首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recently, using Chinese hamster V79 cells, we found no relationship between the level of protection and the overall rate for .OH removal [Ewing and Walton, Radiat. Res. 126, 187-197 (1991)]. We offered several possible interpretations for this observation, including that the scavengers may actually have multiple ways to protect, ways that would occur in addition to, or instead of, simple .OH removal. With bacterial spores, we had noted that protection occurs only with those .OH scavengers that are able to react and form secondary, reducing radicals (alpha-hydroxy radicals, RCOH), and we suggested that protection might occur if these radicals reduced cellular radical sites in competition with (damaging) reactions of O2. We have now tested that hypothesis with four .OH scavengers (DMSO, ethanol, glycerol, and methanol), and Chinese hamster V79 cells, irradiated while equilibrated with 0.9% O2 and 100% O2; our recent experiments with these scavengers in air provide data for a third O2 concentration. If these scavengers protect in vitro mammalian cells by forming secondary reducing radicals which compete with O2 for damaged cellular sites, we expect that when we reduce the O2 concentration, we will concomitantly reduce the scavenger concentrations needed for protection. If the proposed competition occurs, we expect the scavenger concentrations for 50% maximum effect to occur in the ratio of the three O2 concentrations used approximately 1:20:100. We found no evidence for such a competition as the mechanism of protection for these four .OH scavengers.  相似文献   

3.
Copper in the presence of excess 1,10-phenanthroline, a reducing agent, and H2O2 causes DNA base damage as well as strand breakage. We have reported in previous work that a strong chemiluminescence was followed by DNA base damage in this system, which is characteristic of guanine. In the present work, the mechanism of the chemiluminescence was studied. Results show that the luminescence was inhibited by all three classes of reactive oxygen species (*OH, O2-, (1)O2) scavengers to different degrees. Singlet oxygen scavengers showed the most powerful inhibition while the other two classes of scavengers were relatively weaker. The emission intensity in D2O was 3-fold that in H2O. Comparing the effect of scavengers on the luminescence of DNA with that of dGMP, the ratio of inhibition was similar. On the other hand, DNA breakage analysis showed that inhibition by the singlet oxygen scavenger NaN3 of strand breakage was strong and comparable to that of the scavengers of the two oxygen radicals. The results suggest that singlet oxygen may be a major factor for the chemiluminescence of guanine, while DNA strand breakage may be caused by many active species.  相似文献   

4.
The effect of scavengers of oxygen radicals on canine cardiac sarcoplasmic reticulum (SR) Ca2+ uptake velocity was investigated at pH 6.4, the intracellular pH of the ischemic myocardium. With the generation of oxygen radicals from a xanthine-xanthine oxidase reaction, there was a significant depression of SR Ca2+ uptake velocity. Xanthine alone or xanthine plus denatured xanthine oxidase had no effect on this system. Superoxide dismutase (SOD), a scavenger of .O2-, or denatured SOD had no effect on the depression of Ca2+ uptake velocity induced by the xanthine-xanthine oxidase reaction. However, catalase, which can impair hydroxyl radical (.OH) formation by destroying the precursor H2O2, significantly inhibited the effect of the xanthine-xanthine oxidase reaction. This effect of catalase was enhanced by SOD, but not by denatured SOD. Dimethyl sulfoxide (Me2SO), a known .OH scavenger, completely inhibited the effect of the xanthine-xanthine oxidase reaction. The observed effect of oxygen radicals and radical scavengers was not seen in the calmodulin-depleted SR vesicles. Addition of exogenous calmodulin, however, reproduced the effect of oxygen radicals and the scavengers. The effect of oxygen radicals was enhanced by the calmodulin antagonists (compounds 48/80 and W-7) at concentrations which showed no effect alone on Ca2+ uptake velocity. Taken together, these findings strongly suggest that .OH, but not .O2-, is involved in a mechanism that may cause SR dysfunction, and that the effect of oxygen radicals is calmodulin dependent.  相似文献   

