to 95% of total blood γδ T cells. The capacity of Vγ2Vδ2 T cells to undergo major clonal expansion in primary infection and to mount rapid recall expansion upon reinfection has been proposed as an adaptive immune response (6), which is consistent with memory phenotypes of Vγ2Vδ2 T cells (7), long-term expansion of memory-like Vδ2 T cells, and in vitro recall expansion of blood γδ T cells in vaccinated or infected humans (1, 15a, 16, 17, 25). It is important to note that the microbial antigen recognized by Vγ2Vδ2 T cells is temporally limited to (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), commonly referred to as phosphoantigen, produced in the newly discovered 2-C-methyl-d-erythritol-4-phosphate pathway of isoprenoid biosynthesis in bacteria, but not viruses (8). Our recent study has demonstrated that HMBPP is presented by a putative molecule on antigen-presenting cell membranes and recognized by Vγ2Vδ2 T-cell receptor (TCR) (24). Since viruses do not produce exogenous HMBPP recognized by Vγ2Vδ2 T cells, in vivo Vγ2Vδ2 T-cell expansion usually occurs only in HMBPP-producing bacterial or protozoal infections.Monkeypox virus (MPV) (an orthopoxvirus) has biological features similar to those of smallpox virus, and MPV infection is clinically similar to smallpox in humans (9, 12, 22). Immune responses of Vγ2Vδ2 T cells during lethal MPV infection have not been studied, although some laboratories have undertaken in vitro studies of γδ T-cell immune responses to vaccinia virus (1, 2, 15). We presume that initial vaccinia virus immunization and subsequent MPV challenge of macaques would provide an ideal in vivo setting in which to determine whether Vγ2Vδ2 T cells can mount innate-like or recall-like responses to orthopoxvirus infections. We made a novel observation indicating expansion, reexpansion, and recall-like expansion of Vγ2Vδ2 T cells with effector function in response to smallpox vaccination and MPV infection in macaques.  相似文献   

3.
Vγ9/Vδ2 T cells are a minor subset of T cells in human blood and differ from other T cells by their immediate responsiveness to microbes. We previously demonstrated that the primary target for Vγ9/Vδ2 T cells is (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), an essential metabolite produced by a large range of pathogens. Here we wished to study the consequence of this unique responsiveness in microbial infection. The majority of peripheral Vγ9/Vδ2 T cells shares migration properties with circulating monocytes, which explains the presence of these two distinct blood cell types in the inflammatory infiltrate at sites of infection and suggests that they synergize in anti-microbial immune responses. Our present findings demonstrate a rapid and HMB-PP-dependent crosstalk between Vγ9/Vδ2 T cells and autologous monocytes that results in the immediate production of inflammatory mediators including the cytokines interleukin (IL)-6, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and oncostatin M (OSM); the chemokines CCL2, CXCL8, and CXCL10; and TNF-related apoptosis-inducing ligand (TRAIL). Moreover, under these co-culture conditions monocytes differentiate within 18 hours into inflammatory dendritic cells (DCs) with antigen-presenting functions. Addition of further microbial stimuli (lipopolysaccharide, peptidoglycan) induces CCR7 and enables these inflammatory DCs to trigger the generation of CD4+ effector αβ T cells expressing IFN-γ and/or IL-17. Importantly, our in vitro model replicates the responsiveness to microbes of effluent cells from peritoneal dialysis (PD) patients and translates directly to episodes of acute PD-associated bacterial peritonitis, where Vγ9/Vδ2 T cell numbers and soluble inflammatory mediators are elevated in patients infected with HMB-PP-producing pathogens. Collectively, these findings suggest a direct link between invading pathogens, microbe-responsive γδ T cells, and monocytes in the inflammatory infiltrate, which plays a crucial role in the early response and the generation of microbe-specific immunity.  相似文献   

