首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gas chromatographic method for the determination of levorphanol in human plasma is described. The method utilizes extractive alkylation with tetrabutylammonium cation as the phase-transfer catalyst and pentafluorobenzyl bromide as the alkylating agent, and employs a structural analog, d-3-hydroxy-N-ethylmorphinan, as the internal standard. The pentafluorobenzyl ethers formed are separated by capillary gas chromatography and detected by electron capture. The method has good precision and accuracy for concentrations ranging from 0.25 ng/ml to 100 ng/ml and has been used to measure plasma concentrations as part of a study to evaluate the management of chronic neuropathic pain with levorphanol.  相似文献   

2.
A specific, sensitive, single-step solid-phase extraction and reversed-phase high-performance liquid chromatographic method for the simultaneous determination of plasma 6-mercaptopurine and azathioprine concentrations is reported. Following solid-phase extraction, analytes are separated on a C18 column with mobile phase consisting of 0.8% acetonitrile in 1 mM triethylamine, pH 3.2, run on a gradient system. Quantitation limits were 5 ng/ml and 2 ng/ml for azathioprine and 6-mercaptopurine, respectively. Peak heights correlated linearly to known extracted standards for 6-mercaptopurine and azathioprine (r = 0.999) over a range of 2–200 ng/ml. No chromatographic interferences were detected.  相似文献   

3.
A rapid and sensitive high-performance liquid chromatographic method is described for the quantitative analysis of dipotassium clorazepate (CZP) and its major metabolite nordiazepam (ND) in fresh human and dog plasma. The method consists of two separate selective ND extractions from a plasma sample without and with conversion of all the CZP to ND. For quantitation, diazepam (DZP) is used as the internal standard. The chromatographic phase utilized in a reversed-phase Hibar® EC-RT analytical column prepacked with LiChrosolv RP-18 with a solvent system consisting of acetonitrile-0.05 M sodium acetate buffer, pH 5.0 (45:55). The UV absorbance is monitored at 225 nm using a variable-wave-length detector. The mean assay coefficient of variation over a concentration range of 20–400 ng per ml of plasma is less than 3% for the within-day precision. Recoveries of ND, DZP and CZP (as ND) are essentially quantitative at all levels investigated. The calibration curves of ND are rectilinear (r2 = 0.99) from the lower limit of sensitivity (2 ng/ml) to at least 2000 ng/ml in plasma. Applicability of the method to CZP and ND disposition studies in the anaesthetized mongrel dog is illustrated. When the two separate selective nordiazepam extractions from plasma cannot be performed immediately after blood sampling, an extrapolation kinetic method is suggested for the estimation of CZP concentration. In all previous in vivo studies, CZP has been determined only with gas-liquid chromatographic methods.  相似文献   

4.
An electron-capture gas chromatographic procedure was developed for the analysis of p-trifluoromethylphenol, an O-dealkylated metabolite of fluoxetine, in biological samples. A basic extraction of the biological sample was employed, followed by derivatization with pentafluorobenzenesulfonyl chloride. The internal standard, 2,4-dichlorophenol, was added to all samples used in the procedure to aid in quantitation. The practical limit of detection (signal-to-noise ratio>3) for p-trifluoromethylphenol was <5 ng/ml in human plasma samples, <10 ng/g of rat brain tissue, <25 ng/g of rat liver tissue and <25 ng/ml in human and rat urine samples. In the rat, the levels of free p-trifluoromethylphenol in the liver were 10-fold higher than those in the brain, and a substantial amount was excreted in the urine. Human urine samples contained levels of free p-trifluoromethylphenol approximately 30-fold higher than those found in human plasma samples. The procedure described is useful for the detection and quantitation of free p-trifluoromethylphenol in humans and rats treated with fluoxetine.  相似文献   

5.
A sensitive reversed-phase high-performance liquid chromatographic method has been developed and validated for the quantitative determination of docetaxel (I) in human plasma. The concentrations in plasma, for validation procedures spiked with known amounts of I, are read from calibration curves in the range of 10–20 000 ng/ml. The sample preparation involved a liquid–liquid extraction of 1000 μl of sample with a mixture of acetonitrile–n-butylchloride (1:4, v/v). The related compound paclitaxel (II) was used as internal standard. Chromatographic separations were performed an Inertsil ODS-80A column, with UV detection performed at 230 nm. The overall extraction recoveries were 84.3 and 90.0% for I and II, respectively. The lower limit of quantitation was 10 ng/ml, and the accuracy, within-run and between-run precisions at three tested concentrations fell within the generally accepted criteria for bioanalytical assays.  相似文献   

