首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The neurotrophin receptor p75NTR provides protection from oxidant stress induced by 6-hydroxydopamine (6-OHDA) and resultant cell death. In the absence of p75NTR, TrkA is upregulated and its signaling pathway effectors are increasingly activated. Necdin, a MAGE protein and known interactor of p75NTR and TrkA, is a potential mediator of this phenomenon. Decreased expression of necdin protein in p75NTR-deficient PC12 cells decreased TrkA expression and increased PC12 cell resistance to 6-OHDA. Inhibition of JNK phosphorylation by SP600125 also resulted in increased resistance to 6-OHDA, suggesting that TrkA signaling underlies the susceptibility of these cells to oxidant stress.  相似文献   

2.
We examined the impact of peroxiredoxin-I (Prx-I) and peroxiredoxin-II (Prx-II) stable transduction on oxidative stress in PC12 neurons and NIH3T3 fibroblasts and found variability depending on cell type and Prx subtype. In PC12 neurons, Prx-II suppressed reactive oxygen species (ROS) generation by 36% (p < 0.01) relative to vector-infected control cells. However, in NIH3T3 fibroblasts, Prx-II overexpression resulted in a 97% (p < 0.01) increase in ROS generation. Prx-I transduction elevated ROS generation in PC12 cells. The effect of Prx-I on PC12 cells was potentiated in the presence of menadione, and suppressed by an inhibitor of nitric oxide synthetase. Prx-II transduction resulted in 25–35% lower levels of glutathione (GSH) in both cell types, while Prx-I transduction increased GSH levels in neurons and decreased GSH and caspase-3 activity in fibroblasts. Prx-I and Prx-II also had differing effects on cell viability. These results suggest that Prx-I and Prx-II can either increase or decrease intracellular oxidative stress depending on cell type or experimental conditions, particularly conditions affecting nitric oxide levels.Equivalent contributions were made by each author  相似文献   

3.
The low-affinity neurotrophin receptor, p75NTR, has been found to be pro- or anti-apoptotic depending upon the cell in which it is expressed. Reactive oxygen species play a major role in apoptosis induction and enactment. Using two polyclonal PC12 populations that, respectively, do or do not express p75NTR, this paper demonstrates that p75NTR expression confers resistance to oxidant stress upon PC12 cells maintained in serum-containing medium. The effect of p75NTR on cell survival is mimicked in p75-negative cells by expression of constructs that produce the p75NTR intracellular domain (ICD) or p75NTR with the extracellular domain deleted (DeltaECD), suggesting that binding of an extracellular ligand to p75NTR is not required. Our studies further document that the differential sensitivity to oxidant stress is serum-dependent and associated with differential oxidation of glutathione between p75-positive and p75-negative cells. These results suggest that the role of p75NTR in determining the consequences and treatment of age-related disorders and conditions in which reactive oxygen species are involved may require neither the extracellular receptor domain nor, by inference, the cognate extracellular ligands of this neurotrophin receptor.  相似文献   

4.
Tang  Ying  Li  Yingqin  Yu  Guangyin  Ling  Zemin  Zhong  Ke  Zilundu  Prince L. M.  Li  Wenfu  Fu  Rao  Zhou  Li-Hua 《Cellular and molecular neurobiology》2021,41(6):1373-1387