5.
Proteins which have been exposed to the hydroxyl radical (.OH) or to the combination of .OH plus the superoxide anion radical and oxygen (.OH + O2- + O2) exhibit altered primary structure and increased proteolytic susceptibility. The present work reveals that alterations to primary structure result in gross distortions of secondary and tertiary structure. Denaturation/increased hydrophobicity of bovine serum albumin (BSA) by .OH, or by .OH + O2- + O2 was maximal at a radical/BSA molar ratio of 24 (all .OH or 50% .OH + 50% O2-). BSA exposed to .OH also underwent progressive covalent cross-linking to form dimers, trimers, and tetramers, partially due to the formation of intermolecular bityrosine. In contrast, .OH + O2- + O2 caused spontaneous BSA fragmentation. Fragmentation of BSA produced new carbonyl groups with no apparent increase in free amino groups. Fragmentation may involve reaction of (.OH-induced) alpha-carbon radicals with O2 to form peroxyl radicals which decompose to fragment the polypeptide chain at the alpha-carbon, rather than at peptide bonds. BSA fragments induced by .OH + O2- + O2 exhibited molecular weights of 7,000-60,000 following electrophoresis under denaturing conditions, but could be visualized as hydrophobic aggregates in nondenaturing gels (confirmed with [3H]BSA following treatment with urea or acid). Combinations of various chemical radical scavengers (mannitol, urate, t-butyl alcohol, isopropyl alcohol) and gases (N2O, O2, N2) revealed that .OH is the primary species responsible for alteration of BSA secondary and tertiary structure. Oxygen, and O2- serve only to modify the outcome of .OH reaction. Furthermore, direct studies of O2- + O2 (in the absence of .OH) revealed no measurable changes in BSA structure. The process of denaturation/increased hydrophobicity was found to precede either covalent cross-linking (by .OH) or fragmentation (by .OH + O2- + O2). Denaturation was half-maximal at a radical/BSA molar ratio of 9.6, whereas half-maximal aggregation or fragmentation occurred at a ratio of 19.4. Denaturation/hydrophobicity may hold important clues for the mechanism(s) by which oxygen radicals can increase proteolytic susceptibility.  相似文献   

6.
Free radical reactions are believed to play an important role in the mechanism of Cr(VI)-induced carcinogenesis. Most studies concerning the role of free radical reactions have been limited to soluble Cr(VI). Various studies have shown that solubility is an important factor contributing to the carcinogenic potential of Cr(VI) compounds. Here, we report that reduction of insoluble PbCrO4 by glutathione reductase in the presence of NADPH as a cofactor generated hydroxyl radicals (.OH) and caused DNA damage. The .OH radicals were detected by electron spin resonance (ESR) using 5,5-dimethyl-N-oxide as a spin trap. Addition of catalase, a specific H2O2 scavenger, inhibited the .OH radical generation, indicating the involvement of H2O2 in the mechanism of Cr(VI)-induced .OH generation. Catalase reduced .OH radicals measured by electron spin resonance and reduced DNA strand breaks, indicating .OH radicals are involved in the damage measured. The H2O2 formation was measured by change in fluorescence of scopoletin in the presence of horseradish peroxidase. Molecular oxygen was used in the system as measured by oxygen consumption assay. Chelation of PbCrO4 impaired the generation of .OH radical. The results obtained from this study show that reduction of insoluble PbCrO4 by glutathione reductase/NADPH generates .OH radicals. The mechanism of .OH generation involves reduction of molecular oxygen to H2O2, which generates .OH radicals through a Fenton-like reaction. The .OH radicals generated by PbCrO4 caused DNA strand breakage.  相似文献   

