首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used magnetic relaxation dispersion to study bovine pancreatic trypsin inhibitor (BPTI) self-association as a function of pH, salt type and concentration, and temperature. The magnetic relaxation dispersion method sensitively detects stable oligomers without being affected by other interactions. We find that BPTI decamers form cooperatively under a wide range of solution conditions with no sign of dimers or other small oligomers. Decamer formation is opposed by electrostatic repulsion among numerous cationic residues confined within a narrow channel. Accordingly, the decamer population increases with increasing pH, as cationic residues are deprotonated, and with increasing salt concentration. The salt effect cannot be described in terms of Debye screening, but involves the ion-specific sequestering of anions within the narrow channel. The lifetime of the BPTI decamer is 101 +/- 4 min at 27 degrees C. We propose that the BPTI decamer, with a heparin chain threading the decamer channel, plays a functional role in the mast cell. We also detect a higher oligomer that appears to be a subcritical nucleation cluster of 3-5 decamers. We argue that monomeric crystals form at high pH despite a high decamer population in solution, because the ion pairs that provide the critical decamer-decamer contacts are disrupted at high pH.  相似文献   

2.
The crystal structure of the alternating 5'-purine start decamer d(GCGCGCGCGC) was found to be in the left-handed Z-DNA conformation. Inasmuch as the A.T base pair is known to resist Z-DNA formation, we substituted A.T base pairs in the dyad-related positions of the decamer duplex. The alternating self-complementary decamer d(GCACGCGTGC) crystallizes in a different hexagonal space group, P6(1)22, with very different unit cell dimensions a = b = 38.97 and c = 77.34 A compared with the all-G.C alternating decamer. The A.T-containing decamer has one strand in the asymmetric unit, and because it is isomorphous to some other A-DNA decamers it was considered also to be right-handed. The structure was refined, starting with the atomic coordinates of the A-DNA decamer d(GCGGGCCCGC), by use of 2491 unique reflections out to 1.9-A resolution. The refinement converged to an R value of 18.6% for a total of 202 nucleotide atoms and 32 water molecules. This research further demonstrates that A.T base pairs not only resist the formation of Z-DNA but can also assist the formation of A-DNA by switching the helix handedness when the oligomer starts with a 5'-purine; also, the length of the inner Z-DNA stretch (d(CG)n) is reduced from an octamer to a tetramer. It may be noted that these oligonucleotide properties are in crystals and not necessarily in solutions.  相似文献   

3.
The intensity autocorrelation functions of light scattered by lysozyme solutions under pre-crystallization conditions in NaCl-containing media were recorded at scattering angles from 20 degrees to 90 degrees. The measurements, conducted on freshly prepared protein solutions supersaturated more than 3-fold, indicate the simultaneous presence of two scatterer populations which can be assigned to individual protein molecules and to large particles. When solutions are undersaturated, or slightly supersaturated, light scattering only reveals the presence of the small scatterers. In the supersaturated medium, where aggregates were detected, lysozyme crystals grew in a time-span of 1-3 days after the scattering experiments. These results are medium, where aggregates were detected, lysozyme crystals grew in a time-span of 1-3 days after the scattering experiments. These results are correlated with the nucleation step during protein crystallization.  相似文献   