6.
An efficient method for the determination of atenolol in human plasma and urine was developed and validated. α-Hydroxymetoprolol, a compound with a similar polarity to atenolol, was used as the internal standard in the present high-performance liquid chromatographic analysis with fluorescence detection. The assay was validated for the concentration range of 2 to 5000 ng/ml in plasma and 1 to 20 μg.ml in urine. For both plasma and urine, the lower limit of detection was 1 ng/ml. The intra-day and inter-day variabilities for plasma samples at 40 and 900 ng/ml, and urine samples at 9.5 μg/ml were <3% (n=5).  相似文献   

7.
A rapid, sensitive and selective high-performance liquid chromatographic (HPLC) assay was developed for the determination of cibenzoline (Cipralan TM) in human plasma and urine. The assay involves the extraction of the compound into benzene from plasma or urine buffered to pH 11 and HPLC analysis of the residue dissolved in acetonitrile---phosphate buffer (0.015 mol/1, pH 6.0) (80:20). A 10-μ ion-exchange (sulfonate) column was used with acetonitrile—phosphate buffer (0.015 mol/1, pH 6.0) (80:20) as the mobile phase. UV detection at 214 nm was used for quantitation with the di-p-methyl analogue of cibenzoline as the internal standard.The recovery of cibenzoline in the assay ranged from 60 to 70% and was validated in human plasma and urine in the concentration range of 10–1000 ng/ml and 50–5000 ng/ml, respectively. A normal-phase HPLC assay was developed for the determination of the imidazole metabolite of cibenzoline. The assays were applied to the determination of plasma and urine concentrations of cibenzoline and trace amounts of its imidazole metabolite following oral administration of cibenzoline succinate to two human subjects.  相似文献   

8.
A stereospecific high-performance liquid chromatographic method has been developed for the determination of four diastereomers of nadolol in plasma. After the nadolol diastereomers were extracted from plasma using an Extrelut-1 solid-phase extraction cartridge, they were derivatized with (R)-(−)-1-(1-naphthyl)ethylisocyanate to form urea derivatives. These derivatives were then separated on a YMC-AM-303 ODS column using water—acetonitrile (60:40, v/v). The calibration curves of (SR)-, (RS)-, (SS)- and (RR)-nadolol were linear over the range 2.5–200 ng/ml, and the correlation coefficient (r) of the curves were higher than 0.9991 for each diastereomer. The limit of quantification was 2.5 ng/ml for each diastereomer in plasma. This method was used for a pharmacokinetic study in four dogs after oral administration of nadolol (1 mg/kg). The plasma concentrations of nadolol diastereomers showed no significant differences in Cmax, Tmax or AUC values. The assay appears to be readily applicable to the study of diastereoselective nadolol pharmacokinetics in animals and humans.  相似文献   

9.
A simple high-performance liquid chromatographic procedure was developed for the determination of ranitidine in human plasma. The method entailed direct injection of the plasma samples after deproteination using perchloric acid. The chromatographic separation was accomplished with an isocratic elution using mobile phase consisting of 21 mM disodium hydrogen phosphate–triethylamine-acetonitrile (1000:60:150, v/v), pH 3.5. Analyses were run at a flow-rate of 1.3 ml/min using a μbondapak C18 column and ultraviolet detection at a wavelength of 320 nm. The method was specific and sensitive, with a quantification limit of approximately 20 ng/ml and a detection limit of 5 ng/ml at a signal-to-noise ratio of 3:1. The mean absolute recovery was about 96%, while the within- and between-day coefficient of variation and percent error values of the assay method were all less than 8%. The linearity was assessed in the range of 20–1000 ng/ml plasma, with a correlation coefficient of greater than 0.999. This method has been used to analyze several hundred human plasma samples for bioavailability studies.  相似文献   

10.
Olanzapine is a commonly used atypical antipsychotic medication for which therapeutic drug monitoring has been proposed as clinically useful. A sensitive method was developed for the determination of olanzapine concentrations in plasma and urine by high-performance liquid chromatography with low-wavelength ultraviolet absorption detection (214 nm). A single-step liquid–liquid extraction procedure using heptane-iso-amyl alcohol (97.5:2.5 v/v) was employed to recover olanzapine and the internal standard (a 2-ethylated olanzapine derivative) from the biological matrices which were adjusted to pH 10 with 1 M carbonate buffer. Detector response was linear from 1–5000 ng (r2>0.98). The limit of detection of the assay (signal:noise=3:1) and the lower limit of quantitation were 0.75 ng and 1 ng/ml of olanzapine, respectively. Interday variation for olanzapine 50 ng/ml in plasma and urine was 5.2% and 7.1% (n=5), respectively, and 9.5 and 12.3% at 1 ng/ml (n=5). Intraday variation for olanzapine 50 ng/ml in plasma and urine was 8.1% and 9.6% (n=15), respectively, and 14.2 and 17.1% at 1 ng/ml (n=15). The recoveries of olanzapine (50 ng/ml) and the internal standard were 83±6 and 92±6% in plasma, respectively, and 79±7 and 89±7% in urine, respectively. Accuracy was 96% and 93% at 50 and 1 ng/ml, respectively. The applicability of the assay was demonstrated by determining plasma concentrations of olanzapine in a healthy male volunteer for 48 h following a single oral dose of 5 mg olanzapine. This method is suitable for studying olanzapine disposition in single or multiple-dose pharmacokinetic studies.  相似文献   