7.
The effects of various scavengers of reactive oxygen and/or radical species on cell survival in vitro of EMT6 and CHO cells following photodynamic therapy (PDT) or gamma irradiation were compared. None of the agents used exhibited major direct cytotoxicity. Likewise, none interfered with cellular porphyrin uptake, and none except tryptophan altered singlet oxygen production during porphyrin illumination. The radioprotector cysteamine (MEA) was equally effective in reducing cell damage in both modalities. In part, this protection seems to have been induced by oxygen consumption in the system due to MEA autoxidation under formation of H2O2. The addition of catalase, which prevents H2O2 buildup, reduced the effect of MEA to the same extent in both treatments. Whether the remaining protection was due to MEA's radical-reducing action or some remaining oxygen limitation is unclear. The protective action of MEA was not mediated by a doubling of cellular glutathione levels, since addition of buthionine sulfoximine, which prevented glutathione increase, did not diminish the observed MEA protection. The hydroxyl radical scavenger mannitol also afforded protection in both kinds of treatment, but it was approximately twice as effective in gamma irradiation as in PDT. This is consistent with the predominant role of OH radicals in ionizing radiation damage and their presumed minor involvement in PDT damage. Superoxide dismutase, a scavenger of O2, acted as a radiation protector but was not significantly effective in PDT. Catalase, which scavenges H2O2, was ineffective in both modalities. Tryptophan, an efficient singlet oxygen scavenger, reduced cell death through PDT by several orders of magnitude while being totally ineffective in gamma irradiation. These data reaffirm the predominant role of 1O2 in the photodynamic cell killing but also indicate some involvement of free radical species.  相似文献   

8.
The X-ray-induced inactivation of the biological activity of Bacillus subtilis transforming DNA in dilute aqueous solution has been studied over a wide range of O2 concentrations in an attempt to elucidate the mechanisms involved in O2 action. When the DNA is irradiated in the presence of 100 per cent O2 there is a protection of the transforming DNA compared to the sensitivity in N2-saturated or in N2O-saturated solutions. When the equilibrating gas contains intermediate concentrations of O2 (1 per cent--90 per cent) in N2 or N2O, the DNA sensitivity is equivalent to that in pure N2 or N2O respectively. At low O2 concentrations (approximately 0.14 per cent O2 in N2 or in N2O) there is a sensitization of the DNA and this sensitization can be prevented by .OH scavengers. Possible mechanisms for these actions of O2 on the radiation sensitivity of transforming DNA are discussed.  相似文献   

9.
An efficient scavenger for radiolytically generated hydroxyl (OH) radicals, p-nitrosodimethylaniline, was used to try to substantiate the presence of this oxygen radical species in several biochemical systems. Most of these systems which were investigated had previously been assumed to generate OH radicals, e.g. the autoxidation of 6-hydroxydopamine, the hydroxylating system NADH/phenazine methosulfate, and the oxidation of xanthine or acetaldehyde by xanthine oxidase. We did not observe inhibition of the bleaching of p-nitrosodimethylaniline in oxygenated solutions by other scavengers of OH radicals nor, in the case of xanthine/xanthine oxidase, by catalase and superoxide dismutase. We therefore conclude that, under biochemical conditions as opposed to radiolysis or photolysis, no freely diffusable OH radicals are formed. Rather, a strongly oxidizing OH-analogous complex is considered to represent the p-nitrosodimethylaniline-detectable species formed under these conditions.  相似文献   

