首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative real-time PCR (qRT-PCR) is a powerful technique to quantify gene expression. To standardize gene expression studies and obtain more accurate qRT-PCR analysis, normalization relative to consistently expressed housekeeping genes (HKGs) is required. In this study, ten candidate HKGs including elongation factor 1 α (EF1A), ribosomal protein L11 (RPL11), ribosomal protein L14 (RPL14), ribosomal protein S8 (RPS8), ribosomal protein S23 (RPS23), NADH-ubiquinone oxidoreductase (NADH), vacuolar-type H+-ATPase (ATPase), heat shock protein 70 (HSP70), 18S ribosomal RNA (18S), and 12S ribosomal RNA (12S) from the cowpea aphid, Aphis craccivora Koch were selected. Four algorithms, geNorm, Normfinder, BestKeeper, and the ΔCt method were employed to evaluate the expression profiles of these HKGs as endogenous controls across different developmental stages and temperature regimes. Based on RefFinder, which integrates all four analytical algorithms to compare and rank the candidate HKGs, RPS8, RPL14, and RPL11 were the three most stable HKGs across different developmental stages and temperature conditions. This study is the first step to establish a standardized qRT-PCR analysis in A. craccivora following the MIQE guideline. Results from this study lay a foundation for the genomics and functional genomics research in this sap-sucking insect pest with substantial economic impact.  相似文献   

2.
The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (−8, −6, −4, −2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.  相似文献   

3.
Quantitative real-time PCR (qRT-PCR) is a reliable and reproducible technique for measuring and evaluating changes in gene expression. The most common method for analyzing qRT-PCR data is to normalize mRNA levels of target genes to internal reference genes. Evaluating and selecting stable reference genes on a case-by-case basis is critical. The present study aimed to facilitate gene expression studies by identifying the most suitable reference genes for normalization of mRNA expression in qRT-PCR analysis of the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae). For this purpose, three software tools (geNorm, NormFinder and BestKeeper) were used to investigate 10 candidate reference genes in nine developmental stages and five different tissues (epidermis, head, midgut, fat body and hemolymph) in three larval physiological stages (molting, feeding and wandering stages) of, S. exigua. With the exception of 18S ribosomal RNA (18S), all other candidate genes evaluated, β-actin1(ACT1), β-actin2 (ACT2), elongation factor1(EF1), elongation factor 2 (EF2), Glyceralde hyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein L10 (L10), ribosomal protein L17A (L17A), superoxide dismutase (SOD), α-tubulin (TUB),proved to be acceptable reference genes. However, their suitability partly differed between physiological stages and different tissues. L10, EF2 and L17A ranked highest in all tissue sample sets. SOD, ACT2, GAPDH, EF1 and ACT1 were stably expressed in all developmental stage sample sets; ACT2, ACT1 and L10 for larvae sample sets; GAPDH, ACT1 and ACT2 for pupae and adults; SOD and L17A for males; and EF2 and SOD for females. The expression stability of genes varied in different conditions. The findings provided here demonstrated, with a few exceptions, the suitability of most of the 10 reference genes tested in tissues and life developmental stages. Overall, this study emphasizes the importance of validating reference genes for qRT-PCR analysis in S. exigua.  相似文献   

4.
5.
Gene expression analysis using quantitative real-time PCR (qRT-PCR) is a very sensitive technique and its sensitivity depends on the stable performance of reference gene(s) used in the study. A number of housekeeping genes have been used in various expression studies in many crops however, their expression were found to be inconsistent under different stress conditions. As a result, species specific housekeeping genes have been recommended for different expression studies in several crop species. However, such specific housekeeping genes have not been reported in the case of pigeonpea (Cajanus cajan) despite the fact that genome sequence has become available for the crop. To identify the stable housekeeping genes in pigeonpea for expression analysis under drought stress conditions, the relative expression variations of 10 commonly used housekeeping genes (EF1α, UBQ10, GAPDH, 18SrRNA, 25SrRNA, TUB6, ACT1, IF4α, UBC and HSP90) were studied on root, stem and leaves tissues of Asha (ICPL 87119). Three statistical algorithms geNorm, NormFinder and BestKeeper were used to define the stability of candidate genes. geNorm analysis identified IF4α and TUB6 as the most stable housekeeping genes however, NormFinder analysis determined IF4α and HSP90 as the most stable housekeeping genes under drought stress conditions. Subsequently validation of the identified candidate genes was undertaken in qRT-PCR based gene expression analysis of uspA gene which plays an important role for drought stress conditions in pigeonpea. The relative quantification of the uspA gene varied according to the internal controls (stable and least stable genes), thus highlighting the importance of the choice of as well as validation of internal controls in such experiments. The identified stable and validated housekeeping genes will facilitate gene expression studies in pigeonpea especially under drought stress conditions.  相似文献   

