首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exercise has been shown to modify the level/activity of the DNA damage repair enzyme 8-oxoguanine-DNA glycosylase (OGG1) in skeletal muscle. We have studied the impact of regular physical training (8 weeks of swimming) and detraining (8 weeks of rest after an 8-week training session) on the activity of OGG1 in the nucleus and mitochondria as well as its targeting to the mitochondrial matrix in skeletal muscle. Neither exercise training nor detraining altered the overall levels of reactive species; however, mitochondrial levels of carbonylated proteins were decreased in the trained group as assessed by electron spin resonance and biochemical approaches. Importantly, nuclear OGG1 activity was increased by daily exercise training, whereas detraining reversed the up-regulating effect of training. Interestingly, training decreased the outer-membrane-associated mitochondrial OGG1 levels, whereas detraining reversed this effect. These results suggest that exercise training improves OGG1 import into the mitochondrial matrix, thereby increasing OGG1-mediated repair of oxidized guanine bases. Taken together, our data suggest that physical inactivity could impair the mitochondrial targeting of OGG1; however, exercise training increases OGG1 levels/activity in the nucleus and specific activity of OGG1 in mitochondrial compartments, thereby augmenting the repair of oxidized nuclear and mitochondrial DNA bases.  相似文献   

2.
As previously established in yeast, two sequences within mRNAs are responsible for their specific localization to the mitochondrial surface-the region coding for the mitochondrial targeting sequence and the 3'UTR. This phenomenon is conserved in human cells. Therefore, we decided to use mRNA localization as a tool to address to mitochondria, a protein that is not normally imported. For this purpose, we associated a nuclear recoded ATP6 gene with the mitochondrial targeting sequence and the 3'UTR of the nuclear SOD2 gene, which mRNA exclusively localizes to the mitochondrial surface in HeLa cells. The ATP6 gene is naturally located into the organelle and encodes a highly hydrophobic protein of the respiratory chain complex V. In this study, we demonstrated that hybrid ATP6 mRNAs, as the endogenous SOD2 mRNA, localize to the mitochondrial surface in human cells. Remarkably, fusion proteins localize to mitochondria in vivo. Indeed, ATP6 precursors synthesized in the cytoplasm were imported into mitochondria in a highly efficient way, especially when both the MTS and the 3'UTR of the SOD2 gene were associated with the re-engineered ATP6 gene. Hence, these data indicate that mRNA targeting to the mitochondrial surface represents an attractive strategy for allowing the mitochondrial import of proteins originally encoded by the mitochondrial genome without any amino acid change in the protein that could interfere with its biologic activity.  相似文献   

3.
Wnt proteins play a key role in cell survival, cell proliferation, and cell fate during development. In endothelial cells, we identified the expression of Wnt13A, Wnt13B, and Wnt13C mRNAs, which are generated by alternative promoters and alternative RNA splicing. Wnt13A and Wnt13B proteins differ only in their N-terminal sequences. Wnt13A, a typical Wnt, is N-glycosylated and localized in the endoplasmic reticulum, with only a small fraction being secreted. Wnt13B proteins appear as a protein doublet, L-Wnt13B and S-Wnt13B, which are neither N-glycosylated nor secreted. Wnt13B proteins localized mainly to mitochondria, as demonstrated using detection in mitochondria enriched fractions and colocalization with Mitotracker and HSP60. A nuclear localization was also observed in 20% of Wnt13B-expressing cells. Both the N-terminal hydrophobic stretch (residues 1-17) and alpha-helix (residues 26-50) were the main determinants for Wnt13B mitochondrial targeting. Serial deletions of Wnt13B N-terminal sequences abolished its association with mitochondria and favored instead a nuclear localization. The production of S-Wnt13B was independent of the mitochondrial targeting but dependent on an alternative translation start corresponding to Met(74) in L-Wnt13B. The same translation start is used in Wnt13C mRNA to encode a protein undistinguishable from S-Wnt13B. S-Wnt13B when expressed alone localized to the nucleus like Wnt13C, whereas L-Wnt13B localized to mitochondria. Wnt13 nuclear forms increased the beta-catenin/T-cell factor activity in HEK293 cells and increased apoptosis in bovine aortic endothelial cells. Altogether our results demonstrate that, in addition to alternative promoters and RNA splicing, an alternative translation start in Wnt13B and Wnt13C mRNAs increases the complexity of both human wnt13 expression and functions.  相似文献   