11.
A high-performance liquid chromatographic method has been developed and tested for simultaneous extraction, elution and determination of doxorubicin and prochlorperazine content in human plasma samples. The procedure consists of extraction through a conditioned C18 solid-phase extraction cartridge, elution from a Spherisorb C8 reversed-phase column by an isocratic mobile phase (60% acetonitrile, 15% methanol and 25% buffer) followed by detection with electrochemical and fluorescence detectors. Recovery of doxorubicin and prochlorperazine from pooled human plasma samples (n=3) containing 100 ng/ml of the two drugs was 77.8±3.5% and 89.1±6.0%, respectively. The lower limits of quantitation for doxorubicin and prochlorperazine in plasma samples were 6.25 ng/ml and 10 ng/ml, respectively. A linear calibration curve was obtained for up to 2 μg/ml of doxorubicin and prochlorperazine. This combination method may be of particular value in clinical studies where phenothiazines such as prochlorperazine are used to enhance retention of doxorubicin in drug resistant tumor cells.  相似文献   

12.
A rapid and sensitive high-performance liquid chromatographic method for the determination of the novel ergoline derivatives sergolexole (compound I), its acid metabolite (compound II) and cis-n-(2-hydroxycyclopentyl)-6-methyl-1-(1-methylethyl) ergoline-8-carboxamide (LY215840, compound III) in human plasma is reported. The compounds were extracted from plasma by automated solid-phase extraction and analysed on a reversed-phase C8 column with fluorescence detection. The limit of quantification for all compounds was 10 ng/ml and the response was linear over the range 10–1000 ng/ml. Validation studies showed the method to be both repeatable and reproducible with no interference from human plasma. The method has been used to support pharmacokinetic studies and has proved to be robust and effective.  相似文献   

13.
An accurate and sensitive high-performance liquid chromatographic method with UV detection was developed for the simultaneous measurement of monoethylglycinexylidide (MEGX) and lignocaine in human plasma and serum, using organic solvent extraction and trimethoprim (TMP) as an internal standard. The mean recoveries for MEGX, TMP and lignocaine were 86.1 ± 3.7, 98.3 ± 1.8 and 77.0 ± 4.7%, respectively (n = 6). The relative standard deviations for MEGX concentrations of 10 and 200 ng/ml were < 4% and for lignocaine concentrations of 200 and 1200 ng/ml they were < 8%.  相似文献   

14.
An isocratic high-performance liquid chromatographic method with ultraviolet detection at 235 nm is described for the determination of cocaine and its metabolites benzoylecgonine, norcocaine and ecgonine methyl ester in rat plasma, collected during toxicity studies. Following simultaneous solid-phase extraction of all analytes and the internal standard tropacocaine, cocaine, benzoylecgonine and norcocaine were separated on a C18 column. Ecgonine methyl ester and cocaine were separated on coupled cyanopropyl and silica columns, following derivatization of ecgonine methyl ester to p-fluorococaine. The extraction efficiencies of these compounds from plasma ranged from 78 to 87%, while the limits of detection ranged from 35 to 90 ng/ml. The assay was linear from 300 to 5000 ng/ml, and the within-day precision 2 to 8% over this concentration range.  相似文献   

15.
A reversed-phase high-performance liquid chromatographic (HPLC) method has been validated for the quantitative determination of the three major paclitaxel metabolites (6α-hydroxypaclitaxel, 3′-p-hydroxypaclitaxel, 6α,3′-p-dihydroxypaclitaxel) in human plasma. The HPLC system consists of an APEX-octyl analytical column and acetonitrile-methanol-0.02 M ammonium acetate buffer pH 5 (AMW; 4:1:5, v/v/v) as the mobile phase. Detection is performed by UV absorbance measurement at 227 nm. The sample pretreatment of the plasma samples involves solid-phase extraction (SPE) on Cyano Bond Elut columns.The concentrations of the metabolic products could be determined by using the paclitaxel standard curve with a correction factor of 1.14 for 6α,3′-p-dihydroxypaxlitaxel. The recoveries of paclitaxel and the metabolites 6α,3′-p-dihydroxypaclitaxel, 3′-p-hydroxypaclitaxel and 6α-hydroxypaclitaxel in human plasma were 89, 78, 91 and 89%, respectively. The accuracy of the assay for the determination of paclitaxel and its metabolites varied between 95 and 97%, at a 50 ng/ml analyte concentration. The lower limit of quantitation was 10 ng/ml for both the parent drug and its metabolites.  相似文献   