6.
Quantitative Real-time PCR (qRT-PCR) is a powerful technique to investigate comparative gene expression. In general, normalization of results using a highly stable housekeeping gene (HKG) as an internal control is recommended and necessary. However, there are several reports suggesting that regulation of some HKGs is affected by different conditions. The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a serious pest of corn in the United States and Europe. The expression profile of target genes related to insecticide exposure, resistance, and RNA interference has become an important experimental technique for study of western corn rootworms; however, lack of information on reliable HKGs under different conditions makes the interpretation of qRT-PCR results difficult. In this study, four distinct algorithms (Genorm, NormFinder, BestKeeper and delta-CT) and five candidate HKGs to genes of reference (β-actin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; β-tubulin; RPS9, ribosomal protein S9; EF1a, elongation factor-1α) were evaluated to determine the most reliable HKG under different experimental conditions including exposure to dsRNA and Bt toxins and among different tissues and developmental stages. Although all the HKGs tested exhibited relatively stable expression among the different treatments, some differences were noted. Among the five candidate reference genes evaluated, β-actin exhibited highly stable expression among different life stages. RPS9 exhibited the most similar pattern of expression among dsRNA treatments, and both experiments indicated that EF1a was the second most stable gene. EF1a was also the most stable for Bt exposure and among different tissues. These results will enable researchers to use more accurate and reliable normalization of qRT-PCR data in WCR experiments.  相似文献   

7.
8.
9.
Finding a suitable reference gene is the key for qRT-PCR analysis. However, none of the reference gene discovered thus far can be utilized universally under various biotic and abiotic experimental conditions. In this study, we further examine the stability of candidate reference genes under a single abiotic factor, insecticide treatment. After being exposed to eight commercially available insecticides, which belong to five different classes, the expression profiles of eight housekeeping genes in the sweetpotato whitefly, Bemisia tabaci, one of the most invasive and destructive pests in the world, were investigated using qRT-PCR analysis. In summary, elongation factor 1α (EF1α), α-tubulin (TUB1α) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified as the most stable reference genes under the insecticide treatment. The initial assessment of candidate reference genes was further validated with the expression of two target genes, a P450 (Cyp6cm1) and a glutathione S-transferase (GST). However, ranking of reference genes varied substantially among intra- and inter-classes of insecticides. These combined data strongly suggested the necessity of conducting custom reference gene selection designed for each and every experimental condition, even when examining the same abiotic or biotic factor.  相似文献   

10.
11.
To accurately evaluate gene expression levels and obtain more accurate quantitative real-time RT-PCR (qRT-PCR) data, normalization relative to reliable reference gene(s) is required. Drosophila suzukii, is an invasive fruit pest native to East Asia, and recently invaded Europe and North America, the stability of its reference genes have not been previously investigated. In this study, ten candidate reference genes (RPL18, RPS3, AK, EF-1β, TBP, NADH, HSP22, GAPDH, Actin, α-Tubulin), were evaluated for their suitability as normalization genes under different biotic (developmental stage, tissue and population), and abiotic (photoperiod, temperature) conditions. The three statistical approaches (geNorm, NormFinder and BestKeeper) and one web-based comprehensive tool (RefFinder) were used to normalize analysis of the ten candidate reference genes identified α-Tubulin, TBP and AK as the most stable candidates, while HSP22 and Actin showed the lowest expression stability. We used three most stable genes (α-Tubulin, TBP and AK) and one unstably expressed gene to analyze the expression of P-glycoprotein in abamectin-resistant and sensitive strains, and the results were similar to reference genes α-Tubulin, TBP and AK, which show good stability, while the result of HSP22 has a certain bias. The three validated reference genes can be widely used for quantification of target gene expression with qRT-PCR technology in D.suzukii.  相似文献   