The imbalance between excess reactive oxygen species (ROS) generation and insufficient antioxidant defenses contribute to a range of neurodegenerative diseases. High ROS levels damage cellular macromolecules such as DNA, proteins and lipids, leading to neuron vulnerability and eventual death. However, the underlying molecular mechanism of the ROS regulation is not fully elucidated. Recently, an increasing number of studies suggest that microRNAs (miRNAs) emerge as the targets in regulating oxidative stress. We recently reported the neuroprotective effect of miR-137-3p for brachial plexus avulsion-induced motoneuron death. The present study is sought to investigate whether miR-137-3p also could protect PC12 cells against hydrogen peroxide (H2O2) induced neurotoxicity. By using cell viability assay, ROS assay, gene and protein expression assay, we found that PC-12 cells exposed to H2O2 exhibited decreased cell viability, increased expression levels of calpain-2 and neuronal nitric oxide synthase (nNOS), whereas a decreased miR-137-3p expression. Importantly, restoring the miR-137-3p levels in H2O2 exposure robustly inhibited the elevated nNOS, calpain-2 and ROS expression levels, which subsequently improved the cell viability. Furthermore, the suppressive effect of miR-137-3p on the elevated ROS level under oxidative stress was considerably blunted when we mutated the binding site of calpain-2 targted by miR-137-3p, suggesting the critical role of calpain-2 involving the neuroprotective effect of miR-137-3p. Collectively, these findings highlight the neuroprotective role of miR-137-3p through down-regulating calpain and NOS activity, suggesting its potential role for combating oxidative stress insults in the neurodegenerative diseases.

  相似文献   

5.
p75NTR is a member of the tumor necrosis superfamily of proteins which is variably associated with induction of apoptosis and proliferation. Cyclin D2 is one of the mediators of cellular progression through G1 phase of the cell cycle. The present study demonstrates the inverse relationship between expression of cyclin D2 and expression of p75NTR in PC12 cells. Induction of p75NTR expression in p75NTR-negative PC12 cells results in downregulation of cyclin D2; suppression of p75NTR expression with siRNA in native PC12 cells results in upregulation of cyclin D2. The effects of p75NTR on cyclin D2 expression are mimicked in p75NTR-negative cells by transfection with the intracellular domain of p75NTR. Cyclin-D2-positive PC12 cell cultures grow more slowly than cyclin-D2-negative cultures, and induction of expression of cyclin D2 slows the culture growth rate of cyclin-D2-negative cells. Finally, subcutaneous murine xenografts of cyclin-D2-negative, p75NTR-positive PC12 cells more frequently and more rapidly produce tumors than the analogous xenografts of cyclin-D2-positive, p75NTR-negative cells. These results suggest that p75NTR suppresses cyclin D2 expression in PC12 cells by a mechanism distinct from its function as a nerve growth factor receptor and that cyclin D2 expression decreases cell culture and xenografted tumor growth.  相似文献   

6.

Background

Although p75 neurotrophin receptor (p75NTR) is the first neurotrophin receptor isolated, its diverse physiological functions and signaling have remained elusive for many years. Loss-of-function phenotypic analyses for p75NTR were mainly focused at the genetic level; however these approaches were impacted by off-target effect, insufficient stability, unspecific stress response or alternative active splicing products. In this study, p75NTR surface expression was suppressed for the first time at the protein level by endoplasmic reticulum (ER) retained intrabodies.

Results

Three monoclonal recombinant antibody fragments (scFv) with affinities in the low nanomolar range to murine p75NTR were isolated by antibody phage display. To suppress p75NTR cell surface expression, the encoding genes of these scFvs extended by the ER retention peptide KDEL were transiently transfected into the neuron-like rat pheochromocytoma cell line PC12 and the mouse neuroblastoma x mouse spinal cord hybrid cell line NSC19. The ER retained intrabody construct, SH325-G7-KDEL, mediated a downregulation of p75NTR cell surface expression as shown by flow cytometry. This effect was maintained over a period of at least eight days without activating an unfolded protein response (UPR). Moreover, the ER retention of p75NTR resulted in downregulation of mRNA levels of the anti-apoptotic protein Bcl-xL as well as in strong inhibition of NGF-induced neurite outgrowth in PC12 cells.

