首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indirubin is the active ingredient of Danggui Longhui Wan, a mixture of plants that is used in traditional Chinese medicine to treat chronic diseases. Here we identify indirubin and its analogues as potent inhibitors of cyclin-dependent kinases (CDKs). The crystal structure of CDK2 in complex with indirubin derivatives shows that indirubin interacts with the kinase's ATP-binding site through van der Waals interactions and three hydrogen bonds. Indirubin-3'-monoxime inhibits the proliferation of a large range of cells, mainly through arresting the cells in the G2/M phase of the cell cycle. These results have implications for therapeutic optimization of indigoids.  相似文献   

2.
A series of 2-anilino-4-(1H-pyrrol-3-yl)pyrimidines were prepared and evaluated for their ability to inhibit cyclin-dependent kinases (CDKs). A number of analogues were found to be potent CDK2 and CDK4 inhibitors and to exhibit anti-proliferative activity against human tumour cell lines. Structure-activity relationships and biochemical characterization are presented.  相似文献   

3.
The bis-indole indirubin is an active ingredient of Danggui Longhui Wan, a traditional Chinese medicine recipe used in the treatment of chronic diseases such as leukemias. The antitumoral properties of indirubin appear to correlate with their antimitotic effects. Indirubins were recently described as potent (IC(50): 50-100 nm) inhibitors of cyclin-dependent kinases (CDKs). We report here that indirubins are also powerful inhibitors (IC(50): 5-50 nm) of an evolutionarily related kinase, glycogen synthase kinase-3beta (GSK-3 beta). Testing of a series of indoles and bis-indoles against GSK-3 beta, CDK1/cyclin B, and CDK5/p25 shows that only indirubins inhibit these kinases. The structure-activity relationship study also suggests that indirubins bind to GSK-3 beta's ATP binding pocket in a way similar to their binding to CDKs, the details of which were recently revealed by crystallographic analysis. GSK-3 beta, along with CDK5, is responsible for most of the abnormal hyperphosphorylation of the microtubule-binding protein tau observed in Alzheimer's disease. Indirubin-3'-monoxime inhibits tau phosphorylation in vitro and in vivo at Alzheimer's disease-specific sites. Indirubins may thus have important implications in the study and treatment of neurodegenerative disorders. Indirubin-3'-monoxime also inhibits the in vivo phosphorylation of DARPP-32 by CDK5 on Thr-75, thereby mimicking one of the effects of dopamine in the striatum. Finally, we show that many, but not all, reported CDK inhibitors are powerful inhibitors of GSK-3 beta. To which extent these GSK-3 beta effects of CDK inhibitors actually contribute to their antimitotic and antitumoral properties remains to be determined. Indirubins constitute the first family of low nanomolar inhibitors of GSK-3 beta to be described.  相似文献   

4.
Cyclin-dependent kinases (CDKs) are essential in the control of cell cycle progression. Inhibition of CDKs represents a new approach for pharmacological intervention in the treatment of a variety of proliferative diseases, especially cancer. Based on the crystal structure of CDK2 in complex with an imidazole indolinone compound 1 (SU9516), lead optimization through modeling, synthesis, and SAR studies has led to the discovery of a novel series of pyrrolyllactone and pyrrolyllactam indolinones as potent CDK2 inhibitors.  相似文献   

5.
Inhibitors of cyclin-dependent kinases (CDKs) are an emerging class of drugs for the treatment of cancers. CDK inhibitors are currently under evaluation in clinical trials as single agents and as sensitizers in combination with radiation therapy and chemotherapies. Drugs that target CDKs could have important inhibitory effects on cancer cell cycle progression, an extremely important mechanism in the control of cancer cell growth. Using rational drug design, we designed and synthesized fluorescent CDK inhibitors (VMY-1-101 and VMY-1-103) based on a purvalanol B scaffold. The new agents demonstrated more potent CDK inhibitory activity, enhanced induction of G2/M arrest and modest apoptosis as compared to purvalanol B. Intracellular imaging of the CDK inhibitor distribution was performed to reveal drug retention in the cytoplasm of treated breast cancer cells. In human breast cancer tissue, the compounds demonstrated increased binding as compared to the fluorophore. The new fluorescent CDK inhibitors showed undiminished activity in multidrug resistance (MDR) positive breast cancer cells, indicating that they are not a substrate for p-glycoprotein. Fluorescent CDK inhibitors offer potential as novel theranostic agents, combining therapeutic and diagnostic properties in the same molecule.  相似文献   