4.
M Boutry  N H Chua 《The EMBO journal》1985,4(9):2159-2165
The beta subunit of the mitochondrial ATP synthase in Nicotiana plumbaginifolia is encoded by two nuclear genes, atp2-1 and atp2-2, which are both expressed. The complete nucleotide sequence of atp2-1 has been determined. It contains eight introns ranging from 88 to 1453 bp. The last intron contains a putative insertion element (Inp), of 812 bp bordered by 35-bp inverted repeats which share an 11-bp homology with Agrobacterium tumefaciens T-DNA borders. Sequences homologous to Inp are present in multiple copies in the N. plumbaginifolia and the N. tabacum genome but not in more distant species. The atp2-1 encoded polypeptide is highly homologous to beta subunits from other ATP synthases but it contains an extension at the N terminus which is probably involved in mitochondrial targeting. A sequence homology between exon 4 of atp2-1 and exon 1 of the human ras genes suggests a common ancestral origin for these exons.  相似文献   

5.
6.
7.
Eight alternatively spliced isoforms of human 8‐oxoguanine DNA glycosylase (OGG1) (OGG1‐1a to ‐1c and ‐2a to ‐2e) are registered in the National Center for Biotechnology Information. OGG1(s) in mitochondria have not yet been fully characterized biochemically. In this study, we purified mitochondrial recombinant OGG1‐1b protein and compared its activity with nuclear OGG1‐1a protein. The reaction rate constant (kg) of the 7,8‐dihydro‐8‐oxoguanine (8‐oxoG) glycosylase activity of OGG1‐1b was 8‐oxoG:C >> 8‐oxoG:T >> 8‐oxoG:G > 8‐oxoG:A (7.96, 0.805, 0.070, and 0.015 min?1, respectively) and that of the N‐glycosylase/DNA lyase activity (kgl) of OGG1‐1b was 8‐oxoG:C > 8‐oxoG:T ?8‐oxoG:G >> 8‐oxoG:A (0.286, 0.079, 0.040, and negligible min?1, respectively). These reaction rate constants were similar to those of OGG1‐1a except for kgl against 8‐oxoG:A. APEX nuclease 1 was required to promote DNA strand breakage by OGG1‐1b. These results suggest that OGG1‐1b is associated with 8‐oxoG cleavage in human mitochondria and that the mechanism of this repair is similar to that of nuclear OGG1‐1a.  相似文献   

8.
An abundant form of DNA damage caused by reactive oxygen species is 8-oxo-7,8-dihydroguanine for which the base excision repair protein 8-oxoguanine-DNA glycosylase 1 (OGG1) is a major repair enzyme. To assess the location and intracellular activity of the OGG1 protein in response to oxidative stress, we have utilised a fluorescence–quench molecular beacon switch containing a 8-oxo-dG:C base pair and a fluorescent and quencher molecule at opposite ends of a hairpin oligonucleotide. Oxidative stress was induced by treatment with potassium bromate. Flow cytometry demonstrated a concentration-dependent increase in the activity of OGG1 that was detected by the fluorescence produced when the oligonucleotide was cleaved in the cells treated with potassium bromate. This signal is highly specific and not detectable in OGG1 knock out cells. Induction of OGG1 activity is not a result of induction of OGG1 gene expression as assessed by qPCR suggesting a role for protein stabilisation or increased OGG1 catalytic activity. High resolution confocal microscopy pinpointed the location of the fluorescent molecular beacon in live cells to perinuclear regions that were identified as mitochondria by co-staining with mitotracker dye. There is no evidence of cut beacon within the nuclear compartment of the cell. Control experiments with a positive control beacon (G:C base pair and lacking the DAB quencher) did not result in mitochondrial localisation of fluorescence signal indicating that the dye does not accumulate in mitochondria independent of OGG1 activity. Furthermore, faint nuclear staining was apparent confirming that the beacon structure is able to enter the nucleus. In conclusion, these data indicate that the mitochondria are the major site for OGG1 repair activity under conditions of oxidative stress.  相似文献   