16.
An improved high-performance liquid chromatographic (HPLC) method utilizing solid-phase extraction (SPE) and midbore chromatography was developed for the determination of ranitidine in human plasma. A mobile phase of 20 mM K2HPO4-acetonitrile-triethylamine (87.9:12.0:0.1, v/v) pH 6.0 was used with a phenyl analytical column and ultraviolet detection (UV). The method demonstrated linearity from 25 to 1000 ng/ml in 500 μl of plasma with a detection limit of 10 ng/ml. The method was utilized in a pharmacokinetic study evaluating the effects of pancreatico-biliary secretions on ranitidine absorption.  相似文献   

17.
A sensitive and selective gas—liquid chromatographic method, using the electron-capture detector for the quantitative determination of flurazepam and its major blood metabolites is described. After extraction and back-extraction steps, flurazepam (I) is well separated from its main metabolites, N-1-hydroxyethylflurazepam (metabolite II) and N-1-desalkylflurazepam (metabolite III). Metabolite II is quantitated after forming its stable tert-butyldimethylsilyl derivative by reaction with tert-butyldimethylchlorosilane—imidazole reagent. The procedure permits the rapid and selective routine determination of flurazepam and its metabolites (II and III) in plasma with a detection limit of 3 ng/ml for flurazepam (I), 1 ng/ml for metabolite II and 0.6 ng/ml for metabolite III. The procedure is linear over the range of concentrations encountered after administration of a single oral therapeutic dose. No interference from the biological matrix is apparent. The suitability of the method for the analysis of biological samples was tested by studying the variation with time of flurazepam and its metabolites' plasma concentrations in normal human volunteers after a single, therapeutic 30-mg oral dose of flurazepam.  相似文献   

18.
A rapid, reliable and specific reversed-phase high-performance liquid chromatographic procedure is described for the determination of diphenylpyraline hydrochloride at nanogram concentrations in plasma and urine. After extraction of the drug with n-pentane-2-propanol (50:1) from alkalinized samples, the organic extract was evaporated to dryness, reconstituted with methanol and chromatographed using a 5-μm Asahipak ODP-50 C18 column with UV detection at 254 nm. The elution time for diphenylpyraline was 7.9 min. The overall recovery of diphenylpyraline from spiked plasma and urine samples at concentrations ranging from 53 to 740 ng/ml were 94.65% and 92.29%, respectively. Linearity and precision data for plasma and urine standards after extraction were acceptable. The limit of detection was 15 ng/ml for both plasma and urine samples at 0.002 AUFS.  相似文献   

19.
A sensitive and highly specific method for the determination of LSD and N-demethyl-LSD in urine, using combined liquid chromatography and mass spectrometry (LC-MS) with electrospray ionization, has been developed. Extrelut-3 extraction cartridges were used for a basic sample clean-up. Elution was obtained by toluene-diethyl ether (60:40, v/v). A Nucleosil C18 (150×1 mm I.D.) reversed-phase column was used for the chromatographic separation, together with a mixture of 2 mM ammonium formate buffer (pH 3) and acetonitrile (70:30, v/v) as mobile phase. Recoveries were 93 and 80%, detection limits 0.025 and 0.035 ng/ml for LSD and N-demethyl-LSD, respectively. Intra-assay precision, studied at four concentrations, was better than 9% at the ng/ml range and better than 14% at 0.10 ng/ml for both compounds. Limits of quantitation were 0.05 and 0.10 ng/ml for LSD and N-demethyl-LSD, respectively. Reproducibility was good and linearity excellent for LSD in the range from 0.05 to 20 ng/ml (r>0.9999, N=7).  相似文献   

20.
A method for the determination of unconjugated phentolamine at concentrations down to 6 ng/ml in human plasma, and of free and total (free plus conjugated) phentolamine down to 25 ng/ml in urine is described. After addition of 2-[N-(p-chlorophenyl)-N-(m-hydroxyphenyl)-aminomethyl]-2-imidazoline as internal standard, both compounds are extracted into benzene—ethyl acetate (1:1, v/v) at pH 10, transferred into an acidic aqueous solution and back-extracted at pH 10 into benzene—ethyl acetate. They are then derivatized with N-heptafluorobutyrylimidazole. The derivatives are determined by gas chromatography using a 63Ni electron-capture detector. In urine, total (free plus conjugated) phentolamine is determined after enzymatic hydrolysis. The technique was applied for the study of the plasma concentrations and urinary elimination after oral administration to man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号