4.
Natural killer T (NKT) cells are a component of innate and adaptive immune systems implicated in immune, autoimmune responses and in the control of obesity and cancer. NKT cells develop from common CD4+ CD8+ double positive (DP) thymocyte precursors after the rearrangement and expression of T cell receptor (TCR) Vα14-Jα18 gene. Temporal regulation and late appearance of Vα14-Jα18 rearrangement in immature DP thymocytes has been demonstrated. However, the precise control of lifetime of DP thymocytes in vivo that enables distal rearrangements remains incompletely defined. Here we demonstrate that T cell factor (TCF)-1, encoded by the Tcf7 gene, is critical for the extended lifetime of DP thymocytes. TCF-1-deficient DP thymocytes fail to undergo TCR Vα14-Jα18 rearrangement and produce significantly fewer NKT cells. Ectopic expression of Bcl-xL permits Vα14-Jα18 rearrangement and rescues NKT cell development. We report that TCF-1 regulates expression of RORγt, which regulates DP thymocyte survival by controlling expression of Bcl-xL. We posit that TCF-1 along with its cofactors controls the lifetime of DP thymocytes in vivo.  相似文献   

5.
Efficient infection control requires potent T-cell responses at sites of pathogen replication. However, the regulation of T-cell effector function in situ remains poorly understood. Here, we show key differences in the regulation of effector activity between CD4+ and CD8+ T-cells during skin infection with HSV-1. IFN-γ-producing CD4+ T cells disseminated widely throughout the skin and draining lymph nodes (LN), clearly exceeding the epithelial distribution of infectious virus. By contrast, IFN-γ-producing CD8+ T cells were only found within the infected epidermal layer of the skin and associated hair follicles. Mechanistically, while various subsets of lymphoid- and skin-derived dendritic cells (DC) elicited IFN-γ production by CD4+ T cells, CD8+ T cells responded exclusively to infected epidermal cells directly presenting viral antigen. Notably, uninfected cross-presenting DCs from both skin and LNs failed to trigger IFN-γ production by CD8+ T-cells. Thus, we describe a previously unappreciated complexity in the regulation of CD4+ and CD8+ T-cell effector activity that is subset-specific, microanatomically distinct and involves largely non-overlapping types of antigen-presenting cells (APC).  相似文献   

6.
Differentiation, distribution and immune regulation of human IL-22-producing T cells in infections remain unknown. Here, we demonstrated in a nonhuman primate model that M. tuberculosis infection resulted in apparent increases in numbers of T cells capable of producing IL-22 de novo without in vitro Ag stimulation, and drove distribution of these cells more dramatically in lungs than in blood and lymphoid tissues. Consistently, IL-22-producing T cells were visualized in situ in lung tuberculosis (TB) granulomas by confocal microscopy and immunohistochemistry, indicating that mature IL-22-producing T cells were present in TB granuloma. Surprisingly, phosphoantigen HMBPP activation of Vγ2Vδ2 T cells down-regulated the capability of T cells to produce IL-22 de novo in lymphocytes from blood, lung/BAL fluid, spleen and lymph node. Up-regulation of IFNγ-producing Vγ2Vδ2 T effector cells after HMBPP stimulation coincided with the down-regulated capacity of these T cells to produce IL-22 de novo. Importantly, anti-IFNγ neutralizing Ab treatment reversed the HMBPP-mediated down-regulation effect on IL-22-producing T cells, suggesting that Vγ2Vδ2 T-cell-driven IFNγ-networking function was the mechanism underlying the HMBPP-mediated down-regulation of the capability of T cells to produce IL-22. These novel findings raise the possibility to ultimately investigate the function of IL-22 producing T cells and to target Vγ2Vδ2 T cells for balancing potentially hyper-activating IL-22-producing T cells in severe TB.  相似文献   