9.
The mRNAs from early region 1B of adenovirus type 2 have been studied by Northern blot, S1 nuclease, and cDNA analysis. Two novel mRNAs, designated 14S and 14.5S, have been observed in addition to the previously identified 9S, 13S, and 22S mRNAs. They are 1.26 and 1.31 kilobases long and differ from the 13S and 22S mRNAs in being composed of three exons instead of two. Their two terminal exons are the same as those present in the 13S mRNA, whereas the middle exon is unique to each of the two novel mRNA species. The structures of the 14S and 14.5S mRNAs allow the prediction of their coding capacities: both mRNA species, like the 22S and 13S mRNAs, contain an uninterrupted translational reading frame encoding a 21,000-molecular-weight (21K) polypeptide. The 14S mRNA can, in addition, encode a 16.5K polypeptide which shares N-terminal and C-terminal sequences with the 55K polypeptide, known to be encoded by the 22S mRNA. The 14.5S mRNA species encodes a hypothetical 9.2K polypeptide which has the same N terminus as the 55K polypeptide but a unique C terminus. The two mRNAs differ in their kinetics of appearance; the 14.5S mRNA is preferentially expressed late after infection in contrast to the 14S mRNA, which is present in approximately equal amounts early and late after infection. Taken together with previously published information the results suggest that early region 1B of adenovirus type 2 encodes five proteins in addition to virion polypeptide IX. These have predicted molecular weights of 55,000, 21,000, 16,500, 9,200, and 8,100.  相似文献   

10.
Cells are continuously exposed to oxidative species, which cause several types of oxidative DNA lesions. Repair of some of these lesions has been well characterized but little is known about the repair of many DNA lesions. The oxidized adenine base, 7,8-dihydro-8-oxoadenine (8-oxoA), is a relatively common DNA lesion, which is believed to be mutagenic in mammalian cells. This study investigates repair of 8-oxoA in nuclear and mitochondrial mammalian extracts. In nuclei, 8-oxoA:C and 8-oxoA:G base pairs are recognized and cleaved; in contrast, only 8-oxoA:C base pairs are cleaved in mitochondria. High stability of the DNA helix increased the efficiency of incision of 8-oxoA, and the efficiency decreased at DNA bends and condensed regions of the helix. Using liver extracts from mice knocked out for 8-oxoguanine DNA glycosylase 1 (OGG1), we demonstrated that OGG1 is the only glycosylase that incises 8-oxoA, when base-paired with cytosine in mitochondria and nuclei, but a different enzyme incises 8-oxoA when base-paired with guanine in the nucleus. Consistent with this result, a covalent DNA-protein complex was trapped using purified human OGG1 or human nuclear or mitochondrial extracts with a DNA substrate containing an 8-oxoA:C base pair.  相似文献   

