首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosylasparaginase catalyzes the hydrolysis of the N-glycosylic bond in N(4)-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine in the catabolism of N-linked oligosaccharides. A deficiency, or absence, of enzyme activity gives rise to aspartylglycosaminuria, the most common disorder of glycoprotein metabolism. The enzyme catalyzes the hydrolysis of a variety of asparagine and aspartyl compounds containing a free alpha-carboxyl group and a free alpha-amino group; computational studies suggest that the alpha-amino group actively participates in the catalytic mechanism. In order to study the importance of the alpha-carboxyl group and the alpha-amino group on the natural substrate to the reaction catalyzed by the enzyme, 14 analogues of the natural substrate were studied where the structure of the aspartyl group of the substrate was changed. The incremental binding energy (DeltaDeltaGb) for those analogues that were substrates was calculated. The results show that the alpha-amino group may be substituted with a group of comparable size, for the alpha-amino group contributes little, if any, to the transition state binding energy of the natural substrate. The alpha-amino group position acts as an "anchor" in the binding site for the substrate. On the other hand, the alpha-carboxyl group is necessary for enzyme activity; removal of the alpha-carboxyl group or changing it to an alpha-carboxamide group results in no hydrolysis reaction. Also, N-acetyl-D-glucosamine is not sufficient for binding to the active site for efficient hydrolysis by the enzyme. These results provide supporting evidence for a proposed intramolecular autoproteolytic activation reaction for the enzyme. However, the results raise a question as to an important role for the alpha-amino group in the catalytic mechanism as indicated in computational studies.  相似文献   

2.
Oxygen reactivity of p-hydroxybenzoate hydroxylase containing 1-deaza-FAD   总被引:2,自引:0,他引:2  
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase (EC 1.14.13.2) was replaced by 1-deaza-FAD (carbon substituted for nitrogen at position 1). An improved method for production of apoenzyme by precipitation with acidic ammonium sulfate was developed. The modified enzyme, in the presence of p-hydroxybenzoate, catalyzed the oxidation of NADPH by oxygen, yielding NADP+ and H2O2, but the ability to hydroxylate p-hydroxybenzoate and other substrates was lost. An analysis of the mechanism of NADPH-oxidase catalysis showed a close analogy between the reaction pathways for native and modified enzymes. In the presence of p-hydroxybenzoate, the rate of NADPH consumption catalyzed by the 1-deaza-FAD form was about 11% that of the native enzyme. Both formed a stabilized flavin-C (4a)-OOH intermediate upon reaction of reduced enzyme with oxygen, but the 1-deaza-FAD enzyme could not utilize this peroxide to hydroxylate substrates, and the peroxide decomposed to oxidized enzyme and H2O2.  相似文献   

3.
An analysis of steady-state kinetics of purified rat liver transketolase shows that the reaction proceeds according to a two-stroke substitution ("ping-pong") mechanism. Based on the kinetic data, a competitive relationship was shown to exist between xylulose-5-phosphate and ribose-5-phosphate for the sites of substrate binding by the substituted form of the enzyme with the formation of a non-productive abortive complex (kd = 125 microM). The values of constants of two monomolecular steps of the reaction (k2 = 42 s-1; k4 = 9.4 s-1) were determined. It was assumed that the maximum rate-limiting step of the transketolase reaction is the degradation of the substituted form of transketolase--ribose-5-phosphate complex having a rate constant of k4.  相似文献   

4.
Cyclodextrin glycosyltransferase (CGTase) uses an alpha-retaining double displacement mechanism to catalyze three distinct transglycosylation reactions. To investigate these reactions as catalyzed by the CGTase from Thermoanaerobacterium thermosulfurigenes the enzyme was overproduced (8 mg.L(-1) culture) using Bacillus subtilis as a host. Detailed analysis revealed that the three reactions proceed via different kinetic mechanisms. The cyclization reaction (cyclodextrin formation from starch) is a one-substrate reaction, whereas the other two transglycosylation reactions are two-substrate reactions, which obey substituted enzyme mechanism kinetics (disproportionation reaction) or ternary complex mechanism kinetics (coupling reaction). Analysis of the effects of acarbose and cyclodextrins on the disproportionation reaction revealed that cyclodextrins are competitive inhibitors, whereas acarbose is a mixed type of inhibitor. Our results show that one molecule of acarbose binds either in the active site of the free enzyme, or at a secondary site of the enzyme-substrate complex. The mixed inhibition thus indicates the existence of a secondary sugar binding site near the active site of T. thermosulfurigenes CGTase.  相似文献   