4.
W Gallagher  F Tao  C Woodward 《Biochemistry》1992,31(19):4673-4680
Hydrogen exchange rate constants for the 17 slowest exchanging amide NH groups in bovine pancreatic trypsin inhibitor (BPTI) were measured in solution and in form II and form III crystals. All 17 amide hydrogens are buried and intramolecularly hydrogen bonded in the crystal structure, except Lys 41 which is buried and hydrogen bonded to a buried water. Large-scale crystallization procedures were developed for these experiments, and rate constants for both crystal and solution exchange were measured by 1H NMR spectroscopy of exchange-quenched samples in solution. Two conditions of pH and temperature, pH 9.8 and 35 degrees C, and pH 9.4 and 25 degrees C, bring two groups of hydrogens into the experimental time window (minutes to weeks). One consists of the 10 slowest exchanging hydrogens, all of which are associated with the central beta-sheet of BPTI. The second group consists of seven more rapidly exchanging hydrogens, which are distributed throughout the molecule, primarily in a loop or turn. In both groups, most hydrogens exchange more slowly in crystals, but there is considerable variation in the degree to which the exchange is depressed in crystals. Many differences observed for the more rapidly exchanging hydrogens can be attributed to local surface effects arising from intermolecular contacts in the crystal lattice. Within the slower group, however, a very large effect on exchange of Ile 18 and Tyr 35 appears to be selectively transmitted through the matrix of the molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The crystal structure of the DNA decamer C-C-A-A-C-G-T-T-G-G has been solved to a resolution of 1.4 A, and is compared with the 1.3 A structure of C-C-A-A-G-A-T-T-G-G and the 1.6 A structure of C-C-A-G-G-C-C-T-G-G. All three decamers crystallize isomorphously in space group C2 with five base-pairs per asymmetric unit, and with decamer double helices stacked atop one another along the c axis in a manner that closely approximates a continuous B helix. This efficient stacking probably accounts for the high resolution of the crystal data. Comparison of the three decamers reveals the following. (1) Minor groove width is more variable than heretofore realized. Regions of A.T base-pairs tend to be narrower than average, although two successive A.T base-pairs alone may not be sufficient to produce narrowing. The minor groove is wider in regions where BII phosphate conformations are opposed diagonally across the groove. (2) Narrow regions of minor groove exhibit a zig-zag spine of hydration, as was first seen in C-G-C-G-A-A-T-T-C-G-C-G, whereas wide regions show two ribbons of water molecules down the walls, connecting base edge N or O with sugar O-4' atoms. Regions of intermediate groove width may accommodate neither pattern of hydration well, and may exhibit a less regular pattern of hydration. (3) Base-pair stacking is virtually identical at equivalent positions in the three decamers. The unconnected step from the top of one decamer helix to the bottom of the next helix is a normal helix step in all respects, except for the absence of connecting phosphate groups. (4) BII phosphate conformation require the unstacking of the two bases linked by the phosphate, but do not necessarily follow as an inevitable consequence of unstacking. They have an influence on minor groove width as noted in point (1) above. (5) Sugar ring pseudorotation P and main-chain torsion angle delta show an excellent correlation as given by the equation: delta = 40 degrees cos (P + 144 degrees) + 120 degrees. Although centered around C-2'-endo, the conformations in these B-DNA helices are distributed broadly from C-3'-exo to O-4'-endo, unlike the tighter clustering around C-3'-endo observed in A-DNA oligomer structures.  相似文献   

6.
If solution scattering curves can be accurately predicted from structural models, measurements can provide useful tests of predictions of secondary and tertiary structure. We have developed a computational technique for the prediction and interpretation of x-ray scattering profiles of biomolecules in solution. The method employs a Monte Carlo procedure for the generation of length distribution functions and provides predictions to moderate resolution (~5 Å). In addition to facilitating the assignment and interpretation of features in a solution scattering profile, the method also allows the elucidation of the role of protein motion in shaping the final scattering curve. The effect of protein motion on a scattering profile is investigated by generating scattering curves from several consecutive 0.147 ps atomic coordinate frames from a molecular dynamics simulation of the motion of bovine pancreatic trypsin inhibitor (BPTI) [McCammon, J. A. & Karplus, M. (1980) Annu. Rev. Phys. Chem. 31 , 29–45]. The theoretical approach is applied to chicken egg white lysozyme and BPTI, and the overall features in the resulting theoretical scattering profiles match well with the experimental solution scattering curves recorded on film. It is apparent from this study that the scattering profile prediction technique in conjunction with other experimental methods may have value in testing ideas of conformational change based on crystallographic studies; investigations of this type would include a comparison of predicted scattering curves generated from a variety of crystallographic models with an actual scattering profile of the biomolecule in solution.  相似文献   