Conclusion

The ER retained intrabody SH325-G7-KDEL not only induces phenotypic knockdown of this p75NTR but also p75NTR-associated cellular responses in PC12 cells.  相似文献   

7.
Selol is an organic selenitetriglyceride formulation containing selenium at +4 oxidation level that can be effectively incorporated into catalytic sites of of Se-dependent antioxidants. In the present study, the potential antioxidative and cytoprotective effects of Selol against sodium nitroprusside (SNP)-evoked oxidative/nitrosative stress were investigated in PC12 cells and the underlying mechanisms analyzed. Spectrophoto- and spectrofluorimetic methods as well as fluorescence microscopy were used in this study; mRNA expression was quantified by real-time PCR. Selol dose-dependently improved the survival and decreased the percentage of apoptosis in PC12 cells exposed to SNP. To determine the mechanism of this protective action, the effect of Selol on free radical generation and on antioxidative potential was evaluated. Selol offered significant protection against the elevation of reactive oxidative species (ROS) evoked by SNP. Moreover, this compound restored glutathione homeostasis by ameliorating the SNP-evoked disturbance of GSH/GSSG ratio. The protective effect exerted by Selol was associated with the prevention of SNP-mediated down-regulation of antioxidative enzymes: glutathione peroxidase (Se-GPx), glutathione reductase (GR), and thioredoxin reductase (TrxR). Finally, GPx inhibition significantly abolished the cytoprotective effect of Selol. In conclusion, these results suggest that Selol effectively protected PC12 cells against SNP-induced oxidative damage and death by adjusting free radical levels and antioxidant system, and suppressing apoptosis. Selol could be successfully used in the treatments of diseases that involve oxidative stress and resulting apoptosis.  相似文献   

8.
Oxidative stress has an important role in neurodegenerative diseases and cerebral ischemic injury. It is reported that d-β-hydroxybutyrate (DβHB), the major component of ketone bodies, is neuroprotective in recent studies. Therefore, in the present work the neuroprotective effects of DβHB on H2O2-induced apoptosis mediated by oxidative stress was investigated. PC12 cells were exposed to H2O2 with different concentrations of H2O2 for different times after DβHB pretreatment. MTT assay, apoptotic rates, intracellular reactive oxygen species (ROS) level, GSH content, mitochondrial membrane potential (MMP) and caspase-3 activity were determined. The results showed that DβHB inhibited the decrease of cell viability induced by H2O2 in PC12 cells. DβHB decreased the apoptotic rates induced by H2O2. The changes of intracellular ROS, GSH, MMP and caspase-3 activity due to H2O2 exposure were partially reversed in PC12 cells. So DβHB inhibited the apoptosis of PC12 cells induced by H2O2 via inhibiting oxidative stress.  相似文献   

9.
Exposure to paraquat (PQ; N,N'-dimethyl-4-4'-bipyridium), a potent herbicide, can lead to neuronal cell death and increased risk of Parkinson's disease because of oxidative stress. In this study, we investigated the effect of (-)schisandrin B [(-)Sch B, a potent enantiomer of schisandrin B] on PQ-induced cell injury in differentiated pheochromocytoma cells (PC12). PQ treatment caused cell injury in PC12 cells, as indicated by the significant increase in lactate dehydrogenase (LDH) leakage. Pretreatment with (-)Sch B (5 μM) protected against PQ-induced toxicity in PC12 cells, as evidenced by the significant decrease in LDH leakage. (-)Sch B induced the cytochrome P-450-mediated reactive oxygen species generation in differentiated PC12 cells. The cytoprotection afforded by (-)Sch B pretreatment was associated with an increase in cellular reduced glutathione (GSH) level as well as the enhancement of γ-glutamylcysteine ligase (GCL) and glutathione reductase (GR) activity in PQ-challenged cells. Both GCL and GR inhibitors abrogated the cytoprotective effect of (-)Sch B in PQ-challenged cells. The biochemical mechanism underlying the GSH-enhancing effect of (-)Sch B was further investigated in PC12 cells subjected to an acute peroxide challenge. Although the initial GSH depletion induced by peroxide was reduced through GR-catalyzed regeneration of GSH in (-)Sch B-pretreated cells, the later enhanced GSH recovery was mainly mediated by GCL-catalyzed GSH synthesis. The results suggest that (-)Sch B treatment may increase the resistance of dopaminergic cells against PQ-induced oxidative stress through reducing the extent of oxidant-induced GSH depletion and enhancing the subsequent GSH recovery.  相似文献   