5.
Pseudomonas putida F1 contains a multicomponent enzyme system, toluene dioxygenase, that converts toluene and a variety of substituted benzenes to cis-dihydrodiols by the addition of one molecule of molecular oxygen. Toluene-grown cells of P. putida F1 also catalyze the monohydroxylation of phenols to the corresponding catechols by an unknown mechanism. Respirometric studies with washed cells revealed similar enzyme induction patterns in cells grown on toluene or phenol. Induction of toluene dioxygenase and subsequent enzymes for catechol oxidation allowed growth on phenol. Tests with specific mutants of P. putida F1 indicated that the ability to hydroxylate phenols was only expressed in cells that contained an active toluene dioxygenase enzyme system. 18O2 experiments indicated that the overall reaction involved the incorporation of only one atom of oxygen in the catechol, which suggests either a monooxygenase mechanism or a dioxygenase reaction with subsequent specific elimination of water.  相似文献   

6.
Aldehyde dehydrogenase possessing an esterolytic activity has been purified to homogeneity from rat liver mitochondria. Steady-state kinetic studies suggest that the esterolytic reaction follows an ordered uni-bi mechanism. The formation of an acyl enzyme intermediate via nucleophilic catalysis during the esterase reaction is established kinetically using a series of substrates with varying acyl carbon chains and substituted phenyl octanoates with varying electronic effects. The enzyme was reconstituted into phospholipid vesicles. A significant increase in binding capacity is observed when the enzyme is encapsulated into liposomes containing 4% diphosphatidylglycerol.  相似文献   

7.
A number of earlier unknown phosphonate analogues of aspartyl adenylate with anhydride oxygen substituted by --CH2--, and the carbonyl group substituted by --CH(OH)- or --CH(NH2)-groups were synthesized. These compounds were used to study the reaction mechanism of asparagine synthetases from white lupine and E. coli. The aspartyl adenylate analogues proved to be powerful competitive inhibitors (Ki = 10(-7) M) of the bacterial enzyme. In the case of white lupine enzyme catalyzing the aspartate-independent ATP--[32P]PPi exchange, the above compounds displayed a non-competitive type of inhibition with respect to aspartate and ATP, Ki = 10(-4) M. It is likely that for the latter enzyme the first intermediate is different from an aspartyl adenylate derivative.  相似文献   

8.
Nitrite-oxidizing enzyme I (NiOx I) was purified from a heterotrophic bacterium, Bacillus badius I-73. The enzyme was a homotetramer of a heme-containing peptide, and was similar to catalases from various sources in its N-terminal amino acid sequence. The purified enzyme also catalyzed H2O2 degradation. The nitrite oxidation reaction required ascorbic acid and oxygen. Successive H2O2 feeding could be substituted for ascorbic acid. These indicated that NiOx I is a catalase and nitrite was oxidized by a peroxidase-like reaction.  相似文献   

9.
A study of the kinetic mechanism of elongation factor Ts   总被引:5,自引:0,他引:5  
Elongation factor Ts (EF-Ts) catalyzes the reaction EF-Tu X GDP + nucleotide diphosphate (NDP) reversible EF-Tu X NDP + GDP where NDP is GDP, IDP, GTP, or GMP X PCP. The EF-Ts-catalyzed exchange rates were measured at a series of concentrations of EF-Tu X [3H] GDP and free nucleotide. Plotting the rate data according to the Hanes method produced a series of lines intersecting on the ordinate, a characteristic of substituted enzyme mechanisms. GDP is a competitive inhibitor of IDP exchange, a result predicted for the substituted enzyme mechanism but inconsistent with ternary complex mechanisms that involve an intermediate complex containing EF-Ts and both substrates. The exchange of both GTP and the GTP analog GMP X PCP also follow the substituted enzyme mechanism. The maximal rates of exchange of GDP and GTP are the same, which indicates that the rates of dissociation of EF-Ts from EF-Tu X GDP and EF-Tu X GTP are the same. The steady-state maximal exchange rate is slower by a factor of 20 than the previously reported rate of dissociation of GDP from EF-Ts X EF-Tu. This is interpreted to mean that the rate-determining step in the exchange reaction is the dissociation of EF-Ts from EF-Tu X GDP.  相似文献   