7.
K I Miller 《Biochemistry》1985,24(17):4582-4586
Oxygen binding by Octopus dofleini hemocyanin was examined under very nearly physiological conditions. The effects of pH, ionic composition, temperature, and aggregation were controlled so that the role each plays in modulating oxygen binding can be isolated. There is a very large effect of pH on affinity, the Bohr effect (delta log P50/delta pH = -1.7), which is the same at 10 and 20 degrees C. However, cooperativity is substantially altered over the same range of pHs at the two temperatures. The allosteric properties were examined by comparing the experimental data points to curves generated by use of the Monod-Wyman-Changeux model. A computer-fitting process was developed which allowed the individual allosteric parameters to be varied independently until the best fit could be determined. The relationship between kR and kT is responsible for the effect of pH on cooperativity. A change in the allosteric properties of the T form is primarily responsible for the differences due to temperature. Changing cation concentrations when the molecule is in the fully aggregated 51S form alters affinity without influencing cooperativity. The effect of Mg2+ is much greater than that of Na+. If the 51S decamer is dissociated to 11S monomers by removing divalent cations, oxygen binding is noncooperative. There is evidence for negative cooperativity, indicating heterogeneity of function within the subunit which contains seven oxygen binding domains. Association into decamers generates conformational change which results in a much wider range of allosteric function.  相似文献   

8.
The Escherichia coli inducible lysine decarboxylase, LdcI/CadA, together with the inner-membrane lysine-cadaverine antiporter, CadB, provide cells with protection against mild acidic conditions (pH~5). To gain a better understanding of the molecular processes underlying the acid stress response, the X-ray crystal structure of LdcI was determined. The structure revealed that the protein is an oligomer of five dimers that associate to form a decamer. Surprisingly, LdcI was found to co-crystallize with the stringent response effector molecule ppGpp, also known as the alarmone, with 10 ppGpp molecules in the decamer. ppGpp is known to mediate the stringent response, which occurs in response to nutrient deprivation. The alarmone strongly inhibited LdcI enzymatic activity. This inhibition is important for modulating the consumption of lysine in cells during acid stress under nutrient limiting conditions. Hence, our data provide direct evidence for a link between the bacterial acid stress and stringent responses.  相似文献   

9.
Crystals of recombinant human tumor necrosis factor produced by Escherichia coli have been obtained under different conditions. Crystals suitable for X-ray studies are produced by a vapor diffusion technique using sodium phosphate as both precipitant and buffer at pH 6.5. The crystals belong to the cubic space group, P2(1)3 with unit cell dimensions a = b = c = 95.7 A (1 A = 0.1 nm). Preliminary photography reveals that the crystals are moderately stable to X-rays and diffract to at least 3 A resolution. The diffraction data for native crystals have been collected on a diffractometer at 3 A resolution. Another crystal form, which appeared in a solution containing sodium phosphate at pH 8.0, has the trigonal space group P3 with unit cell dimensions a = b = 63.8 A and c = 54.4 A, and produces measurable reflections to a resolution of 3 A. Hexagonal crystals also have been obtained by the use of polyethylene glycol as precipitant in the range pH 7.6 to 8.0; however, the crystals are fragile and unstable to X-rays. Conservation of 3-fold symmetry in the different crystal forms obtained could reflect the ability of tumor necrosis factor molecules to form trimers in solution and probably the nature of binding of the molecules to cellular receptors.  相似文献   