10.
We have recently shown that nerve growth factor (NGF) induces the phosphorylation of the microtubule-associated protein 1B (MAP1B) by activating the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta) in a spatio-temporal pattern in PC12 cells that correlates tightly with neurite growth. PC12 cells express two types of membrane receptor for NGF: TrkA receptors and p75NTR receptors, and it was not clear from our studies which receptor was responsible. We show here that brain-derived neurotrophic factor, which activates p75NTR but not TrkA receptors, does not stimulate GSK3beta phosphorylation of MAP1B in PC12 cells. Similarly, NGF fails to activate GSK3beta phosphorylation of MAP1B in PC12 cells that lack TrkA receptors but express p75NTR receptors (PC12 nnr). Chick ciliary ganglion neurons in culture lack TrkA receptors but express p75NTR and also fail to show NGF-dependent GSK3beta phosphorylation of MAP1B, whereas in rat superior cervical ganglion neurons in culture, NGF activation of TrkA receptors elicits GSK3beta phosphorylation of MAP1B. Finally, inhibition of TrkA receptor tyrosine kinase activity in PC12 cells and superior cervical ganglion neurons with K252a potently and dose-dependently inhibits neurite elongation while concomitantly blocking GSK3beta phosphorylation of MAP1B. These results suggest that the activation of GSK3beta by NGF is mediated through the TrkA tyrosine kinase receptor and not through p75NTR receptors.  相似文献   

11.
Neuronal damage in certain cellular populations in the brain has been linked to oxidative stress accompanied by an elevation in intracellular calcium. Many questions remain about how such oxidative stress occurs and how it affects calcium homeostasis. Glutathione (GSH) is a major regulator of cellular redox status in the brain, and lowered GSH levels have been associated with dopaminergic cell loss in Parkinson’s disease (PD). We found that transfection of antisense oligomers directed against glutamylcysteine synthetase (GCS), the rate-limiting enzyme in GSH synthesis, into PC12 cells resulted in decreased GSH and increased levels of ROS. Decreased GSH levels also correlated with an increase in intracellular calcium levels. Data from this study suggest that dopaminergic neurons are very sensitive to decreases in the internal oxidant buffering capacity of the cell caused by reductions in GSH levels, and that alterations in this parameter can result in disruption of calcium homeostasis and cell death. These results may be of particular significance for therapeutic treatment of PD, as those dopaminergic neurons that are spared in this disorder appear to contain the calcium binding protein, calbindin.  相似文献   

12.
《Free radical research》2013,47(9):1081-1094
Abstract

The imbalance between reactive oxygen species (ROS) production and their elimination by antioxidants leads to oxidative stress. Depending on their concentration, ROS can trigger apoptosis or stimulate cell proliferation. We hypothesized that oxidative stress and mitochondrial dysfunction may participate not only in apoptosis detected in some myelodysplastic syndrome (MDS) patients, but also in increasing proliferation in other patients. We investigated the involvement of oxidative stress and mitochondrial dysfunction in MDS pathogenesis, as well as assessed their diagnostic and prognostic values. Intracellular peroxides, superoxide, superoxide/peroxides ratio, reduced glutathione (GSH), and mitochondrial membrane potential (Δψmit) levels were analyzed in bone marrow cells from 27 MDS patients and 12 controls, by flow cytometry. We observed that all bone marrow cell types from MDS patients had increased intracellular peroxide levels and decreased GSH content, compared with control cells. Moreover, oxidative stress levels were MDS subtype— and risk group—dependent. Low-risk patients had the highest ROS levels, which can be related with their high apoptosis; and intermediate-2-risk patients had high Δψmit that may be associated with their proliferative potential. GSH levels were negatively correlated with transfusion dependency, and peroxide levels were positively correlated with serum ferritin level. GSH content proved to be an accurate parameter to discriminate patients from controls. Finally, patients with high ROS or low GSH levels, as well as high superoxide/peroxides ratio had lower overall survival. Our results suggest that oxidative stress and mitochondrial dysfunction are involved in MDS development, and that oxidative stress parameters may constitute novel diagnosis and/or prognosis biomarkers for MDS.  相似文献   