10.
Endotoxin, the lipopolysaccharide component of gram-negative bacteria, is a common contaminant of plasmid DNA preparations. The present study investigated the effect of endotoxin on gene transfection efficiency and the role of reactive oxygen species (ROS) in this process. Gene transfection studies were performed in various cell types with cytomegalovirus-luciferase as a reporter plasmid and cationic liposome as a transfecting agent. The presence of endotoxin in plasmid DNA preparations severely limited transgene expression in macrophages but had little or no effect in other cell types tested. This decreased transfection was dependent on ROS-mediated cellular toxicity induced by endotoxin. Neutralizing the endotoxin by the addition of polymyxin B effectively increased transfection efficiency and reduced toxicity. Electron spin resonance studies confirmed the formation of ROS in endotoxin-treated cells and their inhibition by free radical scavengers. The ROS scavenger N-t-butyl-alpha-phenylnitrone, the H(2)O(2) scavenger catalase, and the.OH scavenger sodium formate effectively inhibited endotoxin-induced effects, whereas the O(2)(-) scavenger superoxide dismutase had lesser effects. These results indicate that multiple oxidative species are involved in the transfection inactivation process and that.OH formed by H(2)O(2)-dependent, metal-catalyzed Fenton reaction play a major role in this process.  相似文献   

11.
The reactions of thymine in aqueous solution with radiation-induced radicals OH, H, and e-aq were studied under various conditions. Competition studies using scavengers of OH radicals (methanol, ethanol, iodide) or of e-aq and/or H atoms (N2O, H+, O2) led to the conclusion that OH and H radicals destroy the chromophoric group of thymine, but e-aq does not. A trace of O2 proved to be necessary to obtain maximal destruction. Removal of the last traces of O2 resulted in a decrease of the destruction yield, possibly through restitution reactions. It was found that (1) alcohol radicals destroy thymine, even in the presence of O2; (2) the rate constant, k(OH + thymine) = 4.3 X 10(9) M(-1) sec(-1) (from competition with iodide); and (3) k(H + thymine) = 8 X 10(8) M(-1) sec(-1) (from competition with O2 in acid solution).  相似文献   

12.
DNA alkalinization experiments on lymphocytes from sonicated whole blood and on in vitro cultured lymphocytes in presence of free radical scavengers (superoxide dismutase, catalase and mannitol) showed that lesions inflicted upon DNA by pulsed ultrasounds could be ascribed to production of free radicals (O2-, OH.) and H2O2, which could mediate the production of still unidentified organic radicals, likely to be responsible for DNA damage.  相似文献   

13.
2-Oxo-4-thiomethylbutyric acid (OMBA) is a widely used oxygen-radical-scavenging agent and has been used for the detection of .OH-like species in a variety of systems. This scavenger reacts with other radicals and is therefore not specific for .OH. Since iron is required in most systems for the generation of OH-like species, studies were carried out to investigate the possible interaction of OMBA with iron. Fe3+ reacted with OMBA to produce complexes that gave rise to discrete spectra. Intense purple complexes, with broad absorbance maxima of 525-550 nm, were found at OMBA/Fe3+ ratios of up to 1:1, whereas red complexes with a prominent shoulder between 440 and 480 nm were found at higher OMBA/Fe3+ ratios. OMBA caused reduction of ferric iron to the ferrous state, as detected with 2,2'-bipyridyl as the indicator. This reduction occurs in the dark, can be photo-accelerated especially by light with wavelengths near the absorbance maximum of the respective complexes, and is increased as the OMBA/Fe3+ ratio is elevated. The presence of phosphate buffer quenches the purple and red ferric-ion-OMBA complexes and lowers the rate of reduction of Fe3+ by OMBA about 10-fold. The resulting ferrous-ion-OMBA-phosphate complex is very stable against autoxidation. Both the ferrous-ion-OMBA and ferric-ion-OMBA complexes reacted with H2O2, with the subsequent production of ethylene gas from OMBA. The interaction with H2O2 resulted in discrete spectral changes of both the ferrous-ion-OMBA and ferric-ion-OMBA complexes. The ferrous-ion-OMBA/H2O2 or ferric-ion-OMBA/H2O2 system appeared to produce .OH free radicals via a Fenton-type of reaction since ethylene production was inhibited by competitive OH scavengers. Ferrous-ion-OMBA complex reacted with H2O2 not only to produce ethylene from the OMBA, but also to promote the oxidation of another scavenger, ethanol. The ability of OMBA to chelate iron, to promote reduction of ferric iron and to react with H2O2 to produce potent oxidizing radicals may play a role in the lack of specificity of OMBA as a scavenger of oxygen radicals.  相似文献   