10.
Glycosylated interleukin-2 (glyIL-2) has been crystallized in two crystal forms, and unglycosylated interleukin-2 (uIL-2) has been crystallized in three forms. The glycosylated form of the human recombinant IL-2 has been crystallized from 1.9 M ammonium sulfate, pH 6.5 to 7.0 in the hexagonal space group P6(2)22 or its enantiomorph. The crystals diffract to 2.8 A and contain two or three molecules per asymmetric unit. A second crystal form grows from 1.4 to 1.5 M ammonium sulfate in 0.2 M ammonium acetate, pH 5.0-5.5, as polycrystalline rosettes which are not suitable for even a preliminary crystallographic analysis. The uIL-2 crystallizes from 1.0 to 1.7 M ammonium sulfate, 0.2 M ammonium acetate, pH 4.5-5.6 in the monoclinic space group P2(1), and less frequently in the orthorhombic space group P2(1)2(1)2(1) from 2.5 M ammonium sulfate, pH 4.5 to 5.7. Cross-seeding uIL-2 with seeds from hexagonal crystals of glyIL-2 promotes nucleation of trigonal crystals of unglycosylated IL-2. These trigonal crystals belong to the space group P3(1)21 or its enantiomorph, with similar cell dimensions to the glyIL-2 hexagonal crystals.  相似文献   

11.
Protein interactions in undersaturated and supersaturated solutions were investigated using static and dynamic light scattering and small angle x-ray scattering. A morphodrom of lysozyme crystals determined at 35 degrees C and pH = 4.6 was used as a guideline in selecting the protein and precipitant concentrations. The osmotic second virial coefficient, B(22), was determined by static and dynamic light scattering. At low ionic strengths for which no crystals were formed, B(22) was positive indicating repulsive interactions between the protein molecules. Negative B(22) at higher ionic strengths corresponds to attractive interactions where crystallization becomes possible. At two extreme salt concentrations, small angle x-ray scattering data were collected and fitted with a statistical mechanical model based on Derjaguin-Landau-Verwey-Overbeek potential using Random Phase Approximation. This model accounted well for the small angle x-ray scattering data at undersaturated condition with constant potential parameters. At very high salt concentration corresponding to supersaturated solution this model seems to fail, possibly due to the presence of non-Derjaguin-Landau-Verwey-Overbeek hydration repulsion between the molecules.  相似文献   

12.
Small-angle x-ray scattering (SAXS) was used to study the behavior of equine metmyoglobin (Mb) and bovine pancreatic trypsin inhibitor (BPTI) at concentrations up to 0.4 and 0.15 g/mL, respectively, in solutions also containing 50% D2O and 1 M urea. For both proteins, significant effects because of interference between x-rays scattered by different molecules (interparticle interference) were observed, indicating nonideal behavior at high concentrations. The experimental data were analyzed by comparison of the observed scattering profiles with those predicted by crystal structures of the proteins and a hard-sphere fluid model used to represent steric exclusion effects. The Mb scattering data were well fit by the hard-sphere model using a sphere radius of 18 Å, only slightly smaller than that estimated from the three-dimensional structure (20 Å). In contrast, the scattering profiles for BPTI in phosphate buffer displayed substantially less pronounced interparticle interference than predicted by the hard-sphere model and the radius estimated from the known structure of the protein (15 Å). Replacing the phosphate buffer with 3-(N-morpolino)propane sulfonic acid (MOPS) led to increased interparticle interference, consistent with a larger effective radius and suggesting that phosphate ions may mediate attractive intermolecular interactions, as observed in some BPTI crystal structures, without the formation of stable oligomers. The scattering data were also used to estimate second virial coefficients for the two proteins: 2.0 ×10-4 cm3mol/g2 for Mb in phosphate buffer, 1.6 ×10-4 cm3mol/g2 for BPTI in phosphate buffer and 9.2 ×10-4 cm3mol/g2 for BPTI in MOPS. The results indicate that the behavior of Mb, which is nearly isoelectric under the conditions used, is well described by the hard-sphere model, but that of BPTI is considerably more complex and is likely influenced by both repulsive and attractive electrostatic interactions. The hard-sphere model may be a generally useful tool for the analysis of small-angle scattering data from concentrated macromolecular solutions.  相似文献   