13.
Cadmium (Cd) homeostasis and detoxification in sunflower (Helianthus annuus L.) cells differing in Cd sensitivity/tolerance were studied by analyzing the glutathione-mediated antioxidant mechanism vis-à-vis phytochelatin biosynthesis in vitro. Calluses exposed to Cd-shock/-acclimatization (150μM) were assayed for oxidative stress, reduced glutathione (GSH), glutathione disulfide (GSSG), phytochelatins (PCs) and reactive oxygen species (ROS). Although Cd did not induce any oxidative stress in Cd-tolerant callus (TCd), it generated oxidative stress in Cd-shock callus (SCd) both in terms of lipid peroxidation and protein oxidation. GSH/GSSG ratio remained similar to control values in the cadmium-acclimatized calluses. However, after acute treatment, there was a decline in both GSH and GSSG levels in SCd with concomitant reduction in the GSH/GSSG ratio. Analysis of PCs was performed using HPLC and mass spectrometry methods. PC concentration in TCd were approximately twice those that in SCd, showing in both cases a 1:2:1 relative proportion for PC n = 2 (PC2): PC n = 3 (PC3): PC n = 4 (PC4). Calluses growing in the presence of Cd developed an increased resistance to paraquat oxidative stress generation. These results indicated that PCs synthesis was an important mechanism for Cd detoxification in sunflower calluses, but the capacity to grow in the presence of Cd is related to the tissues ability to maintain high intracellular levels of GSH.  相似文献   

14.
AimsRecent interest has focused on plant antioxidants as potentially useful neuroprotective agents. In most studies only the genuine forms of flavonoids were used, although they are rapidly metabolized. Therefore, we have compared protective activities of two flavonoids (luteolin, quercetin) and two of their bioavailable metabolites (3,4-DHPAA and 3,4-DHT) against oxidative stress, induced by peroxides (t-BHP, H2O2) and iron (FeSO4), in neuronal PC12 cells.Main methodsWe have measured their effect on the prevention of cell death (MTT assay), glutathione depletion (GSH assay), lipid peroxidation (MDA assay) and production of ROS (DCF assay). Differentiated PC12 cells were used as a model system of neuronal cells. The compounds (concentration range 6–25 µmol/L) were tested in preincubation and coincubation experiments.Key findingsIn MTT and DCF assays all tested compounds showed excellent protection. When cells were exposed to peroxides, both metabolites increased GSH levels less efficiently than their parent flavonoids in both types of incubations. Following exposure to iron, only coincubation significantly prevented GSH depletion and the metabolites surprisingly mimicked the suppressive effect of flavonoids. MDA levels induced by all stressors were reduced more potently during coincubation than during preincubation with polyphenols. While the lipophilic metabolite 3,4-DHT exerted excellent antilipoperoxidant activity, the hydrophilic metabolite 3,4-DHPAA was less effective.SignificanceThese results demonstrate that most of the protective effects of flavonoids against oxidative stress in PC12 cells are continued despite biodegradation of the parent flavonoids. In general, the lipophilic metabolite 3,4-DHT was more active than the hydrophilic 3,4-DHPAA.  相似文献   