6.
Cyclin-dependent kinases (CDKs) are conserved regulators of the eukaryotic cell cycle with different isoforms controlling specific phases of the cell cycle. Mitogenic or growth inhibitory signals are mediated, respectively, by activation or inhibition of CDKs which phosphorylate proteins associated with the cell cycle. The central role of CDKs in cell cycle regulation makes them a potential new target for inhibitory molecules with anti-proliferative and/or anti-neoplastic effects. We describe the crystal structures of the complexes of CDK2 with a weakly specific CDK inhibitor, N6-(δ2-isopentenyl)adenine, and a strongly specific inhibitor, olomoucine. Both inhibitors are adenine derivatives and bind in the adenine binding pocket of CDK2, but in an unexpected and different orientation from the adenine of the authentic ligand ATP. The N6-benzyl substituent in olomoucine binds outside the conserved binding pocket and is most likely responsible for its specificity. The structural information from the CDK2-olomoucine complex will be useful in directing the search for the next generation inhibitors with improved properties. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Role of CDK/cyclin complexes in transcription and RNA splicing   总被引:10,自引:0,他引:10  
  相似文献   

8.
9.
The splicing of pre-mRNA is a critical process in normal cells and is deregulated in cancer. Compounds that modulate this process have recently been shown to target a specific vulnerability in tumors. We have developed a novel cell-based assay that specifically activates luciferase in cells exposed to SF3B1 targeted compounds, such as sudemycin D6. This assay was used to screen a combined collection of approved drugs and bioactive compounds. This screening approach identified several active hits, the most potent of which were CGP-74514A and aminopurvalanol A, both have been reported to be cyclin-dependent kinases (CDKs) inhibitors. We found that these compounds, and their analogs, show significant cdc2-like kinase (CLK) inhibition and clear structure-activity relationships (SAR) at CLKs. We prepared a set of analogs and were able to ‘dial out’ the CDK activity and simultaneously developed CLK inhibitors with low nanomolar activity. Thus, we have demonstrated the utility of our exon-skipping assay and identified new molecules that exhibit potency and selectivity for CLK, as well as some structurally related dual CLK/CDK inhibitors.  相似文献   

10.
11.
12.
细胞周期蛋白依赖性蛋白激酶(cyclin dependent kinases,CDKs)是细胞周期进行的推动力,泛素-蛋白酶体途径(ubiquitin-proteasome pathway,UPP)通过对细胞周期蛋白(cyclin)和CDK抑制物(CDK inhibitors,CKIs)的蛋白质水解作用来实现对CDKs活性的调控。SCF(Skp1-Cul1-F-box protein)和APC/C(anaphase-promoting complex/cyclosome)这两个泛素连接酶复合物参与了很多细胞周期调节因子的泛素化作用。它们参与的蛋白质降解系统的功能失调可能导致细胞增殖紊乱、基因组不稳定和肿瘤的发生。现对这两个泛素连接酶复合物的结构以及它们在细胞周期调控和肿瘤发生机制中的作用进行综述。  相似文献   

13.
This Letter reports the optimization of a pyrrolopyrimidine series as dual inhibitors of Aurora A/B kinases. This series derived from a pyrazolopyrimidine series previously reported as inhibitors of aurora kinases and CDKs. In an effort to improve the selectivity of this chemotype, we switched to the pyrrolopyrimidine core which allowed functionalization on C-2. In addition, the modeling rationale was based on superimposing the structures of Aurora-A kinase and CDK2 which revealed enough differences leading to a path for selectivity improvement. The synthesis of the new series of pyrrolopyrimidine analogs relied on the development of a different route for the two key intermediates 7 and 19 which led to analogs with both tunable activity against CDK1 and maintained cell potency.  相似文献   