13.
The crystal structure of the DNA decamer C-G-A-T-C-G-A-T-C-G has been solved to a resolution of 1.5 A, with a final R-factor of 16.1% for 5,107 two-sigma reflections. Crystals are orthorhombic space group P2(1)2(1)2(1), with cell dimensions a = 38.93 A, b = 39.63 A, c = 33.30 A, and 10 base pairs/asymmetric unit. The final structure contains 404 DNA atoms, 142 water molecules treated as oxygen atoms, and two Mg(H2O)6(2+) complexes. Decamers stack atop one another to simulate continuous helical columns through the crystal, as with three previously solved monoclinic decamers, but the lateral contacts between columns are quite different in the orthorhombic and monoclinic cells. Narrow and wide regions of the minor groove exhibit a single spine or two ribbons of hydration, respectively, and the minor groove is widest when BII phosphate conformations are opposed diagonally across the groove. Phosphate conformation, in turn, appears to have a base sequence dependence. Twist, rise, cup, and roll are linked as has been observed in the three monoclinic decamers and can be characterized by high or low twist profiles. In all five known decamer crystal structures and eight representative dodecamers, a high twist profile is observed with G-C and G-A steps whereas all other R-R steps are low twist profiles (R = purine). A-T and A-C steps are intermediate in character whereas C-A and C-G exhibit behavior that is strongly influenced by the profiles of the preceding and following steps. When sufficient data are in hand, sequence/structure relationships for all helix parameters probably should be considered in a 4-base pair context. At this stage of limited information the problem is compounded because there are 136 unique 4-base steps x-A-B-y in a double helix as compared with only 10 2-base steps A-B.  相似文献   

14.
The kinetics of the assembly of structurally distinct, polymeric aggregates constituting the fiber-to-crystal transition of sickle cell hemoglobin in slowly stirred, deoxygenated solutions has been studied with the use of electron microscopy as a function of pH, as a function of the crystal structures of mutant forms of human deoxyhemoglobins employed as nucleating seeds, and as a function of hemoglobin S chemically modified at the Cys F9 (beta 93) position. The temporal order of appearance of fibers of approximately 210 A diameter, bundles of aligned fibers, macrofibers of greater than or equal to 650 A diameter, and microcrystals is observed. Microscopic fragments of end-stage crystals formed under slowly stirred conditions and introduced as nucleating seeds enhance the rate of crystallization only when added prior to the formation of large bundles of aligned fibers, while microscopic seed crystals added after the formation of bundles of aligned fibers do not alter the rate of crystallization. Over the pH range 6.3 to 7.1, the presence of macrofibers does not influence modulation of the kinetics of the transition with seed crystal fragments. Microscopic seed crystals of deoxyhemoglobin S and deoxyhemoglobin C formed under acidic conditions (pH less than 6.5) have a comparable influence on the kinetics of the fiber-to-crystal transition to that of end-stage crystals. Microscopic seed crystals of deoxyhemoglobin C formed under alkaline conditions (pH greater than 6.5) enhance the formation of macrofibers but do not alter the rate of crystallization. Under conditions associated with enhanced formation of macrofibers, metastable microscopic crystals having axial periodicities of approximately 64 A and approximately 210 A are observed in the intermediate phase of the transition, while end-stage crystals have axial unit cell dimensions identical to those of deoxyhemoglobin S crystallized from polyethylene glycol solutions of pH less than 6.5. Although the metastable crystals may arise from fragments of macrofibers, it is shown that they cannot be transformed directly into end-stage crystals under slowly stirred conditions without undergoing dissolution. These results stipulate that the pathway of the fiber-to-crystal transition proceeds according to the reaction: (Formula: see text) wherein the rate-limiting step is the alignment of fibers into large bundles, and macrofibers are not an intermediate of the fiber-to-crystal transition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
W H Gallagher  C K Woodward 《Biopolymers》1989,28(11):2001-2024
This paper reports the use of dynamic light scattering to investigate the concentration dependence of the diffusion coefficient for bovine pancreatic trypsin inhibitor (BPTI). BPTI is a small molecular weight protein (6511 Da) that has been the subject of numerous experimental studies. In addition to addressing questions that remain in the literature concerning the aggregation behavior of BPTI, we show that dynamic light scattering can be practically applied to proteins as small as BPTI, and that it can provide a useful means of parameterizing the solution behavior for proteins. We obtained values for the apparent diffusion coefficient of BPTI as a function of concentration over a range of pH values from 2.59 to 9.92 at an ionic strength of 0.3M, and over a range of ionic strength values from 0.1 to 0.5M at a pH of 7.0. The concentration dependence is linear for nearly all the conditions examined, even up to concentrations as high as 65 mg/mL. The average diffusion coefficient obtained at infinite dilution is 14.4 +/- 0.2 x 10(-7) cm2/s. This value agrees with that expected for a BPTI monomer hydrated with less than a monolayer of water. We used the theories of Felderhof, of Batchelor, and of Phillies, along with the DLVO theory to interpret the concentration dependence of the apparent diffusion coefficient. The variations observed with pH and ionic strength can be primarily attributed to screened coulombic interactions. In addition, there is an attractive interaction that is slightly stronger than the repulsive coulombic one, and that is essentially independent of pH and ionic strength. The attractive interactions appear to arise from nonspecific van der Waals interactions and do not lead to the formation of stable aggregates of BPTI.  相似文献   