15.
Nerve growth factor (NGF) binding to its receptors TrkA and p75(NTR) enhances the survival, differentiation, and maintenance of neurons. Recent studies have suggested that NGF receptor activation may occur in caveolae or caveolae-like membranes (CLM). This is an intriguing possibility because caveolae have been shown to contain many of the signaling intermediates in the TrkA signaling cascade. To examine the membrane localization of TrkA and p75(NTR), we isolated caveolae from 3T3-TrkA-p75 cells and CLM from PC12 cells. Immunoblot analysis showed that TrkA and p75(NTR) were enriched about 13- and 25-fold, respectively, in caveolae and CLM. Binding and cross-linking studies demonstrated that the NGF binding to both TrkA and p75(NTR) was considerably enriched in CLM and that about 90% of high affinity binding to TrkA was present in CLM. When PC12 cells were treated with NGF, virtually all activated (i.e. tyrosine phosphorylated) TrkA was found in the CLM. Remarkably, in NGF-treated cells, it was only in CLM that activated TrkA was coimmunoprecipitated with phosphorylated Shc and PLCgamma. These results document a signaling role for TrkA in CLM and suggest that both TrkA and p75(NTR) signaling are initiated from these membranes.  相似文献   

16.
为探究自噬抑制剂6-氨基-3-甲基腺嘌呤(3-methyladenine,3-MA)对损伤细胞氧化应激水平的影响,将3-MA作用于H2O2诱导的PC12细胞损伤模型,以自噬增强剂雷帕霉素(rapamycin,Rap)作为对照,探讨自噬与氧化应激的关系。测定线粒体的膜电位和细胞内的活性氧(reactive oxygen species, ROS)与丙二醛(malondialdehyde, MDA)含量,以及超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)活性,评价损伤细胞的氧化应激状态。单丹(磺)酰戊二胺(monodansylcadaverine,MDC)染色,观察损伤细胞的自噬情况。蛋白质印迹分析损伤细胞中的自噬相关蛋白质LC3-II/LC3-I比值变化。实验结果显示:与正常组相比,H2O2损伤细胞的ROS水平上升到正常组的141%,MDA含量增加(P<0.001);CAT与SOD酶活力显著降低(P<0.001),差异均有统计学意义,证明损伤细胞氧化应激水平增加;MDC染色结果表明,H2O2组自噬明显增加。Western印迹结果表明,LC3-II/LC3-I值显著升高(P<0.05);与损伤组相比,3-MA组MDC染色结果表明,自噬水平降低。Western印迹结果表明,LC3-II/LC3-I值下降;细胞内ROS水平升高,增加到正常组的208%。MDA含量增加(P<0.001),CAT、SOD酶活力降低(P<0.001)。综上结果表明,自噬抑制剂可增加H2O2诱导的PC12细胞损伤模型的氧化应激水平,增加细胞凋亡。  相似文献   

17.
Oxidative stress is a major cause of cellular injury in a variety of human diseases including neurodegenerative disorders. Thus, removal of excessive reactive oxygen species (ROS) or suppression of ROS generation may be effective in preventing oxidative stress‐induced cell death. This study was designed to investigate the effect of icariside II (ICS II), a novel phosphodiesterase 5 inhibitor, on hydrogen peroxide (H2O2)‐induced death of highly differentiated rat neuronal PC12 cells, and to further examine the underlying mechanisms. We found that ICS II pre‐treatment significantly abrogated H2O2‐induced PC12 cell death as demonstrated by the increase of the number of metabolically active cells and decrease of intracellular lactate dehydrogenase (LDH) release. Furthermore, ICS II inhibited H2O2‐induced cell death through attenuating intracellular ROS production, mitochondrial impairment, and activating glycogen synthase kinase‐3β (GSK‐3β) as demonstrated by reduced intracellular and mitochondrial ROS levels, restored mitochondrial membrane potential (MMP), decreased p‐tyr216‐GSK‐3β level and increased p‐ser9‐GSK‐3β level respectively. The GSK‐3β inhibitor SB216763 abrogated H2O2‐induced cell death. Moreover, ICS II significantly inhibited H2O2‐induced autophagy by the reducing autophagosomes number and the LC3‐II/LC3‐I ratio, down‐regulating Beclin‐1 expression, and up‐regulating p62/SQSTM1 and HSP60 expression. The autophagy inhibitor 3‐methyl adenine (3‐MA) blocked H2O2‐induced cell death. Altogether, this study demonstrated that ICS II may alleviate oxidative stress‐induced autophagy in PC12 cells, and the underlying mechanisms are related to its antioxidant activity functioning via ROS/GSK‐3β/mitochondrial signalling pathways.  相似文献   