11.
Conditional targeting of the DNA repair enzyme hOGG1 into mitochondria   总被引:11,自引:0,他引:11  
Oxidative damage to mitochondrial DNA (mtDNA) has been suggested to be a key factor in the etiologies of many diseases and in the normal process of aging. Although the presence of a repair system to remove this damage has been demonstrated, the mechanisms involved in this repair have not been well defined. In an effort to better understand the physiological role of recombinant 8-oxoguanine DNA glycosylase/apurinic lyase (OGG1) in mtDNA repair, we constructed an expression vector containing the gene for OGG1 downstream of the mitochondrial localization sequence from manganese-superoxide dismutase. This gene construct was placed under the control of a tetracycline-regulated promoter. Transfected cells that conditionally expressed OGG1 in the absence of the tetracycline analogue doxycycline and targeted this recombinant protein to mitochondria were generated. Western blots of mitochondrial extracts from vector- and OGG1-transfected clones with and without doxycycline revealed that removal of doxycycline for 4 days caused an approximate 8-fold increase in the amount of OGG1 protein in mitochondria. Enzyme activity assays and DNA repair studies showed that the doxycycline-dependent recombinant OGG1 is functional. Functional studies revealed that cells containing recombinant OGG1 were more proficient at repairing oxidative damage in their mtDNA, and this increased repair led to increased cellular survival following oxidative stress.  相似文献   

12.
Replication of the Carnation Italian ringspot virus genomic RNA in plant cells occurs in multivesicular bodies which develop from the mitochondrial outer membrane during infection. ORF1 in the viral genome encodes a 36-kDa protein, while ORF2 codes for the 95-kDa replicase by readthrough of the ORF1 stop codon. We have shown previously that the N-terminal part of ORF1 contains the information leading to vesiculation of mitochondria and that the 36-kDa protein localizes to mitochondria. Using infection, in vivo expression of green fluorescent protein fusions in plant and yeast cells, and in vitro mitochondrial integration assays, we demonstrate here that both the 36-kDa protein and the complete replicase are targeted to mitochondria and anchor to the outer membrane with the N terminus and C terminus on the cytosolic side. Analysis of deletion mutants indicated that the anchor sequence is likely to correspond approximately to amino acids 84 to 196, containing two transmembrane domains. No evidence for a matrix-targeting presequence was found, and the data suggest that membrane insertion of the viral proteins is mediated by an import receptor-independent signal-anchor mechanism relying on the two transmembrane segments and multiple recognition signals present in the N-terminal part of ORF1.  相似文献   

13.
Subcellular localization directed by specific targeting motifs is an emerging theme for regulating signal transduction pathways. For cAMP-dependent protein kinase (PKA), this is achieved primarily by its association with A-kinase-anchoring proteins (AKAPs). Dual specificity AKAP1, (D-AKAP1) binds to both type I and type II regulatory subunits and has two NH2-terminal (N0 and N1) and two COOH-terminal (C1 and C2) splice variants (. J. Biol. Chem. 272:8057). Here we report that the splice variants of D-AKAP1 are expressed in a tissue-specific manner with the NH2-terminal motifs serving as switches to localize D-AKAP1 at different sites. Northern blots showed that the N1 splice is expressed primarily in liver, while the C1 splice is predominant in testis. The C2 splice shows a general expression pattern. Microinjecting expression constructs of D-AKAP1(N0) epitope-tagged at either the NH2 or the COOH terminus showed their localization to the mitochondria based on immunocytochemistry. Deletion of N0(1-30) abolished mitochondrial targeting while N0(1-30)-GFP localized to mitochondria. Residues 1-30 of N0 are therefore necessary and sufficient for mitochondria targeting. Addition of the 33 residues of N1 targets D-AKAP1 to the ER and residues 1-63 fused to GFP are necessary and sufficient for ER targeting. Residues 14-33 of N1 are especially important for targeting to ER; however, residues 1-33 alone fused to GFP gave a diffuse distribution. N1(14-33) thus serves two functions: (a) it suppresses the mitochondrial-targeting motif located within residues 1-30 of N0 and (b) it exposes an ER-targeting motif that is at least partially contained within the N0(1-30) motif. This represents the first example of a differentially targeted AKAP and adds an additional level of complexity to the PKA signaling network.  相似文献   