14.
The yields of single- and double-strand breaks (SSB and DSB) in calf thymus DNA, after 60Co gamma irradiation in dilute aqueous solution, have been determined via molecular weight measurements using a low-angle laser light scattering technique. The irradiations were administered to N2O-containing solutions of DNA in the absence and presence of oxygen and with different concentrations of the OH radical scavengers phenol, tertiary butanol, and methanol. OH radicals were found to produce SSB linearly with dose with a G value of 55 nmol J-1 and 54 nmol J-1 in deoxygenated and oxygenated solutions, respectively. DSB were formed according to a linear-quadratic dose relationship and the G value of linearly formed DSB were GDSB alpha(r.t.) = 3.5 nmol J-1 in deoxygenated and 3.2 nmol J-1 in oxygenated solution. The ratio of GSSB/GDSB alpha(r.t.) = gamma of 19 +/- 6 was independent of the scavenger concentration in the case of tertiary butanol and methanol-containing solutions. GDSB alpha(r.t.) is interpreted to result from a radical site transferred from a sugar moiety of the cleaved strand to the complementary intact strand. This process of radical transfer and subsequent cleavage of the second strand occurs with a probability of about 6 +/- 2% in the presence of oxygen at all scavenger concentrations studied. These data on scavenging capacity on GDSB alpha(r.t.) suggest that the double-strand breakage produced via radical transfer remains higher than that resulting from direct effect, up to scavenging capacities of about 10(9) s-1.  相似文献   

15.
16.
The production of OH radicals in the gamma radiolysis of water has been examined with radical scavenger techniques employing formic acid. OH radical yields were found to vary from 2.4 radicals/100 eV at the low scavenger concentration limit to 4.2 at a formic acid concentration of 3 M. An inverse Laplace transform technique was applied to the scavenger concentration dependence to obtain the temporal dependence of OH radicals in pure water. It was found that the relative decrease in OH radical yields from 200 ps to 3 ns was virtually the same for the transform of the scavenger data and the directly measured time-resolved results. The absolute yields for the time-resolved experiments are about 10% higher than expected from the present results with scavengers. The agreement can be considered to be good, and reasons for the observed difference are given. Approximately 40% of the OH radicals produced lead to the formation of hydrogen peroxide, which is the only other major oxidizing species in the gamma radiolysis of water. The net water decomposition for gamma rays was found to vary from an initial value of 5.6 +/- 0.3 molecules/100 eV to 3.8 +/- 0.2 molecules/100 eV at 1 micros.  相似文献   

17.
Experiments with isolated pancreatic islets or dispersed islet cells from non-inbred ob/ob mice were performed to test the hypothesis that free radicals, notably OH., mediate the diabetogenic toxicity of alloxan. Accumulation of 86Rb+ by whole islets and exclusion of Trypan Blue by dispersed cells were used as previously validated criteria of islet-cell viability. Alloxan alone drastically inhibited the Rb+ accumulation and significantly decreased the frequency of cells excluding Trypan Blue. Enzymic scavengers of O2.- and H2O2 or non-enzymic scavengers of OH. or singlet oxygen were added to the incubation medium and tested for their ability to protect against these effects of alloxan. Superoxide dismutase, catalase, dimethyl sulphoxide, benzoate, and mannitol counteracted the effects of alloxan in both cytotoxicity assays. Significant protection of the Rb+-accumulating capacity was also afforded by butanol, caffeine, theophylline, NADH, NADPH and, to a small extent, NAD+. Urea has a poor affinity for OH. and did not protect against alloxan. No effect was obtained with the singlet-oxygen scavenger, histidine. Except for the protection by NADH and NADPH, which may be due to a direct reaction with alloxan in the medium, the results strongly support the hypothesis. beta-Cells may be particularly vulnerable to alloxan because their metabolic specialization facilitates reduction of the drug and perhaps of other substrates for O2.--yielding redox cycles.  相似文献   