16.
Xenopus NO38 is an abundant nucleolar chaperone and a member of the nucleoplasmin (Np) family. Here, we report high-resolution crystal structures of the N-terminal domain of NO38, as a pentamer and a decamer. As expected, NO38 shares the Np family fold. In addition, NO38- and Np-core pentamers each use highly conserved residues and numerous waters to form their respective decamers. Further studies show that NO38 and Np each bind equal amounts of the four core histones. However, NO38 prefers the (H3-H4)(2) tetramer, while Np probably prefers H2A-H2B dimers. We also show that NO38 and Np will each bind noncognate histones when the preferred partner is absent. We suggest that these chaperones must form decamers in order to bind histones and differentiate between histone tetramers and dimers. When taken together, these data imply that NO38 may function as a histone chaperone in the nucleolus.  相似文献   

17.
Heavy riboflavin synthase from Bacillus subtilis is an enzyme complex consisting of approximately three alpha-subunits (Mr 23.5 X 10(3)) and 60 beta-subunits (Mr 16 X 10(3)). The enzyme has been crystallized from phosphate buffer in a hexagonal crystal modification that belongs to space group P6(3)22. The asymmetric unit of the crystal cell contains ten beta-subunits. The structure of this unusual 10(6) Mr protein has been studied by small-angle X-ray scattering, electron microscopy of three-dimensional crystals, and crystallographic methods. The scattering curves can be interpreted in terms of a hollow sphere model with a ratio of inner and outer radius of 0.3:1. A diameter of 168 A was estimated from the scattering curves, in close agreement with electron microscopic studies. An aggregate with the stoichiometry beta 60, which was obtained by ligand-driven reaggregation of isolated beta-subunits, showed similar shape and dimensions, but a larger value for the ratio Ri/Ra. Electron micrographs of freeze-etched enzyme crystals showed approximately spherical molecules, which were arranged in hexagonal layers. The lattice constants found from the micrographs are in good agreement with the values derived from X-ray diffraction data. Rotation function calculations in Patterson space showed a set of peaks for 2-fold, 3-fold and 5-fold local rotation axes, accurately consistent with icosahedral symmetry and with the particle orientation A shown in the Appendix. The crystal packing can be described as follows: enzyme particles with icosahedral symmetry (point group 532) are located at points 32 of the hexagonal cell, corresponding to positions (0, 0, 0) and (0, 0, 1/2) on the 6-fold screw axes. From the data reported, it may be concluded that the enzyme structure can be described as an icosahedral capsid of 60 beta-subunits with the triangulation number T = 1. The alpha-subunits are located in the central core space of the capsid, but their spatial orientation is incompletely understood.  相似文献   