7.
Due to the highly immunogenic nature of renal cell carcinoma (RCC), the tumor microenvironment (TME) is enriched with various innate and adaptive immune subsets. In particular, gamma-delta (γδ) T cells can act as potent attractive mediators of adoptive cell transfer immunotherapy because of their unique properties such as non-reliance on major histocompatibility complex expression, their ability to infiltrate human tumors and recognize tumor antigens, relative insensitivity to immune checkpoint molecules, and broad tumor cytotoxicity. Therefore, it is now critical to better characterize human γδ T-cell subsets and their mechanisms in RCCs, especially the stage of differentiation. In this study, we aimed to identify γδ T cells that might have adaptive responses against RCC progression. We characterized γδ T cells in peripheral blood and tumor-infiltrating lymphocytes (TILs) in freshly resected tumor specimens from 20 RCC patients. Furthermore, we performed a gene set enrichment analysis on RNA-sequencing data from The Cancer Genome Atlas (TCGA) derived from normal kidneys and RCC tumors to ascertain the association between γδ T-cell infiltration and anti-cancer immune activity. Notably, RCC-infiltrating CD3low Vγ9Vδ1 T cells with a terminally differentiated effector memory phenotype with up-regulated activation/exhaustion molecules were newly detected as predominant TILs, and the cytotoxic activity of these cells against RCC was confirmed in vitro. In an additional analysis of the TCGA RCC dataset, γδ T-cell enrichment scores correlated strongly with those for CTLs, Th1 cells, “exhausted” T cells, and M1 macrophages, suggesting active involvement of γδ T cells in anti-tumor rather than pro-tumor activity, and Vδ1 cells were more abundant than Vδ2 or Vδ3 cells in RCC tumor samples. Thus, we posit that Vγ9Vδ1 T cells may represent an excellent candidate for adoptive immunotherapy in RCC patients with a high risk of relapse after surgery.  相似文献   

8.
In mice implanted with an osmotic pump filled with the superantigen (SAG) staphylococcal enterotoxin A (SEA), the Vβ3+CD4+ T cells exhibited a high level of expansion whereas the Vβ11+CD4+ T cells exhibited a mild level of expansion. In contrast, in mice implanted with an osmotic pump filled with SE-like type P (SElP, 78.1% homologous with SEA), the Vβ11+CD4+ T cells exhibited a high level of expansion while the Vβ3+CD4+ T cells exhibited a low level of expansion, suggesting that the level of the SAG-induced response is determined by the affinities between the TCR Vβ molecules and SAG. Analyses using several hybrids of SEA and SElP showed that residue 206 of SEA determines the response levels of Vβ3+CD4+ and Vβ11+CD4+ T cells both in vitro and in vivo. Analyses using the above-mentioned hybrids showed that the binding affinities between SEA and the Vβ3/Vβ11 β chains and between SEA-MHC class II-molecule complex and Vβ3+/Vβ11+ CD4+ T cells determines the response levels of the SAG-reactive T cells both in vitro and in vivo.  相似文献   

9.
T lymphocytes are often induced naturally in melanoma patients and infiltrate tumors. Given that γδ T cells mediate antigen-specific killing of tumor cells, we studied the representation and the in vitro cytokine production and cytotoxic activity of tumor infiltrating γδ T cells from 74 patients with primary melanoma. We found that γδ T cells represent the major lymphocyte population infiltrating melanoma, and both Vδ1+ and Vδ2+ cells are involved. The majority of melanoma-infiltrating γδ cells showed effector memory and terminally-differentiated phenotypes and, accordingly, polyclonal γδ T cell lines obtained from tumor-infiltrating immune cells produced IFN-γ and TNF-α and were capable of killing melanoma cell lines in vitro. The cytotoxic capability of Vδ2 cell lines was further improved by pre-treatment of tumor target cells with zoledronate. Moreover, higher rate of γδ T cells isolation and percentages of Vδ2 cells correlate with early stage of development of melanoma and absence of metastasis. Altogether, our results suggest that a natural immune response mediated by γδ T lymphocytes may contribute to the immunosurveillance of melanoma.  相似文献   