14.
Studies on yeast fumarase provide the main evidence for dual localization of a protein in mitochondria and cytosol by means of retrograde translocation. We have examined the subcellular targeting of yeast and human fumarase in live cells to identify factors responsible for this. The cDNAs for mature yeast or human fumarase were fused to the gene for enhanced green fluorescent protein (eGFP) and they contained, at their N-terminus, a mitochondrial targeting sequence (MTS) derived from either yeast fumarase, human fumarase, or cytochrome c oxidase subunit VIII (COX) protein. Two nuclear localization sequences (2x NLS) were also added to these constructs to facilitate detection of any cytosolic protein by its targeting to nucleus. In Cos-1 cells transfected with these constructs, human fumarase with either the native or COX MTSs was detected exclusively in mitochondria in >98% of the cells, while the remainder 1-2% of the cells showed varying amounts of nuclear labeling. In contrast, when human fumarase was fused to the yeast MTS, >50% of the cells showed nuclear labeling. Similar studies with yeast fumarase showed that with its native MTS, nuclear labeling was seen in 80-85% of the cells, but upon fusion to either human or COX MTS, nuclear labeling was observed in only 10-15% of the cells. These results provide evidence that extramitochondrial presence of yeast fumarase is mainly caused by the poor mitochondrial targeting characteristics of its MTS (but also affected by its primary sequence), and that the retrograde translocation mechanism does not play a significant role in the extramitochondrial presence of mammalian fumarase.  相似文献   

15.
Gradient purified preparations of the maize 400-kDa tonoplast ATPase are enriched in two major polypeptides, 72 and 62 kDa. Polyclonal antibodies were prepared against these two putative subunits after elution from sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel slices and against the solubilized native enzyme. Antibodies to both the 72- and 62-kDa polypeptides cross-reacted with similar bands on immunoblots of a tonoplast-enriched fraction from barley, while only the 72-kDa antibodies cross-reacted with tonoplast and tonoplast ATPase preparations from Neurospora. Antibodies to the 72-kDa polypeptide and the native enzyme both strongly inhibited enzyme activity, but the 62-kDa antibody was without effect. The identity and function of the subunits was further probed using radiolabeled covalent inhibitors of the tonoplast ATPase, 7-chloro-4-nitro[14C]benzo-2-oxa-1,3-diazole ([14C]NBD-Cl) and N,N'-[14C]dicyclohexylcarbodiimide ([14C]DCCD). [14C]NBD-Cl preferentially labeled the 72-kDa polypeptide, and labeling was prevented by ATP. [14C]DCCD, an inhibitor of the proton channel portion of the mitochondrial ATPase, bound to a 16-kDa polypeptide. Venturicidin blocked binding to the mitochondrial 8-kDa polypeptide but did not affect binding to the tonoplast 16-kDa polypeptide. Taken together, the results implicate the 72-kDa polypeptide as the catalytic subunit of the tonoplast ATPase. The DCCD-binding 16-kDa polypeptide may comprise the proton channel. The presence of nucleotide-binding sites on the 62-kDa polypeptide suggests that it may function as a regulatory subunit.  相似文献   

16.
17.
The core histone proteins H2A, H2B, H3 (histone H3) and H4 are known to form nucleosomes with nuclear DNA, but are historically considered to be absent from mitochondria. We suggest that H3 is a dual‐targeted protein, found in mitochondria as well as N (nuclei). WoLF PSORT and MitoProt analyses of H3 sequences revealed mitochondrial targeting signals, and immunohistochemistry indicated mitochondrial distribution. Western blots of Brassica oleracea cv. Botrytis (cauliflower) mitochondrial extracts were positive for H3, when the primary antibody was against the conserved C‐terminus. MS/MS (tandem mass spectrometry) analyses confirmed the Western blot data. Interestingly, Western blots of the same mitochondrial extracts were almost completely negative for H3 when the primary antibodies were highly specific for the N‐terminal tail region of H3, suggesting that these antibodies are blocked by a modification of the tail of the H3 that occurs predominantly in the mitochondria, but not in the nucleus. Modifications of the tail of core H3 are known to help control nuclear genes. Future studies of the possible functions of mitochondrial H3 could lead to a greater understanding of the ability of a cell to synchronize nuclear and mitochondrial gene expression.  相似文献   