18.
Increasing evidence indicates that cells exposed to high glucose exhibit shortened proliferative lifespan and enter the state of senescence earlier. However, the contribution of hyperglycemia-induced oxidative stress to premature cell senescence is not entirely clear. In the current study we have examined the role of oxidative stress in cellular senescence of human peritoneal mesothelial cells (HPMC) exposed to high glucose. The experiments were performed on primary omental-derived HPMC grown into senescence in the presence of normal (5 mM) and high (30 mM) glucose. Senescence of HPMC was associated with increased generation of reactive oxygen species (ROS) and decreased cellular glutathione (GSH). Exposure to high glucose significantly exacerbated these effects and increased the level of senescence-associated beta-galactosidase (SA-beta-Gal) and 8-hydroxy-2'-deoxyguanosine (8-OH-dG) expression. Furthermore, high glucose markedly increased senescence-related HPMC hypertrophy. The addition of L-2-oxothiazolidine-4-carboxylic acid, a GSH precursor, restored partially GSH levels and decreased ROS release. This effect was associated with reduced levels of SA-beta-Gal and 8-OH-dG, diminished TGF-beta1 and fibronectin release, and less pronounced hypertrophy of aged HPMC. These results indicate that the accelerated senescence response in HPMC exposed to high glucose is strongly related to oxidative stress.  相似文献   

19.
Bai O  Xu H  Li XM 《Life sciences》2006,79(6):570-574
P75(NTR) is a common neurotrophin receptor which binds all neurotrophins with similar affinities and has been shown to be capable of mediating programmed cell death. In this study, we investigated effects of the antipsychotic drugs (APDs) haloperidol, clozapine, quetiapine, and risperidone on p75(NTR) mRNA levels in PC12 cells. Haloperidol is a prototype of typical APDs, and the other three drugs are atypical APDs, which are effective in reducing negative symptoms and cognitive deficits of schizophrenia, cause less side effects, and are more tolerable compared to haloperidol. PC12 cells were cultured with various concentrations of haloperidol, clozapine, quetiapine, or risperidone, in their media. After culture for 48h, the cell viabilities and p75(NTR) mRNA levels were measured. It was shown that both haloperidol and the atypical APDs used in this study deceased p75(NTR) mRNA levels in PC12 cells in a dose dependent manner, while not affecting cell viabilities. In further experiments, doses that produced significant/greatest effects were chosen and provided in the culture media for various periods. Decreases in p75(NTR) mRNA levels were observed in cultures treated for 12h with quetiapine, 24h with clozapine or risperidone, or for 48h with haloperidol. These results suggest that both haloperidol and atypical APDs have the same action of decreasing p75(NTR) mRNA levels in PC12 cells. Although the underlying molecular mechanism of this action remains to be elucidated, this finding is particularly relevant given the neurodevelopmental deficits associated with schizophrenia and important roles of p75(NTR) in mediating cell death.  相似文献   

20.
Zinc inhibits p75NTR-mediated apoptosis in chick neural retina.   总被引:3,自引:0,他引:3  
It has previously been documented that Zn2+ inhibits TrkA-mediated effects of NGF. To evaluate the ability of Zn2+ to attenuate the biological activities of NGF mediated by p75NTR, we characterized the effects of this transition metal cation on both binding and the pro-apoptotic properties of the NGF-p75NTR interaction. Binding of NGF to p75NTR displayed higher affinity in embryonic chick retinal cells than in PC12 cells. NGF induced apoptosis in dissociated cultures of chick neural retina. The addition of 100 microM Zn2+ inhibited binding and chemical cross-linking of 125I-NGF to p75NTR, and also attenuated apoptosis mediated by this ligand-receptor interaction. These studies lead to the conclusion that Zn2+ antagonizes NGF/p75NTR-mediated signaling, suggesting that the effect of this transition metal cation can be either pro- or anti-apoptotic depending on the cellular context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号