14.
Post-translational modulation of eIF4E through phosphorylation by Mnks is highly integral to the pathogenesis of different cancers. Therefore, inhibition of Mnks offers a strategy for cancer treatment. Herein, a series of 2′H-spiro[cyclohexane-1,3′-imidazo[1,5-a]pyridine]-1′,5′-dione derivatives is presented as Mnk inhibitors. Some of them showed sub-micromolar to low nanomolar inhibitory activities against Mnk1/2 with a high level of selectivity for both kinases over CDKs. Biochemical assays revealed that compounds 4c and 4t are non-ATP-competitive inhibitors of Mnks. Lead compound 4t demonstrated a high selectivity for Mnk1/2 over a selection of 51 kinases, and displayed anti-proliferative activities against a panel of cancer cell lines. However, this compound in combination with our in-house CDK4/6 inhibitor 83 did not show a synergistic effect in A2780 ovarian cancer cells, suggesting that caution be exercised in the selection of an agent to be combined with an Mnk inhibitor.  相似文献   

15.
Although cyclin-dependent kinases (CDKs) have been extensively targeted in anti cancer drug design, no CDK inhibitor has yet been approved for use in cancer therapy. While this may in part be because inhibitors clinically evaluated to date have not demonstrated clean inhibition of a single CDK, another contributing factor is an apparent latent functional redundancy in the CDK cell-cycle regulatory system. This further complicates the already challenging goal of targeting CDKs, since it implies that a therapeutically useful inhibitor will have to selectively inhibit more than one CDK family member among the complement of cellular proteins. Despite these difficulties, achieving an appropriate profile of CDK inhibition may yet be possible using ATP-competitive inhibitors, thanks to advances in computational and experimental methods of drug design. However, as an alternative to ATP-competitive inhibitors, inhibitors that interfere with a CDK-specific protein:protein interaction, such as that which occurs at the recruitment site found on several cyclins, may offer a route to a therapeutically useful inhibitory profile.  相似文献   

16.
A novel series of nitrogen-containing flavonoids 5a-l, 6a,b, and 7a,b were designed and synthesized as cyclin-dependent kinases (CDKs) inhibitors. The representative compounds 5a, 5b, 5e, and 5g showed potent CDK1/Cyclin B inhibitory activities. All compounds displayed a significant growth inhibitory action in vitro against Bel-7402, PC-3, ECA-109, A-549, HL-60, and MCF-7 cancer cell lines. Flow cytometry analysis showed that 5b induced apoptosis in PC-3 cells.  相似文献   

17.
In an effort to identify new pharmacological inhibitors of disease-relevant protein kinases with increased potency and selectivity, we synthesized and evaluated new 5-substituted indirubins. The effects of 34 indirubin derivatives on CDK1/cyclin B, CDK5/p25, and GSK-3, as well as on SH-SY5Y human neuroblastoma cell survival, were investigated.  相似文献   

18.
19.
Cyclin-dependent kinases (CDKs) play important roles in regulating cell cycle progression, and altered cell cycles resulting from over-expression or abnormal activation of CDKs observed in many human cancers. As a result, CDKs have become extensive studied targets for developing chemical inhibitors for cancer therapies; however, protein kinases share a highly conserved ATP binding pocket at which most chemical inhibitors bind, therefore, a major challenge in developing kinase inhibitors is achieving target selectivity. To identify cell growth inhibitors with potential applications in cancer therapy, we used an integrated approach that combines one-pot chemical synthesis in a combinatorial manner to generate diversified small molecules with new chemical scaffolds coupled with growth inhibition assay using developing zebrafish embryos. We report the successful identification of a novel lead compound that displays selective inhibitory effects on CDK2 activity, cancer cell proliferation, and tumor progression in vivo. Our approaches should have general applications in developing cell proliferation inhibitors using an efficient combinatorial chemical genetic method and integrated biological assays. The novel cell growth inhibitor we identified should have potential as a cancer therapeutic agent.  相似文献   

20.
Cyclin-dependent kinases (CDKs) are promising drug targets for various human diseases, especially for cancers. Scaffold hopping strategy was applied on CAN508, a known selective CDK9 inhibitor, and a series of pyrazolo[3,4-b]pyridine compounds were synthesized and evaluated in vitro as CDK2 and CDK9 inhibitors. Most compounds exhibited moderate to potent inhibitory activities against both CDK2/cyclin A and CDK9/cyclin T1 systems. Among them, compound 2e showed IC50 values of 0.36?μM for CDK2 and 1.8?μM for CDK9, respectively. Notably, the scaffold alteration seems to cause a shift in the selectivity profile of the inhibitors. In contrast to CAN508, compound 2k demonstrated remarkable selectivity toward CDK2 (265-fold over CDK9). Docking studies on compound 2k provided hints for further design of more potent and selective CDK2/CDK9 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号