12.
13.
14.
In order to identify the optimal internal control for relative real-time PCR when studying target gene expression in the red alga Porphyra yezoensis, we quantified the expression of seven housekeeping genes (18S ribosomal RNA, 30S ribosomal protein S8, Polyubiquitin-2, Glyceraldehyde-3-phosphate dehydrogenase, Elongation factor 1-alpha, Beta-tubulin and Actin 3) at different life-history stages. Absolute quantification was done by normalization to total RNA quantity and by normalization to genomic DNA quantity. We used these two normalization approaches, comparing the differences of expression levels of all candidate housekeeping genes between any two generations and across three life-history stages (filamentous sporophytes, leafy gametophytes and conchospores). We found GAPDH had the best stability in all cases and we recommend that GAPDH be considered as a potential internal control for gene expression studies at different life-history stages in P. yezoensis.  相似文献   

15.

Background

Housekeeping genes have been commonly used as reference to normalize gene expression and protein content data because of its presumed constitutive expression. In this paper, we challenge the consensual idea that housekeeping genes are reliable controls for expression studies in the retina through the investigation of a panel of reference genes potentially suitable for analysis of different stages of retinal development.

Methodology/Principal Findings

We applied statistical tools on combinations of retinal developmental stages to assess the most stable internal controls for quantitative RT-PCR (qRT-PCR). The stability of expression of seven putative reference genes (Actb, B2m, Gapdh, Hprt1, Mapk1, Ppia and Rn18s) was analyzed using geNorm, BestKeeper and Normfinder software. In addition, several housekeeping genes were tested as loading controls for Western blot in the same sample panel, using Image J. Overall, for qRT-PCR the combination of Gapdh and Mapk1 showed the highest stability for most experimental sets. Actb was downregulated in more mature stages, while Rn18s and Hprt1 showed the highest variability. We normalized the expression of cyclin D1 using various reference genes and demonstrated that spurious results may result from blind selection of internal controls. For Western blot significant variation could be seen among four putative internal controls (β-actin, cyclophilin b, α-tubulin and lamin A/C), while MAPK1 was stably expressed.

Conclusion

Putative housekeeping genes exhibit significant variation in both mRNA and protein content during retinal development. Our results showed that distinct combinations of internal controls fit for each experimental set in the case of qRT-PCR and that MAPK1 is a reliable loading control for Western blot. The results indicate that biased study outcomes may follow the use of reference genes without prior validation for qRT-PCR and Western blot.  相似文献   

16.
17.
18.
Biogenesis of ribosomes is an essential cellular process conserved across all eukaryotes and is known to require >170 genes for the assembly, modification, and trafficking of ribosome components through multiple cellular compartments. Despite intensive study, this pathway likely involves many additional genes. Here, we employ network-guided genetics—an approach for associating candidate genes with biological processes that capitalizes on recent advances in functional genomic and proteomic studies—to computationally identify additional ribosomal biogenesis genes. We experimentally evaluated >100 candidate yeast genes in a battery of assays, confirming involvement of at least 15 new genes, including previously uncharacterized genes (YDL063C, YIL091C, YOR287C, YOR006C/TSR3, YOL022C/TSR4). We associate the new genes with specific aspects of ribosomal subunit maturation, ribosomal particle association, and ribosomal subunit nuclear export, and we identify genes specifically required for the processing of 5S, 7S, 20S, 27S, and 35S rRNAs. These results reveal new connections between ribosome biogenesis and mRNA splicing and add >10% new genes—most with human orthologs—to the biogenesis pathway, significantly extending our understanding of a universally conserved eukaryotic process.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号