10.
The kinetic mechanism of octopine dehydrogenase has been investigated by stopped-flow and isotope replacement techniques. When the enzyme is saturated by substrate and coenzyme, both for NADH oxidation and NAD+ reduction, the stationary phase is preceded by a rapid burst. Under these saturation conditions, furthermore, the stationary phase shows a secondary isotope effect when 4S-[4(2)H]NADH is substituted for NADH and when (on the other reaction end) D-[2H] octopine is substituted for D-octopine. The data are taken to indicate that the rate-limiting step for enzyme turnover is a step following a very fast chemical transformation of the reagents. However, when the substrate concentration is lowered below the corresponding Km value keeping the coenzyme concentration at saturating levels, the time course of the reaction shows no burst and the stationary phase has a larger isotope effect. This indicated that under those non-saturating conditions, the enzyme turnover has a larger contribution than the hydrogen-transfer step. Changing the coenzyme concentration alone has very little or no effect on the amplitude of the burst or on the isotope effect. These features are discussed in terms of the other known kinetic properties of the enzyme, and in terms of analogous studies reported in the literature for other dehydrogenases.  相似文献   

11.
Uptake of substituted nitrophenols from the bulk solution into the cytoplasm limited reaction rates by Pseudomonas putida B2. Initial enzymatic conversion of 2-nitrophenol (ONP) to catechol is by an intracellular soluble enzyme, nitrophenol oxygenase [Zeyer J and Kearney PC. 1984. J Agric Food Chem 32: 238–242]. Addition of N-ethylmaleimide (NEM) to cell suspensions led to a decrease in specific reaction rates for ONP, dependent on the ratio of NEM to cellular protein. Maximal NEM inhibition resulted in an 80–90% decrease in the ONP reaction rate which could not be reversed following dilution. Cell-free enzyme extract isolated from NEM-inactivated cells demonstrated less than 20% loss of the specific ONP reaction rates. NEM apparently acted by inhibiting a protein which facilitated uptake of nitrophenol into the cytoplasm, prior to the first catabolic enzyme. Both intact organisms and protoplasts exhibited the same 80–90% decrease in reaction rate which established that NEM inhibition was localized in the plasma membrane. NEM elicited variable effects on reaction rates for a series of ring substituted 2-nitrophenols. The data indicated that uptake of substituted 2-nitrophenols involved at least two transport systems, one sensitive to NEM inactivation and a second insensitive uptake process. Received 05 November 1996/ Accepted in revised form 29 May 1997  相似文献   

12.
C E Barry  P G Nayar  T P Begley 《Biochemistry》1989,28(15):6323-6333
Phenoxazinone synthase is a copper-containing oxidase that catalyzes the coupling of 2-aminophenols to form the 2-aminophenoxazinone chromophore. This reaction constitutes the final step in the biosynthesis of the potent antineoplastic agent actinomycin. The mechanism of this complex 6-electron oxidation was determined by using a variety of substituted 2-aminophenols, designed to block the reaction at intermediate stages. Thus, with 3,5-di-tert-butyl-2-aminophenol as substrate, the reaction was blocked at the o-quinone imine 17; with 5-tert-butyl-2-aminophenol (19) as substrate, the reaction was blocked at the p-quinone imine 20; and with 5-methyl-2-aminophenol (21) as substrate, the reaction was blocked at the dihydro-2-aminophenoxazinone 22. These findings suggested a mechanism in which 2-aminophenoxazinone formation proceeded via a quinone imine intermediate 4 that was trapped by a second molecule of 2-aminophenol. Oxidation of the adduct 5 to the p-quinone imine 6 was followed by a second conjugate addition and a final 2-electron oxidation to give the product, 2-aminophenoxazinone. The role of the enzyme in the catalysis of each of these steps was examined. It was found that the second conjugate addition generated a racemic center at C4a, suggesting that this reaction did not occur at the active site. A deuterium isotope effect on the cleavage of the C4-H bond of 2-aminophenol suggested that partial dissociation of an intermediate from the enzyme occurred after the first conjugate addition. It is proposed that 2-aminophenoxazinone synthesis proceeds via a sequence of three consecutive 2-electron aminophenol oxidations and that the aminophenol moiety is regenerated during the reaction sequence by facile tautomerization reactions. Thus, what initially appears to be an impressively complex mechanism may, in fact, be ingeniously simple.  相似文献   