18.
Native crystals of Bacillus thuringiensis var. san diego, a coleopteran-specific delta-endotoxin, were metabolically labelled with [35S]methionine. Specific activity was 82,000 CPM/micrograms (2.44 Ci/mmol). Using a universal buffer formulated with the same ionic strength at every pH, we determined that native crystals dissolve above pH 10 and below pH 4. At the acidic pH, the rate of solubilization was substantially slower than at the alkaline pH. Recrystallization rates for the toxin were similar regardless of solubilization conditions. The banding patterns in denatured polyacrylamide gel electrophoresis were unaffected by solubilization conditions. Toxicity was higher for soluble toxin compared to crystal toxin, but virtually identical for the acidic and alkaline produced solutions. Acid solubilization is significant because of the acidic midgut of susceptible Coleoptera.  相似文献   

19.
Hemocyanins are blue copper-containing respiratory proteins in the hemolymph of many arthropods and molluscs. Molluscan hemocyanins are decamers, didecamers, or multidecamers of a 340- to 400-kDa polypeptide subunit containing seven or eight globular functional units (FUs; FU-a to FU-h), each with an oxygen-binding site. The decamers are short 35-nm hollow cylinders, with their lumen narrowed by a collar complex. Our recently published 9-Å cryo-electron microscopy/crystal structure hybrid model of a 3.4-MDa cephalopod hemocyanin decamer [Nautilus pompilius hemocyanin (NpH)] revealed the pathway of the seven-FU subunit (340 kDa), 15 types of inter-FU interface, and an asymmetric collar consisting of five “arcs” (FU-g pairs). We now present a comparable hybrid model of an 8-MDa gastropod hemocyanin didecamer assembled from two asymmetric decamers [isoform keyhole limpet hemocyanin (KLH) 1 of the established immunogen KLH]. Compared to NpH, the KLH1 subunit (400 kDa) is C-terminally elongated by FU-h, which is further extended by a unique tail domain. We have found that the wall-and-arc structure of the KLH1 decamer is very similar to that of NpH. We have traced the subunit pathway and how it continues from KLH1-g to KLH1-h to form an annulus of five “slabs” (FU-h pairs) at one cylinder edge. The 15 types of inter-FU interface detected in NpH are also present in KLH1. Moreover, we have identified one arc/slab interface, two slab/slab interfaces, five slab/wall interfaces, and four decamer/decamer interfaces. The 27 interfaces are described on the basis of two subunit conformers, yielding an asymmetric homodimer. Six protrusions from the cryo-electron microscopy structure per subunit are associated with putative attachment sites for N-linked glycans, indicating a total of 120 sugar trees in KLH1. Also, putative binding sites for divalent cations have been detected. In conclusion, the present 9-Å data on KLH1 confirm and substantially broaden our recent analysis of the smaller cephalopod hemocyanin and essentially solve the gastropod hemocyanin structure.  相似文献   

20.
A soluble tryptic fragment of the human transferrin receptor (residues 121 to 760) has been crystallized from 2.8 M-KCl (pH 6.2) and polyethylene glycol 8000. This fragment retains the transferrin-binding activity of intact transferrin receptor. Although the trypsin treatment removes the intermolecular disulfide bonds, the receptor fragment is dimeric both under physiological conditions and at the high salt concentrations used for crystallization. The receptor fragment crystallizes in the orthorhombic space group P2(1)2(1)2(1), a = 105.5 A, b = 224.5 A, c = 363.5 A. The crystals are extremely radiation sensitive. Their diffraction extends to 3.8 A, and there is some diffuse scatter with helical characteristics. Analysis of these diffraction patterns indicates that the transferrin receptor fragments are arranged in continuous 8-fold symmetric helical columns parallel to the c axis, with a total of 32 receptor fragment monomers in the unit cell. A structure determination is in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号