18.
Eight-hydroxy-2'-deoxyguanosine (8-OHdG) is increased in the brain in late-stage Alzheimer's disease (LAD) and mild cognitive impairment (MCI). To determine if decreased base-excision repair contributes to these elevations, we measured oxoguanine glycosylase 1 (OGG1) protein and incision activities in nuclear and mitochondrial fractions from frontal (FL), temporal (TL), and parietal (PL) lobes from 8 MCI and 7 LAD patients, and 6 age-matched normal control (NC) subjects. OGG1 activity was significantly (P<0.05) decreased in nuclear specimens of FL, TL, and PL in MCI and LAD and in mitochondria from LAD FL and TL and MCI TL. Nuclear OGG1 protein was significantly decreased in LAD FL and MCI and LAD PL. No differences in mitochondrial OGG1 protein levels were found. Overall, our results suggest that decreased OGG1 activity occurs early in the progression of AD, possibly mediated by 4-hydroxynonenal inactivation and may contribute to elevated 8-OHdG in the brain in MCI and LAD.  相似文献   

19.
Zhang H  Pommier Y 《Biochemistry》2008,47(43):11196-11203
Mitochondrial DNA (mtDNA) is required for mitochondrial activities because it encodes key proteins for oxidative phosphorylation and the production of cellular ATP. We previously reported the existence of a specific mitochondrial topoisomerase gene, Top1mt, in all vertebrates. The corresponding polypeptide contains an N-terminal mitochondrial targeting sequence and is otherwise highly homologous to the nuclear topoisomerase I (Top1). In this study, we provide biochemical evidence of the presence of an endogenous Top1mt polypeptide in human mitochondria. Using novel antibodies against Top1mt, we detected the corresponding 70 kDa polypeptide in mitochondria but not in nuclear fractions. This polypeptide could be trapped to form covalent complexes with mtDNA when mitochondria from human cells were treated with camptothecin. Mapping of Top1mt sites in the regulatory D-loop region of mtDNA in mitochondria revealed the presence of an asymmetric cluster of Top1mt sites confined to a 150 bp segment downstream from, and adjacent to, the site at which replication is prematurely terminated, generating an approximately 650-base (7S DNA) product that forms the mitochondrial D-loop. Moreover, we show that inhibition of Top1mt by camptothecin reduces the level of formation of the 7S DNA. These results suggest novel roles for Top1mt in regulating mtDNA replication.  相似文献   

20.
N terminus of calpain 1 is a mitochondrial targeting sequence   总被引:2,自引:0,他引:2  
The ubiquitous m- and mu-calpains are thought to be localized in the cytosolic compartment, as is their endogenous inhibitor calpastatin. Previously, mu-calpain was found to be enriched in mitochondrial fractions isolated from rat cerebral cortex and SH-SY5Y neuroblastoma cells, but the submitochondrial localization of mu-calpain was not determined. In the present study, submitochondrial fractionation and digitonin permeabilization studies indicated that both calpain 1 and calpain small subunit 1, which together form mu-calpain, are present in the mitochondrial intermembrane space. The N terminus of calpain 1 contains an amphipathic alpha-helical domain, and is distinct from the N terminus of calpain 2. Calpain 1, but not calpain 2, was imported into mitochondria. Removal of the N-terminal 22 amino acids of calpain 1 blocked the mitochondrial calpain import, while addition of this N-terminal region to calpain 2 or green fluorescent protein enabled mitochondrial import. The N terminus of calpain 1 was not processed following mitochondrial import, but was removed by autolysis following calpain activation. Calpain small subunit 1 was not directly imported into mitochondria, but was imported in the presence of calpain 1. The presence of a mitochondrial targeting sequence in the N-terminal region of calpain 1 is consistent with the localization of mu-calpain to the mitochondrial intermembrane space and provides new insight into the possible functions of this cysteine protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号