13.
The predominant reaction of lysozyme with 2-hydroxy-5-nitrobenzyl bromide, (HNB-Br), leads to the formation of an enzymatically inactive, labile product substituted at tryptophan 62. This species can revert to the native enzyme with the simultaneous loss of 2-hydroxy-5-nitrobenzyl alcohol (HNB-OH). The lability of the product in acidic or neutral solution depends upon three features of the HNB-lysozyme molecule: (1) the 2-hydroxy group of the HNB moiety, (2) a group which is readily reduced by borohydride, presumably an indolenine and (3) a particular structural conformation of the complex. A tentative mechanism for the hydrolysis reaction is presented.  相似文献   

14.
The two active sites of dimeric 5-aminolevulinate synthase (ALAS), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, are located on the subunit interface with contribution of essential amino acids from each subunit. Linking the two subunits into a single polypeptide chain dimer (2XALAS) yielded an enzyme with an approximate sevenfold greater turnover number than that of wild-type ALAS. Spectroscopic and kinetic properties of 2XALAS were investigated to explore the differences in the coenzyme structure and kinetic mechanism relative to those of wild-type ALAS that confer a more active enzyme. The absorption spectra of both ALAS and 2XALAS had maxima at 410 and 330 nm, with a greater A(410)/A(330) ratio at pH approximately 7.5 for 2XALAS. The 330 nm absorption band showed an intense fluorescence at 385 nm but not at 510 nm, indicating that the 330 nm absorption species is the substituted aldamine rather than the enolimine form of the Schiff base. The 385 nm emission intensity increased with increasing pH with a single pK of approximately 8.5 for both enzymes, and thus the 410 and 330 nm absorption species were attributed to the ketoenamine and substituted aldamine, respectively. Transient kinetic analysis of the formation and decay of the quinonoid intermediate EQ(2) indicated that, although their rates were similar in ALAS and 2XALAS, accumulation of this intermediate was greater in the 2XALAS-catalyzed reaction. Collectively, these results suggest that ketoenamine is the active form of the coenzyme and forms a more prominent coenzyme structure in 2XALAS than in ALAS at pH approximately 7.5.  相似文献   

15.
McCorvie TJ  Timson DJ 《IUBMB life》2011,63(9):694-700
Reduced galactose 1-phosphate uridylyltransferase (GALT) activity is associated with the genetic disease type I galactosemia. This results in an increase in the cellular concentration of galactose 1-phosphate. The accumulation of this toxic metabolite, combined with aberrant glycoprotein and glycolipid biosynthesis, is likely to be the major factor in molecular pathology. The mechanism of GALT was established through classical enzymological methods to be a substituted enzyme in which the reaction with UDP-glucose results in the formation of a covalent, UMP-histidine adduct in the active site. The uridylated enzyme can then react with galactose 1-phosphate to form UDP-galactose. The structure of the enzyme from Escherichia coli reveals a homodimer containing one zinc (II) and one iron (II) ion per subunit. This enzymological and structural knowledge provides the basis for understanding the biochemistry of this critical step in the Leloir pathway. However, a high-resolution crystal structure of human GALT is required to assist greater understanding of the effects of disease-associated mutations.  相似文献   

16.
The mechanism by which cAMP-dependent protein kinase-catalyzed phosphorylation modulates the activities of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was examined after site-specific mutation of the cAMP-dependent phosphorylation site (Ser32) to aspartic acid or alanine. The mutant and wild-type enzymes were overexpressed in Escherichia coli in a rich medium to levels as high as 30 mg/liter and were then purified to homogeneity. The kinetic properties of the Ser32-Ala mutant were identical with the dephosphorylated wild-type bifunctional enzyme. Mutation of Ser32 to aspartic acid mimicked several effects of cAMP-dependent phosphorylation: there was an increase in the Km for fructose 6-phosphate for 6-phosphofructo-2-kinase and an increase in the maximal velocity of fructose-2,6-bisphosphatase. Fructose-2,6-bisphosphatase activity of the Ser32-Asp mutant was 75% that of the phosphorylated wild-type enzyme, the mutant's kinase reaction had an identical dependence on fructose 6-phosphate, while its maximum velocity was only 60% that of the phosphorylated wild-type enzyme over a wide pH range. Furthermore, catalytic subunit-catalyzed in vitro phosphorylation of the Ser32-Ala mutant on Ser33 increased the Km for fructose 6-phosphate by 4-fold for the 6-phosphofructo-2-kinase. The results support the hypothesis that Ser32 is an important residue in the regulation of the activities of the bifunctional enzyme and that phosphorylation of Ser32 can be functionally substituted by aspartic acid. The results suggest a role for negative charge in the effect of phosphorylation.  相似文献   