18.
Prior spin trapping studies reported that H(2)O(2) is metabolized by copper,zinc-superoxide dismutase (SOD) to form (.)OH that is released from the enzyme, serving as a source of oxidative injury. Although this mechanism has been invoked in a number of diseases, controversy remains regarding whether the hydroxylation of spin traps by SOD is truly derived from free (.)OH or (.)OH scavenged off the Cu(2+) catalytic site. To distinguish whether (.)OH is released from the enzyme, a comprehensive EPR investigation of radical production and the kinetics of spin trapping was performed in the presence of a series of structurally different (.)OH scavengers including ethanol, formate, and azide. Although each of these have similar potency in scavenging (.)OH as the spin trap 5, 5-dimethyl-1-pyrroline-N-oxide and form secondary radical adducts, each exhibited very different potency in scavenging (.)OH from SOD. Ethanol was 1400-fold less potent than would be expected for reaction with free (.)OH. The anionic scavenger formate, which readily accesses the active site, was still 10-fold less effective than would be predicted for free (.)OH, whereas azide was almost 2-fold more potent than would be predicted. Analysis of initial rates of adduct formation indicated that these reactions did not involve free (.)OH. EPR studies of the copper center demonstrated that while high H(2)O(2) concentrations induce release of Cu(2+), the magnitude of spin adducts produced by free Cu(2+) was negligible compared with that from intact SOD. Further studies with a series of peroxidase substrates demonstrated that characteristic radicals formed by peroxidases were also efficiently generated by H(2)O(2) and SOD. Thus, SOD and H(2)O(2) oxidize and hydroxylate substrates and spin traps through a peroxidase reaction with bound (.)OH not release of (.)OH from the enzyme.  相似文献   

19.
Radiation protection of Escherichia coli B/r by hydroxyl radical scavengers   总被引:1,自引:0,他引:1  
We have used Escherichia coli B/r to test the proposal that hydroxyl radicals (.OH) are major contributors to lethal damage when bacteria in equilibrium with air or 100% nitrogen are exposed to ionizing radiation. In addition, we have tested the hypothesis that oxygen sensitizes bacterial cells to radiation by reacting at radical sites previously formed by reactions of .OH. Our results with B/r indicate that the involvement of OH radicals in damage may have been overestimated. We believe that simple .OH removal provides B/r with only a relatively small amount of protection in N2 and air. Although some .OH scavengers can have large protective effects in air, evidence supports the tentative conclusion that these effects are not based on simple .OH removal. If this conclusion is correct, then radiation sensitization by oxygen--at least of this bacterial strain--would be unrelated to reactions of .OH.  相似文献   

20.
T Ochi  M Ohsawa 《Mutation research》1985,143(3):137-142
The effect of various scavengers of active oxygen species on the induction of chromosomal aberrations by cadmium chloride (CdCl2) was investigated in cultured Chinese hamster V79 cells. Incidences of chromosomal aberrations by CdCl2 were partially or fully reduced by the presence of catalase, mannitol (a scavenger of hydroxyl radicals) and butylated hydroxytoluene (BHT, an antioxidant). These findings may indicate participation of the active oxygen species such as hydrogen peroxide (H2O2) or hydroxyl radicals in the clastogenicity of cadmium. In contrast, superoxide dismutase (SOD) and dimethylfuran (a scavenger of singlet oxygen) did not influence incidences of chromosomal aberrations by CdCl2. These results suggest that superoxide anion and singlet oxygen are not directly involved in the clastogenicity of the metal. The presence of aminotriazole (an inhibitor of catalase) increased incidences of chromosomal aberrations by CdCl2. This emphasizes participation of H2O2 in the clastogenicity of cadmium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号