10.
11.
12.
The thymus, the primary organ for the generation of αβ T cells and backbone of the adaptive immune system in vertebrates, has long been considered as the only source of αβT cells. Yet, thymic involution begins early in life leading to a drastically reduced output of naïve αβT cells into the periphery. Nevertheless, even centenarians can build immunity against newly acquired pathogens. Recent research suggests extrathymic αβT cell development, however our understanding of pathways that may compensate for thymic loss of function are still rudimental. γδ T cells are innate lymphocytes that constitute the main T-cell subset in the tissues. We recently ascribed a so far unappreciated outstanding function to a γδ T cell subset by showing that the scarce entity of CD4+ Vδ1+γδ T cells can transdifferentiate into αβT cells in inflammatory conditions. Here, we provide the protocol for the isolation of this progenitor from peripheral blood and its subsequent cultivation. Vδ1 cells are positively enriched from PBMCs of healthy human donors using magnetic beads, followed by a second step wherein we target the scarce fraction of CD4+ cells with a further magnetic labeling technique. The magnetic force of the second labeling exceeds the one of the first magnetic label, and thus allows the efficient, quantitative and specific positive isolation of the population of interest. We then introduce the technique and culture condition required for cloning and efficiently expanding the cells and for identification of the generated clones by FACS analysis. Thus, we provide a detailed protocol for the purification, culture and ex vivo expansion of CD4+ Vδ1+γδ T cells. This knowledge is prerequisite for studies that relate to this αβT cell progenitor`s biology and for those who aim to identify the molecular triggers that are involved in its transdifferentiation.  相似文献   

13.
Vδ2neg γδ T cells, of which Vδ1+ γδ T cells are by far the largest subset, are important effectors against CMV infection. Malignant gliomas often contain CMV genetic material and proteins, and evidence exists that CMV infection may be associated with initiation and/or progression of glioblastoma multiforme (GBM). We sought to determine if Vδ1+ γδ T cells were cytotoxic to GBM and the extent to which their cytotoxicity was CMV dependent. We examined the cytotoxic effect of ex vivo expanded/activated Vδ1+ γδ T cells from healthy CMV seropositive and CMV seronegative donors on unmanipulated and CMV-infected established GBM cell lines and cell lines developed from short- term culture of primary tumors. Expanded/activated Vδ1+ T cells killed CMV-negative U251, U87, and U373 GBM cell lines and two primary tumor explants regardless of the serologic status of the donor. Experimental CMV infection did not increase Vδ1+ T cell - mediated cytotoxicity and in some cases the cell lines were more resistant to lysis when infected with CMV. Flow cytometry analysis of CMV-infected cell lines revealed down-regulation of the NKG2D ligands ULBP-2, and ULBP-3 as well as MICA/B in CMV-infected cells. These studies show that ex vivo expanded/activated Vδ1+ γδ T cells readily recognize and kill established GBM cell lines and primary tumor-derived GBM cells regardless of whether CMV infection is present, however, CMV may enhance the resistance GBM cell lines to innate recognition possibly contributing to the poor immunogenicity of GBM.  相似文献   

14.
The objective of this study was to functionally assess gamma/delta (γδ) T cells following pathogenic human immunodeficiency virus (HIV) infection of humans and nonpathogenic simian immunodeficiency virus (SIV) infection of sooty mangabeys. γδ T cells were obtained from peripheral blood samples from patients and sooty mangabeys that exhibited either a CD4-healthy (>200 CD4+ T cells/μl blood) or CD4-low (<200 CD4 cells/μl blood) phenotype. Cytokine flow cytometry was utilized to assess production of Th1 cytokines tumor necrosis factor alpha and gamma interferon following ex vivo stimulation with either phorbol myristate acetate/ionomycin or the Vδ2 γδ T-cell receptor agonist isopentenyl pyrophosphate. Sooty mangabeys were observed to have higher percentages of γδ T cells in their peripheral blood than humans did. Following stimulation, γδ T cells from SIV-positive (SIV+) mangabeys maintained or increased their ability to express the Th1 cytokines regardless of CD4+ T-cell levels. In contrast, HIV-positive (HIV+) patients exhibited a decreased percentage of γδ T cells expressing Th1 cytokines following stimulation. This dysfunction is primarily within the Vδ2+ γδ T-cell subset which incurred both a decreased overall level in the blood and a reduced Th1 cytokine production. Patients treated with highly active antiretroviral therapy exhibited a partial restoration in their γδ T-cell Th1 cytokine response that was intermediate between the responses of the uninfected and HIV+ patients. The SIV+ sooty mangabey natural hosts, which do not proceed to clinical AIDS, provide evidence that γδ T-cell dysfunction occurs in HIV+ patients and may contribute to HIV disease progression.  相似文献   