17.
Asparagine transaminase has been purified about 200-fold from rat liver. The enzyme has a broad specificity toward both amino acids and alpha-keto acids. Thus, amino acids substituted in the beta position such as asparagine, S-methylcysteine, phenylalanine, cysteine, serine, and aspartate are substrates. The enzyme is also active with alanine, methionine, homoserine, alpha-aminobutyrate, glutamine, and leucine. The enzyme has a high affinity for glyoxylate but the affinity falls off markedly through the series glyoxylate, pyruvate, alpha-ketoburyrate, alpha-Keto acids substituted in the beta or gamma position, such as alpha-ketosuccinamate, phenylpyruvate, p-hydroxyphenylpyruvate, alpha-keto-gamma-methiolburyrate, and alpha-keto-gamma-hydroxybutyrate, are substrates for the enzyme. Amino acids or alpha-keto acids possessing a branch point at the beta carbon are inactive. Kinetic analysis of the asparagine glyoxylate transamination reaction is consistent with a ping-pong mechanism.  相似文献   

18.
Recently, the synthesis and properties of several 6-substituted flavins as active site probes for flavoproteins have been reported (Ghisla, S., Massey, V., and Yagi, K. (1986) Biochemistry 25, 3282-3289). Here, we report results of experiments in which 6-thiocyanato-FAD and 6-mercapto-FAD have been substituted for the native flavin of phenol hydroxylase. The 6-SCN-FAD enzyme was converted spontaneously to the 6-mercaptoflavin form probably due to dissociation of flavin, followed by attack of external protein thiols. The pK alpha values of uncomplexed and phenol-bound 6-mercapto-FAD enzyme were determined. Both the spontaneously formed 6-mercapto-FAD enzyme and the enzyme reconstituted with preformed 6-mercapto-FAD were treated with a variety of thiol-specific reagents, and reaction rates were followed by spectroscopic means. Comparison with the corresponding rates found with free flavin suggested a high degree of accessibility to the flavin 6-position. Accessibility was somewhat decreased in the presence of phenol. Upon treatment with low concentrations of methyl methanethiosulfonate or N-ethylmaleimide (NEM), extremely rapid spectral changes were apparent. The former reaction, however, was reversed spontaneously within 2 h. Reaction with NEM was biphasic, with spectral changes consistent with the mechanism previously proposed (Steenkamp, D. J., McIntire, W., and Kenney, W. C. (1978) J. Biol. Chem. 253, 2818-2824), followed by a small absorbance decrease due to protein conformational changes. The NEM reaction is unusual, being easily reversed by addition of excess dithiothreitol.  相似文献   

19.
As an important building block, developing efficient and green synthesis strategy of cyclohex-2-enones is of great importance. In this present work, a general approach to the mild synthesis of substituted cyclohex-2-enones derivatives starting fro m simple aldehydes and acetone have been achieved via d-aminoacylase-initiated Aldol condensation/Robinson annulation cascade reaction using imidazole as an additive in organic media. The influences of reaction conditions including solvents, enzyme concentration, additives type, molar ratio of enzyme to additive, and substrate scopes were systematically investigated. Furthermore, some experiments were designed to explore the catalytic roles of d-aminoacylase and imidazole in the multistep cascade process, and one possible mechanism was proposed.  相似文献   

20.
The steady-state kinetics of Pseudomonas aeruginosa cytochrome oxidase were studied. Reduced cytochrome c551 and azurin from the same bacteria were used as the electron-donating substrates, while dioxygen served as the electron acceptor. Oxidized cytochrome c551 and azurin exhibited product inhibition of the reaction. However, apo-azurin and azurin derivatives in which the copper was substituted by the redox-inert ions Ni2+, Co2+, Cd2+ and Zn2+, did not show any effect on the kinetics. These observations implied that complex formation between the substrates or the products and the enzyme is not a rate-limiting step and is not the cause for product inhibition. The integrated rate law for a reaction scheme in which we assumed that complex formation was not rate limiting was fitted to the complete reaction traces. The results suggested that it is the low thermodynamic driving force, expressed in the small differences in redox potential between the substrates and heme c of the enzyme, which cause the observed product inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号