15.
Eradication of HIV infection will require the identification of all cellular reservoirs that harbor latent infection. Despite low or lack of CD4 receptor expression on Vδ2 T cells, infection of these cells has previously been reported. We found that upregulation of the CD4 receptor may render primary Vδ2 cells target for HIV infection in vitro and we propose that HIV-induced immune activation may allow infection of γδ T cells in vivo. We assessed the presence of latent HIV infection by measurements of DNA and outgrowth assays within Vδ2 cells in 18 aviremic patients on long-standing antiretroviral therapy. In 14 patients we recovered latent but replication-competent HIV from highly purified Vδ2 cells demonstrating that peripheral Vδ2 T cells are a previously unrecognized reservoir in which latent HIV infection is unexpectedly frequent.  相似文献   

16.
γδ T cells express several different toll-like receptor (TLR)s. The role of MyD88- dependent TLR signaling in TCR activation of murine γδ T cells is incompletely defined. Here, we report that Pam3CSK4 (PAM, TLR2 agonist) and CL097 (TLR7 agonist), but not lipopolysaccharide (TLR4 agonist), increased CD69 expression and Th1-type cytokine production upon anti-CD3 stimulation of γδ T cells from young adult mice (6-to 10-week-old). However, these agonists alone did not induce γδ T cell activation. Additionally, we noted that neither PAM nor CL097 synergized with anti-CD3 in inducing CD69 expression on γδ T cells of aged mice (21-to 22-month-old). Compared to young γδ T cells, PAM and CL097 increased Th-1 type cytokine production with a lower magnitude from anti-CD3- stimulated, aged γδ T cells. Vγ1+ and Vγ4+ cells are two subpopulations of splenic γδ T cells. PAM had similar effects in anti-CD3-activated control and Vγ4+ subset- depleted γδ T cells; whereas CL097 induced more IFN-γ production from Vγ4+ subset-depleted γδ T cells than from the control group. Finally, we studied the role of MyD88-dependent TLRs in γδ T cell activation during West Nile virus (WNV) infection. γδ T cell, in particular, Vγ1+ subset expansion was significantly reduced in both MyD88- and TLR7- deficient mice. Treatment with TLR7 agonist induced more Vγ1+ cell expansion in wild-type mice during WNV infection. In summary, these results suggest that MyD88-dependent TLRs provide co-stimulatory signals during TCR activation of γδ T cells and these have differential effects on distinct subsets.  相似文献   

17.
Human γδ T cells are potent effectors against glioma cell lines in vitro and in human/mouse xenograft models of glioblastoma, however, this effect has not been investigated in an immunocompetent mouse model. In this report, we established GL261 intracranial gliomas in syngeneic WT C57BL/6 mice and measured circulating γδ T cell count, phenotype, Vγ/Vδ repertoire, tumor histopathology, NKG2D ligands expression, and T cell invasion at day 10–12 post-injection and at end stage. Circulating γδ T cells transiently increased and upregulated Annexin V expression at post-tumor day 10–12 followed by a dramatic decline in γδ T cell count at end stage. T cell receptor repertoire showed no changes in Vγ1, Vγ4, Vγ7 or Vδ1 subsets from controls at post-tumor day 10–12 or at end stage except for an end-stage increase in the Vδ4 population. Approximately 12% of γδ T cells produced IFN-γ. IL-17 and IL-4 producing γδ T cells were not detected. Tumor progression was the same in TCRδ-/- C57BL/6 mice as that observed in WT mice, suggesting that γδ T cells exerted neither a regulatory nor a sustainable cytotoxic effect on the tumor. WT mice that received an intracranial injection of γδ T cells 15m following tumor placement showed evidence of local tumor growth inhibition but this was insufficient to confer a survival advantage over untreated controls. Taken together, our findings suggest that an early nonspecific proliferation of γδ T cells followed by their depletion occurs in mice implanted with syngeneic GL261 gliomas. The mechanism by which γδ T cell expansion occurs remains a subject for further investigation of the mechanisms responsible for this immune response in the setting of high-grade glioma.  相似文献   

18.
The thymus provides a specialized microenvironment in which distinct subsets of thymic epithelial cells (TECs) support T-cell development. Here, we describe the significance of cortical TECs (cTECs) in T-cell development, using a newly established mouse model of cTEC deficiency. The deficiency of mature cTECs caused a massive loss of thymic cellularity and impaired the development of αβT cells and invariant natural killer T cells. Unexpectedly, the differentiation of certain γδT-cell subpopulations—interleukin-17-producing Vγ4 and Vγ6 cells—was strongly dysregulated, resulting in the perturbation of γδT-mediated inflammatory responses in peripheral tissues. These findings show that cTECs contribute to the shaping of the TCR repertoire, not only of “conventional” αβT cells but also of inflammatory “innate” γδT cells.  相似文献   

19.
In humans, invariant natural killer T (iNKT) cells represent a small but significant population of peripheral blood mononuclear cells (PBMCs) with a high degree of variability. In this study, pursuant to our goal of identifying an appropriate non-human primate model suitable for pre-clinical glycolipid testing, we evaluated the percentage and function of iNKT cells in the peripheral blood of pig-tailed macaques. First, using a human CD1d-tetramer loaded with α-GalCer (α-GalCer-CD1d-Tet), we found that α-GalCer-CD1d-Tet+ CD3+ iNKT cells make up 0.13% to 0.4% of pig-tailed macaque PBMCs, which are comparable to the percentage of iNKT cells found in human PBMCs. Second, we observed that a large proportion of Vα24+CD3+ cells are α-GalCer-CD1d-Tet+CD3+ iNKT cells, which primarily consist of either the CD4+ or CD8+ subpopulation. Third, we found that pig-tailed macaque iNKT cells produce IFN-γ in response to α-GalCer, as shown by ELISpot assay and intracellular cytokine staining (ICCS), as well as TNF-α, as shown by ICCS, indicating that these iNKT cells are fully functional. Interestingly, the majority of pig-tailed macaque iNKT cells that secrete IFN-γ are CD8+ iNKT cells. Based on these findings, we conclude that the pig-tailed macaques exhibit potential as a non-human animal model for the pre-clinical testing of iNKT-stimulating glycolipids.  相似文献   

20.
Coeliac disease is a chronic small intestinal immune-mediated enteropathy precipitated by exposure to dietary gluten in genetically predisposed individuals. The only current therapy is a lifelong gluten free diet. While much work has focused on the gliadin-specific adaptive immune response in coeliac disease, little is understood about the involvement of the innate immune system. Here we used multi-colour flow cytometry to determine the number and frequency of γδ T cells (Vδ1, Vδ2 and Vδ3 subsets), natural killer cells, CD56+ T cells, invariant NKT cells, and mucosal associated invariant T cells, in blood and duodenum from adults and children with coeliac disease and healthy matched controls. All circulating innate lymphocyte populations were significantly decreased in adult, but not paediatric coeliac donors, when compared with healthy controls. Within the normal small intestine, we noted that Vδ3 cells were the most abundant γδ T cell type in the adult epithelium and lamina propria, and in the paediatric lamina propria. In contrast, patients with coeliac disease showed skewing toward a predominant Vδ1 profile, observed for both adult and paediatric coeliac disease cohorts, particularly within the gut epithelium. This was concurrent with decreases in all other gut lymphocyte subsets, suggesting a specific involvement of Vδ1 cells in coeliac disease pathogenesis. Further analysis showed that γδ T cells isolated from the coeliac gut display an activated, effector memory phenotype, and retain the ability to rapidly respond to in vitro stimulation. A profound loss of CD56 expression in all lymphocyte populations was noted in the coeliac gut. These findings demonstrate a sustained aberrant innate lymphocyte profile in coeliac disease patients of all ages, persisting even after elimination of gluten from the diet. This may lead to impaired immunity, and could potentially account for the increased incidence of autoimmune co-morbidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号